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Abstract  

Spiders are dominant sit-and-wait predators, and they are of potential value in biological control by feeding on 

other insects. The sizes and shapes of the spider’s body are considered essential for their survival, especially in 

prey capture. The cephalothorax of the genus Gasteracantha, for example, is considered not only as 

ahierarchical status of their predation success but also as a defense mechanism from environmental 

disturbances. It is believed, therefore, that investigating how populations of a species vary, especially those 

collected from various geographical locations, is important. Thus, in this study, morphometric variations in the 

cephalothorax of Gasteracantha kuhli from selected local populations were assessed using relative warp 

analysis (RWA). Thirty-one landmarks were identified in the cephalothorax; coordinates were taken, 

Procrustes-transformed, and relative warp analysis was conducted. Results of RWA showed significant 

population variability in the cephalothorax shapes within and between G. kuhli populations, especially on the 

spines. The observed morphological differences can be argued to reflect their success on how well they do in 

their growth, survival, and reproduction in different environments where the spiders were found to dwell and 

are reflected in their external phenotype.  
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1 Introduction 

Ecosystem dynamics can be influenced by local adaptation (Matthews et al., 2011), and argued to be reflected 

in morphological variations. It is for this reason that we conducted this study on the black-and-white spiny 

spider Gasteracantha kuhli, aspecies found inhabiting open forests and shrubby areas in selected Asian 

countries (Barrion and Litsinger, 1995; Koh, 2000; Kim and Park, 2015; Saitō, 1939; Tanikawa, 2007, 2009; 

Tikader, 1982; Simon, 1886-1904; Sebastian and Peter, 2009; Sheriffs, 1934). This species of spiny orb-
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weaver spider build webs and stay at the center to wait for the prey (Platnick, 2010; World Spider Catalogue, 

2019; Kim and Lee, 2012; Gupta et al., 2015). How populations of this species vary, especially those in 

various ecological habitats are wanting to be examined since much detailed morphological analysis for similar-

looking species might reveal cryptic differences in selection pressures in natural environments. Understanding 

the possible role of the environment on the organisms’ morphological diversity is a good starting point in 

understanding local adaptations and differentiation among species (Siepielski, 2010). Studies have shown that 

inter- and intraspecific variations in organisms can have significant effects on species’ population, community, 

and ecosystem dynamics (Bolnick et al., 2011; Hausch et al., 2013; Vermeij, 1978). Thus, this study was 

conducted specifically in populations of the spiny-backed spider G. kuhli where they were found to be 

abundant in many different locations in Mindanao, The Philippines. Variability in morphological traits such as 

body size and shape provide us information and insights into how ecologically important species are in their 

natural habitat. Morphological differences can be argued to reflect their success on how well they do in their 

growth, survival, and reproduction in different environments as well as their roles in that environment 

populations (Bolnick et al., 2011; Hausch et al., 2013; Vermeij, 1978). It is for these reasons that we 

investigated population variability in G. kuhli by quantifying and qualitatively describemorphometric 

variations using geometric morphometric methods (GM), specifically the use of relative warp analysis. 

Thistechnique that is very suitable in describing shape variation within and between many species 

quantitatively (Webster and Sheets, 2017; Gao et al., 2017; Presilda et al., 2018; Gualberto and Demayo, 2018; 

Sepe et al., 2019; Cabuga et al., 207a,b; Moneva et al., 2012a,b,c; Requieron et al., 2011; Sobrepena and 

Demayo, 2014). One advantage of using this method of analysis is that we can analyze more specimens and 

characterize shapes with higher fidelity making it an excellentway to quantitatively describe inter- and 

intraspecific variations in the abdominal shapes within, between, and among populations of G. kuhli.  

 

2 Materials and Methods 

G. kuhli was collected through opportunistic sampling from six locations in Mindanao, the Philippines. These 

are Tinago, Tomas Cabili, and Tominobo in Iligan City, Lanao del Norte; Balangao, Diplahan, Zamboanga 

Sibugay; Tigbao, Zamboanga del Sur and Dipolog, Zamboanga del Norte. The spiders were identified using 

the guide from the book of Barrion and Litsinger (1995). Images were captured using a Canon DSLR 

capturing the cephalothorax for image processing and subjected to geometric morphometric techniques.  
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Fig. 1 Sampling area. A. Iligan City, Lanao del Norte (a. Tominobo; b. Baraas; c. Tomas Cabili; d. Tinago); B. Dipolog, 
Zamboanga del Norte; C. Tigbao, Zamboanga del Sur; D. Balangao, Diplahan, Zamboanga Sibugay. 

 

 

There were a total of 31 landmarks along the border of the dorsal cephalothorax of the species forming an 

outline of the shape of the cephalothorax (Fig. 2, Table 1). These landmarks consist of the Procrustes shape 

coordinates of each specimen acquired through the use of the Tps Dig freeware 2.12 (Rohlf, 2008a). These 

landmark coordinates were then transferred to Microsoft Excel application for the organization of the data. 

