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Abstract 

In addition to direct mortalities caused by acute concentrations of insecticides, some biological traits of target 

pests may be also affected by sublethal doses. The cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae) is an 

important pest of a wide variety of agricultural crops across the world. The control of B. tabaci largely relies 

on wide application of chemical insecticides. In this study, we analyzed the life table parameters to evaluate 

the sublethal effect of three plant-derived insecticides (Fumaria parviflora (Fumariaceae), Teucrium polium 

(Lamiaceae), and Thymus vulgaris (Lamiaceae)) and two chemical insecticides (pymetrozin and neemarin) on 

B. tabaci. The whiteflies were allowed to oviposit on plants infected with each of the five insecticides using 

leaf-dip method. The data were analyzed using the age-stage two-sex life table. We found significant 

differences in the gross reproductive rate (GRR), the net reproductive rat (R0), the intrinsic rate of increase (r) 

and the finite rate of increase (λ) of treated whiteflies compared to control. Our results showed that some 

biological traits of B. tabaci are affected by sub-lethal doses of the plant-derived extracts and that these effects 

are comparable to those of chemical insecticides. Given the detrimental effects of chemical insecticides on 

human, environment and non-target organisms, plant-derived insecticides may provide valuable 

environmentally friendly tools for pest management programs. 
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1 Introduction 

The cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae), is one of the most serious pests of agriculture 

attacking a wide range of plant species across the world (Oliveira et al., 2001; DAFGWA, 2008; De Barro et 

al., 2011). Economic damages occur only by direct feeding on plant phloem, (Malumphy, 2003) but also by 

producing high amounts of honeydew (Perumal and Marimutha, 2009) as well as transmission of more than 

111 plant pathogenic viruses (Jones, 2003; Antony et al., 2009). At least 24 different biotypes of B. tabaci 
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have been identified worldwide with the biotype B (also known as Bemisia argentifolii Bellows and Perring) is 

the most serious and widely distributed biotype (Perring, 2001).  

During the two recent decades, B. tabaci has spread rapidly around the world to become a major pest of 

fruits, vegetables, fiber, and ornamental crops in tropical and subtropical regions (Brown et al., 1995; Oliveira 

et al., 2001). The control of B. tabaci has largely depended on wide application of chemical insecticides, which 

has caused many environmental and health problems (Ren et al., 2001; Lu et al., 2012). In addition to these 

problems, the satisfactory control of B. tabaci has proven to be difficult because of its wide range of hosts, 

rapid rate of development and reproduction and, more importantly, its high resistance to many commercially 

available insecticides (De Barro and Driver, 1997). Resistance to different classes of insecticides including 

organophosphates, carbamates, pyrethroids, neonicotinoids, and insect growth regulators has been frequently 

reported for populations collected from different geographic areas of the world (Nauen and Rauch, 2003). 

Therefore, it is necessary to search for alternative methods for effective control of this pest besides reducing 

the detrimental effects of chemical insecticides on human, environment and non-target organisms. Recently, 

the use of plant-derived insecticides (known also as botanicals) as potential safe weapons alternative to 

synthetic pesticides has been received increasing attention (Pascual-Villalobos and Robledo, 1998; Dimetry, 

2012).  

Recent studies have revealed that the acute mortality of insect pests is not the only determinant of 

insecticide efficiency. On the other word, in addition to direct mortality caused by insecticides, some 

biological traits of insect pests may be also affected by sublethal doses. Here, a question arises: whether or not 

the biological properties of resistant populations are still affected by sublethal doses of insecticides even when 

they do not suffer any direct mortality. To explore this question, in the current study, we used the life table 

parameters to evaluate the sublethal effects of some chemical and plant-derived insecticides on B. tabaci. The 

life table demonstrates a perfect description of survival, development, stage differentiation, and reproduction 

of a population (Hu et al., 2010). The traditional age-specific life table (Lewis, 1942; Leslie, 1945) considers 

only the survival and fecundity of females, and ignores male population as well as the stage differences and 

overlapping. As the economic damages of many important pests, including B. tabaci, occurs by both sexes, 

ignoring the male population may lead to miscalculation of survival and fecundity curves (Chi, 1988; Chi and 

Yang, 2003; Chi and Su, 2006). Therefore, in this study, we used the age- stage, two- sex life table, developed 

by Chi and Liu (1985), to take into account the male populations as well as the variable developmental rate 

occurring among individuals. 

 

2 Material and Methods 

2.1 Host plants  

Seeds of cotton, Gossypium hirsutum (Var. Varamin) and tomato, Lycopersicon esculentum (Var. Bakker 

brothers) were planted in transplant trays in greenhouse conditions (25 - 27 ºC, 50 - 65% RH, and 16:8 L:D). 

