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Abstract 

Centrobolus typically has prolonged copulation as a form of syn-copula mateguarding. Variations in the 

copulation duration were calculated and analysed in four species of the millipede genus Centrobolus. Mean 

copulation durations differed between all four species but only two species were different intra-specifically. C. 

inscriptus was different from C. anulatus in copulation duration coefficient of variation (CV) (F=0.41490, 

d.f.=114, 7, p=0.04892) and C. fulgidus and C. anulatus were different in copulation duration CV (F=0.38912, 

d.f.=50, 7, p=0.04836). Copulation duration was variable intra-specifically but tends to be intermediate and 

determining evolutionarily (interspecifically). Copulation duration was significantly correlated (Spearman’s 

Rho Calculator) with male and female volumes (r=1, p=0, n=4, 4; 4, 4). When I controlled for sex, I found 

copulation duration was significantly correlated with size (volumes) (r=0.6655, r2=0.4429, p=0.004897, n=8, 

8). Larger male and female body size correlate with copulation duration both intra-specifically and inter-

specifically in millipedes, and perhaps in animals. 
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1 Introduction 

Copulation duration is a response to sperm competition (Kelly and Jennions, 2016). It determines insemination, 

fertilization, egg number/ production and paternity but not necessarily nuptial gifts (Micholitsch et al., 2000; 

Zhong and Hua, 2013; Cooper, 2015; Ullah et al., 2019). Even heat stress in males can negatively affect 

copulation duration (Zhang et al., 2016). There are many determining factors of copulation duration across 

arthropods, such as the timing of insemination varies to with spermatophore size and male genital titillation 

when there is indirect sperm transfer (Vahed et al., 2011; Cooper, 2016). It was “propose[d] that prolonged 

copulations gain meaning in multiple mating situations and should play a role in sperm competition or other 

forms of sexual selection” (Szira´nyi et al., 2005). 
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   Optimal copulation duration is dependent on male and female size (Charnov and Parker, 1995; Parker and 

Simmons, 1994; Parker et al., 1999). Size-dependent copulation duration and mate guarding occurs in the fly 

Drosophila melanogaster (LaFranc and Bundgaard, 2004), the scorpionfly (Panorpa cognata) (Engqvist, 

2003), spiders (Elgar, 1995), the skeleton shrimp Caprella penantis (Takeshita and Henmi, 2010), the carrion 

beetle Necrophila americana (Knox and Scott, 2006), orb-web spiders (Prenter, 2003), millipede Centrobolus 

inscriptus (Cooper, 2017) and yellow dungflies (Parker, 1974; Grafen and Ridley, 1984; Alcock, 1994; 

Arnqvist and Danielsson, 1999). This is not the case in the millipede Nyssodesmus pythos (Adolph and Geber, 

1995). 

   Here I investigate intraspecific and interspecific variance in size with copulation duration in the Arthropod 

case where there is mate-guarding in Centrobolus (Cooper, 2016, 2017, 2019). In these millipedes, copulation 

duration determines what sperm precedence is and when sperm precedence changes relative to the interval 

between mating (Cooper, 2019). In order to calculate optimal copulation duration I first calculate intraspecific 

and interspecific variance and coefficients of variation in copulation duration of four species of millipedes and 

perform interspecific comparisons to test the null hypothesis copulation is size-dependent and look for 

statistical differences in between species. 

 

2 Materials and Methods 

2.1 Observations 

Centrobolus was collected from KwaZulu-Natal where they inhabited the indigenous coastal forest. Live 

specimens of each sex were transported to the laboratory where conditions were kept under a constant 25°C 

temperature regime; 70% relative humidity; 12:12 hrs light-dark cycle. Food was provided in the form of fresh 

vegetable ad libitum. Individuals had unknown mating histories and unisex groups were housed in plastic 

containers containing moist vermiculite (±5cm deep) for ten days before commencing the first mating 

experiments. 

2.2 Data analysis    

Three calculations were made for all individuals once copula pairs had disengaged; copulation duration, 

standard deviation, and coefficient of variation (CV). CV data were compared using a coefficient of variation 

comparison calculator MEDCALC®. Mean copulation duration was simulated (to within 10 minutes of the 

mean) with 5 occurrences for each conspecific species and compared with hetero-specific species using a T-

test for 2 independent means. Initially differences between copulations were investigated using Free Statistics 

Calculator version 4.0 One-Way ANOVA on summary data available from 

https://www.danielsoper.com/statcalc/calculator.aspx?id=43. 