These two-dimensional data was computed using the generalized Procrustes analysis (GPA) for the 

generalized orthogonal least squaresusing the tpsRelw ver. 1.46 software (Rohlf, 2008b), after which the 

principal components of the covariance matrix represented by the relative warps (RW) were computed using 

the alignment-scaling method that focuses on the unit centroid size. Representation wasin the form histogram, 

and box plots are then generated from the acquired relative warp scores using the Paleontological Statistics 

(PAST) software version (Hammer et al., 2009). The Kruskal-Wallis test was used to analyze abdominal shape 

variations in populations of the two species. Canonical variance analysis (CVA) was also used to compare the 

patterns of variations among populations. 
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Fig. 2 Landmark points for the description of the cephalothorax shape of G. kuhli. 

 

 

Table 1 Descriptions of the anatomical landmark (LM) points in the dorsal view of G. kuhli cephalothorax. 

Landmark points Description 

1 The point on the midsaggital anterior margin  

2-4 Curve points from the anterior midsaggital point to the base of the right anterior lateral spine 

5 The base of the right anterior lateral spine 

6 Tip of the right anterior spine  

7 The base of the right anterior lateral spine 

8 Curve point between the right anterior lateral spine and the left median lateral spine 

9 The base of the right median lateral spine 

10 Tip of the right median lateral spine 

11 The base of the right median lateral spine 

12 Curve points between the right median lateral and the right posterior-lateral spine 

13 Curve point on the right posterior extension-like line of the cephalothorax carrying the posterior spines

14 The base of the right posterior-lateral spine  

15 Tip of the right posterior lateral spine 

16 The base of the right posterior-lateral spine 

17 The base of the left posterior lateral spine 

18 Tip of the left posterior lateral spine 

19 The base of the left posterior lateral spine  

20 Curve point on the left posterior extension-like line of the cephalothorax carrying the posterior spines

21 Curve points between the left median lateral and the left posterior lateral spine 

22 The base of the left lateral median spine 

23 Tip of the left lateral median spine 

24 The base of the left lateral median spine  
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25 Curve between the  left anterior and left median spines 

26 The base of the left anterior lateral spine 

27 Tip of the left anterior lateral spine 

28 The base of the left anterior lateral spine 

29-30 Curve points from the anterior midsaggital point to the base of the left anterior lateral spine 

31 Curve on the flat anterior part of the cephalothorax near the anterior midsaggital point.  

 

 

3 Results 

Results of the CVA (p=2.025E-308) and Kruskal-Wallis test showed significant variations between 

populations of G. kuhli  (Table 2). The CVA scatter plot (Fig. 3) shows the distribution of individuals in a 

population-based on the differences of the dorsal cephalothorax among the species of G. kuhli. It can be 

observed in the scatterplot that Balangao is differentiated from all other populations. Differences in the 

abdominal shapes of the spiders are shown in Fig. 4 and described in Table 3. It can be seen from the results 

that the differences observed in the abdominal shapes of the spiders can be quantitatively described using the 

landmark-based relative warp analysis of geometric morphometrics. What is interesting in the result is that 

populations that are geographically distant such as the Tominobo and Tigbao populations were clustered 

together, so is the Dipolog and Tomas Cabili populations. Likewise, Tomas Cabili and Tominobo populations 

that are not geographically distant were found to be different. Geographical distance therefore is not the sole 

basis for the variations between populations observed. 

 

 

Table 2 Results of the Kruskal-Wallis test (p value) for significant differences in mean shapes of G. kuhli. 

Relative warp Population per species Dipolog Tigbao Tomas Cabili Tominobo 

1 Balangao 1.87E-167* 1.72E-177* 2.10E-175* 3.62E-149*

Dipolog 4.23E-58* 8.57E-19* 2.78E-17*

Tigbao 8.09E-22* 1.65E-96*

Tomas Cabili  4.79E-53*

2 Balangao 5.50E-162* 7.11E-177* 6.51E-178* 8.46E-173*

Dipolog 1.50E-75* 1.64E-102* 8.76E-36*

Tigbao 0.000155* 3.13E-16*

Tomas Cabili  9.25E-31*

3 Balangao 4.89E-17* 2.70E-177* 5.37E-63* 6.32E-87*

Dipolog 4.04E-176* 2.71E-28* 5.02E-53*

Tigbao 2.70E-168* 1.23E-153*

Tomas Cabili  4.18E-10*

4 Balangao 0.00011* 1.81E-177* 2.36E-63* 1.15E-68*

Dipolog 9.81E-177* 8.70E-44* 3.05E-49*

Tigbao 1.60E-166* 6.05E-160*

Tomas Cabili  0.05755

5 Balangao 7.18E-172* 2.48E-177* 3.04E-161* 2.80E-96*

Dipolog 0 1.16E-40* 6.19E-22* 3.01E-112*

Tigbao 1.16E-39* 0 1.16E-82* 5.06E-152*

Tomas Cabili 6.19E-21* 1.16E-81* 0 5.17E-71*
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Fig. 3 CVA scatter plot of the dorsal abdominal shapes of five G. kuhli populations.  
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Fig. 4 Box plot and histogram showing variations in the shape of G. kuhli. a. Tominobo; b. Tomas Cabili; c. Tigbao; d. Dipolog; 
e. Balangao. 
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Table 3 Descriptions of the shapes of the dorsal cephalothorax of the five populations of G. kuhli. 