Cotton plants were used as the main host for mass rearing of B. tabaci, while tomato plants were used as 

experimental host plant. The tomato stalks were transferred into plastic pots which had been filled with a 

commercial sterile plant growth media (BAGA, Bastare Amade Giah Arganic, manufactured by Dashte Sabz 

Atie Co., Iran). All glasses were kept in wooden cages (60 × 50 × 80 cm) covered by fine cloth mesh to avoid 

the entrance of wild B. tabaci. Old glasses were monthly replaced by new one to prevent the over-crowding. 

2.2 Study insects 

Adults of B. tabaci were collected from cotton fields (Rafsanjan, Kerman province, Southeastern Iran) by 

aspirator and released on cotton plants grown in greenhouses of College of Agriculture (Vali-e-Asr University 

of Rafsanjan, Iran). Several puparia belonging to B. tabaci (biotype A) were selected from these colonies and 
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used to establish a stock colony in greenhouse conditions.  

Young fully-grown tomato leaves, cut from end of shoots, were put in small plastic glasses (10 cm 

diameter, height: 15 cm) which were filled by distilled water. Each glass was covered by a similar transparent 

one to make a glass cages. Adult whiteflies were released into the cage via a small pore provisioned on middle 

parts of the upper glass. The rearing method was taken from Biondi et al. (2010) with slight modifications. To 

provide coetaneous 24-h old adults, the eye-red puparia on tomato leaves were checked daily and the newborn 

adults were collected and released in to prepared glass cages.  

2.3 Chemical insecticides  

Commercial formulations of the two synthetic insecticides, pymetrozin (Chess®25% WP, Singenata Company), 

and azadirachtin (Neemarin EC1500), were used. These formulations are among the most widely used 

insecticides for B. tabaci control in Iran. 

2.4 Preparation of plant extract  

Four medicinally important plants belonging to different families were used as botanical insecticides (Table 1). 

The aerial parts of these plants (leaves and flowers) were collected in their flowering stage from their natural 

habitats located at different parts of the Kerman province during May and June 2010. Plant materials were air-

dried for 4-5 days and ground by an auto-mixer. Twenty grams of dried materials were placed on filter paper 

and steeped in ethanol (90 ml) and water (210 ml) for 12 hours. The plant extracts were prepared according to 

the Soxhlet extraction method (Pascual-Villalobos and Robledo, 1998). After extract preparation, rotation was 

used to reach an extract amount of one third.  

 

 
   Table 1 Plant species extracts evaluated on adult Bemisia tabaci. 

 

 

2.5 Dose-mortality response  

The effects of five concentrations of the abovementioned botanical and synthetic insecticides on adult B. 

tabaci were assayed using the leaf-dip method. The concentrations include 106, 150, 210, 298, 420, and 593 

µg/ml for pymetrozin, 0.060, 0.135, 0.330, 0.780, and 1.860 mg/ml for neemarin, 44, 58, 76, 100, 132, 173, 

and 228 mg/ml for Th. vulgaris, 58, 76, 100, 132, 173, 223, 300, and 395 mg/ml for T. polium, and 100, 153, 

234, 359, 550, and 842 mg/ml for F. parviflora. Briefly, two-leaves tomatoes stalks were dipped in the 

prepared dilutions for 5 s (Heydari et al., 2003), then put separately in glass cages. After drying the treated 

leaflets, 50 coetaneous adults were released into each cage. Cages were maintained under controlled 

environmental conditions (27±2 °C, 50±5% RH, and a photoperiod of 16:8 h L:D). The total numbers of dead 

adults were counted after 24 h. Adults were considered dead when they were not able to move properly when 

stimulated with a fine brush. A solution of 3% ethanol/water was used as control. The mortality percentage 

was corrected using Abbott (1925) method and the lethal dose of 25% (LD25) was calculated for each 

insecticide. Three replicates were considered for each of the studied insecticides and concentrations.  

2.6 Sublethal effects  

The sublethal effects of the selected insecticides were evaluated by analysis of life table parameters of B. 

tabaci eggs treated with the lethal dose of 25% (LD25). Tomato leaflets were dipped in 25% lethal 

Scientific name Common name Family name The used parts of plant 

Fumaria parviflora Fumitory Fumariaceae Leaves and stem 

Teucrium polium Germander Lamiaceae Leaves 

Thymus vulgaris Thyme Lamiaceae Leaves 

129



Arthropods, 2014, 3(3): 127-137 

 IAEES                                                                                                                                                                        www.iaees.org

concentration of each insecticide for 5 s (Heydari et al., 2003) and transferred to the glass cages. Thirty new 

emerged adults were randomly captured from the stock colony and released into cages. After 24 h, all adults 

were removed from the cages and their laid eggs were incubated for life table studies. The plants containing 

eggs were checked daily and any change in population parameters were recorded. After adult emergence, the 

whiteflies were individually transferred to new cages daily. The longevity of adult female and male whiteflies 

was determined and the number of eggs laid by each female was recorded daily until all females died. All 

experiments were carried out in controlled conditions (27±2 ̊C, 50%±5 relative humidity (RH) and 16: 8 h 

L:D). 

