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Abstract 

The sugar beet weevil, Lixus incanescens B., is one of the most important pests of sugar beet plant in Iran. The 

petioles and leaves of sugar beet are attacked by larvae and adults of the sugar beet weevil. Chemical 

application is currently used for controlling the pest. Digestion in the alimentary canal of the sugar beet weevil 

is facilitated by some carbohydrases. Results of the in vitro studies indicated the presence of α-amylase, β-

glucosidase and β-galactosidase in the digestive tract of the pest. Highest activities of α-amylase, β-glucosidase 

and β-galactosidase were at pH 5, pH 5 and pH 4, respectively. No significant α-glucosidase and α-

galactosidase activity was detected in the pest’s digestive system. Optimum temperatures for α-amylase, β-

glucosidase and β-galactosidase activity were determined at 45, 50 and 40 °C, respectively. α-amylase was 

more stable under acidic condition (pH 4 to pH 6) than under highly acidic and alkaline condition. Na+ and K+ 

increased α-amylase activity, but sodium dodecyl sulfate significantly decreased amylase activity. Also, the 

activity of α-amylase was inhibited by the other compounds such as MgCl2, CaCl2 and EDTA. Zymogram 

analysis using native-PAGE revealed one band of α-amylase activity in Lixus incanescens. High activity of 

carbohydrases in the digestive system of adults was determined and further researches are needed to be applied 

to design new strategies for controlling the sugar beet weevil based on natural carbohydrase inhibitors. 
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1 Introduction 

The sugar beet weevil, Lixus incanescens B. (Coleoptera: Curculionidae) is a key pest of sugar beet plants 

causing significant damage to living plants in Iran. It has been reported from many parts of Iran and some 

other countries (Davatchi et al., 1960; Aleeva, 1953). The sugar beet weevil has three generations per year. 

The petioles and leaves of sugar beet plants are attacked by larvae and adults of L. incanescens. The larvae can 

cause up to 75% root weight loss (Ocete et al., 1994). The most damage happens in the second and third 

generations. Loss in early-planted sugar beet is less than late-planted ones (Parvizi et al., 1988). Currently, 
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application of chemical pesticides has been a fundamental tool for pest control. However, it has had serious 

consequences such as intoxication of animals and people, contamination of air, water, and soil, high 

persistence in the environment, resistance in pests, and has impacted beneficial insects (Rodriguez et al., 1960; 

Huignard et al., 2005). The use of such pesticides in urban areas holds special risks, as most pesticides are not 

very selective, which has led to the search for safe and environmentally friendly alternatives (Breuer et al., 

2000). It seems that an integrated pest management (IPM) program, including application of selective 

pesticides and some resistant cultivars bearing carbohydrase inhibitors as well as the use of field sanitation and 

crop rotation would provide the best management option for control of this pest (Meiners et al., 1978). 

Understanding the biochemistry of the enzymes present in the gut of target pests is the first step to design 

inhibitor-transgenic crops (Oppert, 2000; Oppert et al., 2000; Wilhite et al., 2000). α-amylases (α-1,4-glucan-

4-glucanohydrolases; EC3.2.1.1) are the hydrolytic enzymes that there are in microorganisms, plants and 

animals such as insects. α-amylases are hydrolytic enzymes that catalyze the hydrolysis of α-D-(1, 4) glucan 

linkages in starch and related carbohydrates (Strobl et al., 1998; Ferreira et al., 1989). Α-amylases have been 

detected in Coleoptera, Hymenoptera, Heteroptera, Orthoptera, Lepidoptera and Diptera (Hori, 1970; 

Kanekatso, 1978; Baker, 1987; Baker, 1991; Terra et al., 1988; Schumaker et al., 1993; Ferreira et al., 1999). 

Most insects depend on their amylases and glucosidases for efficient digestion of their diet. For both the 

maintenance of adult longevity and optimal larval growth, carbohydrates are essential for initial hydrolyzing of 

energy-producing nutrients (Dadd, 1985). α-glucosidases hydrolysis non-reducing 1,4-linked alpha-D-glucose 

residues and releases α-D-glucose. α-glucosidase hydrolyzes several substrates, including maltose, sucrose , 

maltodextrin and pNP-α-Dglucopyranoside (Terra et al., 1996). β-glucosidases catalyzes hydrolysis of β-1,4 

linkages between two glucoses or glucose-substituted molecules (Terra et al., 1996). α-galactosidases are exo-

acting glycoside hydrolases that cleave α-linked galactose residues from carbohydrates such as melibiose, 

raffinose and gluco- or galactomannans (Meier et al., 1982). β-galactosidases are the enzyme that catalyses the 

hydrolysis of β-galactosides into monosaccharides (Sezginturk et al., 2008). Our knowledge of β- 

galactosidase in insects is still rudimentary.  