RW Variation Dorsal cephalothorax 

1 23.31% 

Results of RW1 show the Balangao spiders have their cephalothorax’s deformation on the posterior 

spines and more elongated vertically. The cephalothorax shows longer and larger spines in anterior, 

median, and posterior region. Transversely, the anterior part of the cephalothorax is wider and more 

convex in form. The overall formation of the dorsal cephalothorax is elongated horizontally.The 

other four spider populations have the outer the anterior outline of the body shape showingthe 

convex shape and is shorter than the anterior outline,  the curve distance between the lateral median 

spines has a lesser curve than the Balangao spiders. The anterior and the median spines are almost on 

the same size.  

2 16.29% 

The 2ndrelative warp scores show grid deformation in all of its spines. For the DipologG. kuhli 

spiders, the most prominent is the median spines, which got smaller, almost the same to the anterior 

spines resembling the mean shape. The space between the median and the posterior spines is also not 

that curved from the beginning of the left and right median spine going to the left and right and right 

posterior spines. For three other G. kuli populations - Tominobo, Tomas Cabili, and Tigbao, all of 

the spines are larger, and transversely the anterior part of the cephalothorax is more elongated 

horizontally, with a more convex shape bending downwards, thus making the spines project 

downwards as well. The population from Balangao has spines that are smaller and transversely, the 

cephalothorax is wider when compared to the other three populations. 

 3 11.86% 

The 3rd relative warp shows the G. kuhli spider individuals from Tigbao has spines more elongated 

vertically. It is longer than wide. Variationscan be observed in the anterior transverse part of the 

cephalothorax showing wider than long cephalothorax as well as longer and larger spines, the curve 

between the left and right median spines going down to the posterior left and right spines.  

4 8.94% 

The fourth relative warp shows four populations except for the spiders from Tigbao have more 

variance at the lateral side, especially in the anterior and median spines, which is visibly smaller 

from the mean and a longer posterior portion. The Tigbao spiders showed variances in all of the 

spines as well as showing larger and longer spines, transversely, the anterior part is wider than long, 

thus giving it an arched shape. The posterior end has narrower space. 

5 6.05% 

The 5th relative warp showed the Balangao spiders vary from the other three other spider 

populations. The Tominodo was almost similar to the mean shape,11 while the Balangao spiders 

were showing a relatively small and thinner abdominal shape. 

 

 

4 Discussion 

The results that are shown in Figs 3 and 4, and Table 3, indicate the variations observable in abdominal shapes 

between populations using relative warp analysis. What is interesting in the results is that the variances in the 

abdominal shapes between populations cannot be directly attributed to geographical distance. It can be 

observed that geographically close populations were observed to be more different than those from 

geographically distant populations. This can be argued to be attributed to variations in many environmental 

factors such as predation, courtship, and defense (Bolnic, 2011; Hauschet al., 2013; Vermeij, 1978). Since the 

variations observed within, between and among the spiders were mainly on the size and shapes of the 

cephalothorax and spines, it can be argued that these variances in the direction and size of the cephalothorax 

and spines play a big role in their defense against predators (Fig. 3 and 4). Very conspicuous variations 

observed in the spines either smaller and shorter or as long and larger spines, maybe attributed to the 
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environment where these spiders were collected. The variations in shapes and sizes of the spines, as well as the 

cephalothorax shapes within and between populations, can be attributed to the spider’s differences in adapting 

to their environment. While there are just a few documentation about the biology of Gasteracantha species, 

especially on their biology and behavior (Huma, 1971), the observations made on the species populations of 

having an eating habit of sit and waitat the center of the web while waiting for the prey to be trapped (Kemp et 

al., 2013) can be a basis for the variations observed in the sizes and shapes of the cephalothorax of the spiders. 

This species can eat more significant individuals of other species by wrapping the prey with silk (Huma, 1971; 

Muma and Stone, 1971) and since their cephalothorax serves as an essential part of their foraging success, the 

observed variations in size and shapes of the cephalothorax mainly the spines maybe a product of adaptation of 

the species. Aside from using eye-catching displays of color to attract prey (Vermeij, 1994) and the need to 

defend themselves against potential predators such as birds, bigger animals, and other environmental 

disturbances, their hard colorful cephalothorax, and their spines serves an essential role for their defense 

against these organisms. Their spines serve as an anti-predator function; thus, the observed variations in their 

spines within populations may reflect the extent of predatory protection by this species, which may vary from 

locality to locality and not on the scale of geographical distance where these spiders were collected.  

 

5 Conclusion  

Results of RWA showed significant population variability in the cephalothorax shapes of the G. kuhli, 

especially on the spines. Ecological/environmental variations were most likely contributed to the variances in 

size and shapes of the cephalothorax including the spines generated by relative warp analysis  
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