2.7 Data analysis 

Probit analysis was used to estimate the LC50 and LC25 by the Polo-Plus 2.00 software. The population 

parameters data were analyzed using SPSS software (version 16) followed by one-way ANOVA and Duncan’s 

multiple range tests. The raw life table data were analyzed based on the age- stage, two- sex life table theory 

(Chi and Liu, 1985; Chi, 1988). The means and standard errors of the life table parameters were estimated 

using Jackknife method (Sokal and Rohlf 1995). Processing of raw data was facilitated through TWOSEX- 

MSChart computer program (Chi, 2005) available at http://140.120.197.173/Ecology/ prod02.htm (Chung 

Hsing University, Taichung, Taiwan) and http://nhsbig.inhs.uiuc.edu.tw/www/chi.html (Illinois Natural 

History Survey, Champaign, IL). To format age- stage, two- sex life table, daily history of all individuals from 

birth to death, including daily female’s fecundity, was inscribed. The developmental stages were listed as egg, 

larva, pupa, and adult.  

According to Chi and Liu (1985), the total population dimensions (Nt)  and the total number of individuals 

in stage j (Nj) are calculated using the following folmula. So in simulation based on the age-stage, two-sex life 

table, the curves for every stages and for the total population can be produced (Chi, 1988). 

         ௧ܰ ൌ ݊



ୀଵ



ୀଵ

 

         ܰ ൌ ݊



ୀଵ

 

Other life table parameters including the age- stage specific survival rate (Sxj), the age- specific survival rate 

(lx), the age- stage specific fecundity (fxj), the age- specific fecundity (mx), the age-specific maternity (lxmx), the 

age- stage reproductive value (vxj), the mean fecundity (F), the intrinsic rate of increase (r), the finite rate of 

increase (λ), the net reproductive rate (R0), and the mean generation time (T) were calculated using the 

following formula (Chi and Liu, 1985; Chi, 1988): 
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where β is the number of stages. 

          ݁௫௬ ൌݏ′
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where n is the number of age, m is the number of stage and śij is the probability of individual survival from age 

x and stage y to age i and stage j (Chi, 1988). Difference in developmental rate and overlapping of stage 
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growth are common phenomenon frequently reported in many populations of insects. Therefore, individuals 

with the same age but different stage growth may possess different life expectancies. The two-sex life table 

method, however, accounts for individual life expectancy with age x and stage y (Istok, 1981; Chi and Su, 

2006; Yang and Chi, 2006).  

The intrinsic rate of increase (r) was calculated through the iterative bisection method using the Euler-

Lotka formula with age indexed from 0 (Goodman, 1982): 

   ∑ ݁ିሺ௫ାଵሻ∞
௫ୀ ݈௫݉௫ ൌ 1  

The finite rate of increase (λ), the mean generation time (T), the gross reproductive rate (GRR) and the net 

reproduction rate (R0) were calculated as: 

re  

                ܶ ൌ ሺܴ݊ܮሻ ⁄ݎ  
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In the two-sex life table which starts with N eggs, the survival number of each age-stage is N.Sij, thus the 

total number of eggs laid by adults emerged from this original N eggs would be: 

            ܰ
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The mean fecundity (F) per females was calculated as: 

ܨ             ൌ ቌܰݏ ݂



ୀଵ



ୀଵ

ቍ / ܰ 

where Nf is the number of females emerged from N eggs. 

 

3 Results and Discussion 

In this study, we used the age-stage two-sex life table parameters to evaluate the sublethal effects of three 

plant-derived insecticides and two synthetic chemical insecticides on B. tabaci, a key devastating pest of 

agriculture across the world. The rationale behind selection of these insecticides was that their efficiency for 

control of different species of whiteflies had been repeatedly approved in previous studies (Pascual-Villalobos 

and Robledo, 1998; Hummelbrunner and Isman, 2001; Bi et al., 2002; El-Shazly and Hussein, 2004; Mahdavi 

Arab et al., 2008; Wang et al., 2008). 