The destructive effects of the pest L. incanescens on the production and handling of sugar beet plants have 

made this insect an important target for biochemical study. There are significant variations among the 

properties of insect digestive enzymes. To develop the control strategy utilizing plant-carbohydraceous 

inhibitors, it is necessary to have more information on the gut enzymatic activities of insects (Wilhite et al., 

2000). In the current study, we have carried out a detailed biochemical analysis of digestive carbohydrolytic 

activity in L. incanescens adults. 

 

2 Materials and Methods 

2.1 Test insect 

Adults of the sugar beet weevil, Lixus incanescens, were collected from the fields of sugar beet plants at 

Qazvin province, Iran and were used as the enzyme source for subsequent experiments. 

2.2 Sample preparation 

Whole gut of the adults were removed by dissection under a stereo-microscope in ice-cold saline buffer, and 

homogenized in distilled water using a hand-held glass homogenizer. The homogenates were centrifuged at 

16,000 × g for 15 min at 4°C. Resulted supernatants were removed and kept at -20 °C until needed. 

2.3 α-amylase assay 

α-amylase activity was assayed using dinitrosalicylic acid (DNSA) as the reagent (Strobl et al., 1998) and 1% 

soluble starch (Merck) as the substrate. Ten microliters of the enzyme source was added to 5 μl substrate and 

85 μl of the universal buffer (0.02 M; sodium citrate- phosphate-borate). The reaction mixture was incubated at 
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35°C for 30 min. Thereafter, 100 μl DNSA was added to the reaction mixture and heated in boiling water for 

10 min. After cooling the mixture, the absorbance was measured at 540 nm. All assays were performed in 

triplicate. 

2.4 Glucosidase and galactosidase assay 

Glucosidase and galactosidase assays was carried out by incubating 10 μl of the enzyme extract with 85 μl of 

50 mM universal buffer (pH 4 to pH 11; sodium citrate-phosphate-borate) and 5 μl of each pnitrophenyl- α-D-

glucopyranoside (pNPαGlu, 5 mM) for α-glucosidase or p-nitrophenyl-β-D-glucopyranoside (pNPβGlu, 5 mM) 

for β-glucosidase at 35 °C for 30 min. After the addition of NaOH (2 M) to the reaction mixture, released p-

nitrophenol was determined by measuring the absorbance at 405 nm. In the blanks, enzyme extract was added 

to the reaction mixture after the addition of NaOH. The same procedure was used for detecting α- and β-

galactosidase activity but with p-nitrophenyl-α-D-galactosidase (pNPαGal, 5 mM) and p-nitrophenyl-β-D-

galactosidase (pNPβGal, 5 mM), respectively, as the substrates. 

2.5 Effect of pH and temperature on enzyme activity 

The effects of temperature and pH on the activity of α-amylase, β-glucosidases and β-galactosidase were 

examined using enzymes extracted from the whole gut. Effect of temperature on α-amylase, β-glucosidases 

and β-galactosidases activity was determined by incubating the reaction mixture at 20, 30, 35, 40, 45, 50, 60 

and 70 °C for 30 min followed by measurement of the enzyme activity. The optimum pH for α-amylase, β-

glucosidases and β-galactosidase activity was determined using the universal buffer (sodium citrate-phosphate-

borate) at a pH range 3 to pH 11 with one degree interval. 

2.6 pH stability of α-amylase 

Stability of α-amylase was determined over a broad pH range and two incubation time periods. Enzyme extract 

was mixed with buffer and incubated for 1 and 10 hr at 37°C. The substrate was then added to the buffered 

enzyme extract, and α-amylase activity was determined as described above. 

2.7 Effect of activators and inhibitors on α-amylase 

To investigate the effect of several salts on α-amylase activity, assays were performed in the presence of 

different concentrations of K+, Na+, Ca2+, and Mg2+ chloride salts as well as sodium dodecyl sulfate (SDS) and 

Ethylenediaminetetraacetic acid (EDTA). The enzyme sample was pre-incubated with the compounds for 15 

min. 