 

3 Results 

No differences appeared between species copulation duration (ANOVA: F=1.101, d.f.=3, P=0.350). Mean 

copulation durations differed between all four species: C. inscriptus and C. fulgidus (t=32.7612, p<0.00001, 

n=5, 5), differed between C. inscriptus and C. ruber (t=41.17286, p<0.00001, n=5, 5), differed between C. 

inscriptus and C. annulatus (t=41.29935, p<0.00001, n=5, 5), differed between C. fulgidus and C. annulatus 

(t=853.81497, p<0.00001, n=5, 5) and C. annulatus and C. ruber (t=12.64911, p<0.00001, n=5, 5). C. 

inscriptus variation in copulation duration was not different to C. fulgidus (F=1.06626, d.f.=114, 50, 

p=0.81484) or  C. ruber (F=0.78374, d.f.=114, 31, p=0.35692) but was different from C. anulatus 

(F=0.41490, d.f.=114, 7, p=0.04892). C. ruber and C. anulatus were not different in copulation duration CV 

(F=0.52938, d.f.=31, 7, p=0.21086). C. fulgidus and C. anulatus were different in copulation duration CV 

(F=0.38912, d.f.=50, 7, p=0.04836). C. fulgidus and C. ruber were not different in copulation duration CV 
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(F=0.73504, d.f.=51, 30, p=0.32648). Copulation duration was significantly correlated (Spearman’s Rho 

Calculator) with male and female volumes (r=1, p=0, n=4, 4; 4, 4). Copulation duration was not related to 

male surface area (r=0.2, p=0.8, n=4, 4) or female surface area (R=-0.4, p=0.6, n=4, 4). Copulation duration 

was significantly correlated with male surface area to volume ratio (R=-1, p=0, n-=4, 4) and female surface 

area to volume ratio (r=-1, p=0, n=4, 4). Coefficient’s of variation in copulation duration were not correlated 

with male or female volume (R=-0.8, p=0.2, n=4, 4; 4, 4). When I controlled for sex, I found copulation 

duration was significantly correlated with size (volumes) (r=0.6655, r2=0.4429, p=0.004897, n=8, 8). 

 

 
Table 1 Copulation durations (C), variance (Var.), coefficients of variation (CV), Volumes (V), Surface Areas (SA) and  
Surface Area to Volume (SA: V) for male (M) and female (F) Centrobolus spp.; sample sizes (N).  

  Spp.    C  (minutes) Var. (min.) N   CV 

(%) 

MV  

(mm3) 

FV  

(mm3)   

MSA  

(mm2)   

FSA (mm2) MSA: V  

(mm-1)   

FSA: V 

(mm-1)  

anulatus  39.4±18.6    432.6  8   47.3  2058   1729   2462,874  3026,009    0,000486 0,000578 

fulgidus   66.4±418.6   124044.84  51  28.0 4587   7554   1934,216  2512, 269   0,000218 0,000132 

inscriptus 170±49     14641  115 29.0 7327   8885   2717,289  2934, 185   0,000136 0,000113 

ruber     39.8±13.2    707.56  32  33.1 4555   7248   1972,92   2621, 596   0,00022  0,000138 

 

 

4 Discussion 

Here I found species-specific mean copulation durations in Centrobolus and variation in copulation duration 

which was different between species. This highlights there is a species-specific difference in variation of 

copulation duration. Copulation durations in millipedes extend beyond the time necessary to transfer sperm 

(insemination) (Assis and Foellmer, 2019). When there is variation at the intraspecific level, “[M]ating 

durations exceeding female optima serve males as a form of 'extended mate guarding': by inducing mating 

refractoriness in the female, a male extends the time over which its sperm is exclusively used to sire progeny 

and reduces the likelihood of the female being inseminated by a competitor” (Mazzi et al., 2009).   

   Significant correlations between copulation duration and volume were found giving an inverse relationship 

between surface area to volume ratios and copulation duration. Copulation duration was directly correlated and 

increased with body size across species. I found no difference between the relationships between copulation 

duration with male versus female sizes which was found in some studies of Drosophila melanogaster (LaFranc 

and Bundgaard, 2004). Millipedes were similar to spiders where the duration of copulation correlates with 

intra-specific size variation, also found in a scorpionfly (Panorpa cognata) where males in good condition 

copulate longer (Elgar, 1995; Engqvist, 2003). However, this study showed there was also a trend 

interspecifically for copulation duration to correlate with body size in and across millipedes. This emphasises 

the importance of body size on mate guarding as was the case in the skeleton shrimp Caprella penantis where 

male body size was the most important factor affecting competition for a receptive female (Takeshita and 

Henmi, 2010). The success of guarding males in millipedes is similar to the carrion beetle (Necrophila 

americana) which depends on size relative to other males and the operational sex ratio (Knox and Scott, 2006; 

Cooper, 2016). Results from removal experiments in orb-web spiders show that larger males have a clear 

advantage in monopolizing females (Prenter et al., 2003). The relative size of each species is thought to be 

significant in determining a copulation duration (Cooper, 2017). Together, copulation duration and size 

dimorphism contribute to calculating optimal copulation durations independent to the operational sex ratio of 

each population (Charnov and Parker, 1995; Parker and Simmons, 1994; Parker et al., 1999). “[P]atterns need 
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to determine whether sperm selection is applied differently, or consistently, on given males by different 

females in the same population” (Ball and Parker, 2003). 
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