We did a preliminary bioassay test using five different concentrations of each selected insecticide to 

estimate the lethal dose of 25% (LD25). The LC25 values calculated using these assays were 89.95 µg/ml, 0.070 

µg/ml, 69 mg/ml, 90.9 mg/ml, and 314 mg/ml for pymetrozin, neemarin, Th. vulgaris, T. polium, and F. 

parviflora, respectively. 

The age- stage survival rate (Sxj) of B. tabaci, shows the probability that a recently born will survive to age 

x and stage j. This curve shows the survival, stages difference, stages overlapping and the variable 

developmental rate between individuals (Chi, 1988; Yang and Chi, 2006; Hu et al., 2010). We found that the 

Sxj values in pymetrozin and F. parviflora treatments decreased compared to other insecticides. The survival 

rate of male whiteflies in F. parviflora was more than that of females. Additionally, a significant overlapping 
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The population parameters including the intrinsic rate of increase (r), the finite rate of increase (λ), the 

gross reproductive rate (GRR), the net reproductive rate (R0), and the mean generation time (T) were also 

calculated using age-stage two-sex life table (Table 2). Analyses of variances revealed significant differences 

in effects of both botanical and chemical insecticides on the net reproductive rate (One way ANOVA: 

F6,754=12.489 P<0.001), the intrinsic rate of increase (One way ANOVA: F6,754=2.946, P<0.01), and the finite 

rate of increase (One way ANOVA: F6,754=3.192 P<0.01) compared to control. However, there was no 

significant difference in these parameters among whiteflies treated by different insecticides. These findings 

show the efficiency of the botanical insecticides in control of B. tabaci comparable to the commonly used 

chemical insecticides. The gross reproductive rate (One way ANOVA: F6,754=1.044, P=0.28) and the mean 

generation time (One way ANOVA: F6,754=1.098 P=0.362), in contrast, were not statistically different among 

whiteflies treated by different insecticides.  

 

 
Table 2 Comparison of means related to the effect of different herbal compounds in comparison with pesticides on 
population parameters with using the age-stage two-sex life table of eggs exposed to infected plant of Bemisia tabaci. 

The mean 
generation time 
(T) 

The gross 
reproductive 
rate (GRR) 

The net 
reproductive 
rate (R0) 

The finite 
rate of 
increase (λ) 

The intrinsic 
rate of 
increase (r) 

Treatment 

26.657±0.647a 38.590±7.723b 10.180±1.864a1.092±0.009a0.088±0.008a Control 

28.289±1.380a 9.748±3.608b 1.393±0.663b 1.016±0.021b0.016±0.021b Pymetrozin 

25.037±1.341a 4.299±1.667b 1.392±0.391b 1.015±0.012b0.015±0.012b Neemarin 

24.231±0.749a 12.194±4.837b 1.500±0.482b 1.019±0.014b0.019±0.014b T. polium 

27.813±3.485a7.394±12.900b 1.924±0.631b1.026±0.012b0.026±0.012b Th. vulgaris 

25.127±0.962a7.118±3.916b 1.578±0.611b1.021±0.018b0.021±0.017b F. parviflora 

Different letters show significant differences at 0.05 level. 

 

 

In our study, the total number of offspring produced by all females was nearly equal to the net reproductive 

rate × the cohort size, and the minor difference was probably due to rounding-off. This relationship highlights 

the accuracy of the age-stage two-sex life table. These findings were in accordance to results obtained by other 

authors (Chi, 1988; Chi and Young, 2003; Yang and Chi, 2006). Yang and Chi (2006) found that the net 

reproductive rate was lower than the mean female fecundity (R0≤F). This inequality may be explained by the 

presence of pre-adult mortality, a condition that was also demonstrated in our study. 

Given the increasing knowledge on the importance of sustainable agriculture during the two last decades, 

efforts for detection and elaborate use of environmentally friendly agents for pest management has received 

growing attention. In this context, life table methods are valuable tools to evaluate and compare the sublethal 

effects of these agents on both target pests and non-target organisms such as natural enemies. This study 

showed that some biological aspects of B. tabaci are significantly affected at sublethal concentrations of the 

botanical insecticides and that these effects are comparable to those achieved from application of those 

chemical insecticides that are widely used for control of whiteflies. According to our current data, and our 

previous findings (Esmaeily et al., 2014), the extracts taken from C. procera and T. polium as well as the 

synthetic insecticide, pymetrozin, gave the best results in B. tabaci control. Given the safety of plant-derived 
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insecticides for human and the environment, the two former insecticides may be considered as appropriate 

agents for use in integrated pest management of whiteflies. Although, both sublethal and lethal effects of these 

agents on non-target organisms, especially natural enemies, remain to be cleared in future studies. 
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