2.8 Zymogram analysis 

Activity of α-amylase present in the crude homogenates of the whole gut of the adults was visualized using 

native polyacrylamide gel electrophoresis (native-PAGE). Native-PAGE was performed in a 10% (w/v) 

resolving gel and a 4% stacking gel. The sample buffer contained 25% stacking buffer (0.5 M Tris–HCl; pH 

6.8), 20% glycerol, 0.005% (w/v) bromophenol blue, but no mercaptoethanol and no boiling. After 

electrophoresis, the gel was rinsed in distilled water and incubated for 1 h in phosphate buffer containing 1% 

starch and 20 mM CaCl2 at pH 5. The gel was then rinsed with distilled water and incubated with a solution of 

10 mM I2 and 14 mM KI to stop the reaction and to stain the unreacted starch background. Areas bearing α-

amylase activity appeared as light bands against a dark background. 

2.9 Protein determination 

Protein content was determined using the method of Lowry et al. (1951). Bovine serum albumin was used as 

the standard. 

 

3 Results 

3.1 α-amylase activity 

The effect of pH on amylolytic activity from the whole gut extracts is shown in Fig. 1. Relatively higher 
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activities were detected over a broad range of acidic condition (pH 4 to pH 6) with maximum activity at pH 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 The effect of pH on the activity of α-amylase extracted from the digestive system of L. incanescens adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 The effect of pH on the activity of β-glucosidases extracted from the digestive system of L. incanescens adults. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 The effect of pH on the activity of β-galactosidases extracted from the digestive system of L. incanescens adults. 
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3.2 Glucosidase activity 

β-glucosidase activity in the gut increased steadily from pH 3 to pH 6, and then decreased with increased pH 

above 6 (Fig. 2). The optimal pH for β-glucosidase activity occurred at 5.0. Activity for α–glucosidase was not 

significantly detected in digestive system of L. incanescens adults. 

3.3 Galactosidase activity 

β-Galactosidase activity increased steadily from pH 3 to pH 4, then decreased with increased pH above 4. The 

optimal pH for β-galactosidase activity occurred at pH 4.0 (Fig. 3). Activity for α–galactosidase was not 

detected in digestive system of Lixus incanescens adults. 

3.4 Effect of temperature on α-amylase activity 

The optimum temperature for α-amylase activity was 45 °C (Fig. 4). Digestive β-glucosidase was optimally 

active at 50 °C (Fig. 5). Optimum temperature for β-galactosidase activity was determined at 40 °C (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 The effect of temperature on the activity of α-amylase extracted from the digestive system of L. incanescens adults. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The effect of temperature on the activity of β-glucosidases extracted from the digestive system of L. incanescens adults. 
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Fig. 6 The effect of temperature on the activity of β-galactosidases extracted from the digestive system of L. incanescens adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Stability of digestive α-amylase from L. incanescens at different pHs after 1 and 10 hrs incubation period. 

 
 
 

3.5 pH stability of α-amylase 

The results revealed that α-amylase was more stable in acidic to slightly acidic condition (pH 4 to pH 6) with a 

short incubation period (1 hr; Fig. 7). However, α-amylase stability decreased under alkaline condition and a 

longer time incubation period (10 hr; Fig. 7). 

3.6 Effect of activators and inhibitors on α-amylase activity 

Na+ and K+ enhanced α-amylase activity, whereas sodium dodecyl sulfate (SDS) significantly decreased α-

amylase activity. Activity of α-amylase was inhibited by other compounds such as MgCl2, CaCl2 and 

ethylenediaminetetraacetic acid (EDTA) (Fig. 8). 

3.7 Zymogram analysis 

Further characterizations of the α-amylase activity of the gut extract from the adults of L. incanescens using 

starch as the substrate under native-PAGE are shown in Fig. 9. At least one band of α-amylase activity was 

revealed from the gut extract. 
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Fig. 8 Effects of different compounds on the midgut digestive amylase activity in L. incanescens adults. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Zymogram of α- amylase extracted from the digestive system of L. incanescens. 
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4 Discussion  

Carbohydrases play a vital role in food digestion in insects. The present study clearly showed that α-amylase, 

β-glucosidase and β-galactosidase are active in the gut of L. incanescens adults. The enzymes are optimally 

active in acidic condition which is congruent with the pH prevailing in the gut of Coleoptera. Stability of 

amylase was also consistent with the pH value of the midgut and showed its maximum stability at acidic to 

slightly acidic condition in L. incanescens. The optimal pHs for hemolymph and gut α-amylases of the red 

palm weevil, Rhynchophorus ferrugineus Olivier (Col.: Curculionidae) were 5 to 6 and 4 to 5, respectively 

(Saberi et al., 2012). The optimum pH for digestive α- amylase activity in the salivary glands and midgut of 

Brachynema germari Kol. was determined at 6 and 5, respectively (Ramzi et al., 2010). In insects, amylases 

are usually most active in neutral to slightly acidic condition (Baker, 1983; Terra et al, 1996). The optimal pH 

values in larvae of various coleopterans were from 4 to 5.8 for amylases (Baker, 1983). The optimum activity 

for α-amylase from the midgut of Hypera postica larvae was determined at pH 5.0 (Vatanparast et al., 2010). 

Hypera postica α-amylase was more stable at pH 5 to pH 6 than highly alkaline and acidic pH in larval midgut 

of the pest (Vatanparast et al., 2010). The pH in the tissues from which the enzymes are isolated usually 

corresponds to the optimum pH for digestive enzyme activity. Biochemical properties of many partially 

purified or purified insect gut α- glucosidases are known, and regardless of the corresponding midgut pH value, 

their optimal pH range from 5 to 6.5 (Terra et al., 1994). Activity for α–glucosidase and α–galactosidase were 

not detected in digestive system of Lixus incanescens adults. Insect β-glucosidases have pH optima of 4.5 to 

6.5 (Terra et al, 1994; Azevedo et al, 2003). β-glucosidase activity has been reported in Diatraea saccharalis 

Fabricius (Lepidoptera: Pyralidae) (Azevedo et al., 2003), Parnassius apollo ssp. frankenbergeri (Lepidoptera: 

Papilionidae) (Nakonieczny et al, 2006). Also, digestive β-glucosidase activity has been reported in 

Rhynchophorus palmarum L. (Coleoptera: Curculionidae) (Yapi et al., 2009). In Dysdercus peruvianus Guerin 

(Hemiptera: Pyrrochoridae), galactosidases have an optimum pH of 5.0 (Silva et al., 1997). In Abracris 

flavolineata De Geer (Orthoptera: Acrididae) midguts, there are two α-galactosidases and these enzyme have 

maximum activity at pH 5.4 (Ferreira et al., 2001). β-galactosidase activity has been detected in Spodoptera 

frugiperda (Marana et al., 2000) and Diatraea saccharalis, Tenebrio molitor (Franco et al., 2000). The highest 

activities of α- and β-glucosidases of Rhynchophorus ferrugineus were at pH 5 and of α- and β-galactosidases 

at pH 4 (Saberi et al., 2012). Data on the biochemical characterization of β-galactosidase in insects are not 

complete.  

Maximum carbohyrolytic activity was obtained at 40 to 50 °C congruent with the other insects. Higher gut 

α-amylase activity of the red palm weevil was obtained at 40 to 50 °C (Saberi et al., 2012). Digestive α-

amylase from H. postica showed its maximal activity at 35 °C (Vatanparast et al., 2010). For α-amylase 

activity, optimum temperature was 60 °C in Bombyx mori L. (Lepidoptera: Bombycidae) (Kanekatso, 1978). 

In midgut of Brachynema germari Kol. (Hemiptera: Pentatomidae) optimum temperature for α- and β- 

galactosidase was 30 °C (Ramzi et al., 2010). The sugar beet weevil β-glucosidase has optimum temperature 

activity at 50 °C (Fig. 5). Also, the optimal temperature for β-galactosidase in the digestive system this pest 

was 40 °C (Fig. 6). Alpha and β-glucosidases and α- and β-galactosidases from the red palm weevil had an 

optimum temperature activity at 50, 50–60, 40–60, and 40 °C, respectively (Saberi et al., 2012). Activity of 

digestive α- and β-glucosidases٫ α- and β-galactosidases in the digestive system of Xanthogaleruca luteola 

were optimum at 60, 50, 40, 60 °C , respectively (Sharifi et al., 2011). 

In the presence of Ca2+, Mg2+ and SDS, digestive α-amylase activity of Hypera postica significantly 

decreased, while Na+ and K+ did not significantly affect the enzyme activity (Vatanparast et al., 2010). 

Zymogram analysis showed the presence of one band of α-amylase activity in the gut of L. incanescens similar 

to other coleopteran pests (Vatanparast et al., 2010). However, zymogram analysis revealed that red palm 
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weevil hemolymph and gut α-amylases had two isoforms (Saberi et al., 2012). 

Producing pest-resistant transgenic plants help us to decrease the use of chemical pesticides and the 

entering of these chemicals in the environment. Understand digestive enzymes of the target insect is first step 

in designing a controlling program based on inhibition of digestion (Strobl et al., 1998). The biochemical 

characterization of insect digestive enzymes will greatly help to design new strategies for insect control and 

will facilitate the understanding of the mechanisms responsible for the inhibitory potential of the 

carbohydraceous plant inhibitors. 
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