Article

Morphological description of the larval stages of Alpheus lobidens De Haan, 1850 (Crustacea: Decapoda: Caridea: Alpheidae) reared under laboratory conditions

Farhana S. Ghory
Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan
E-mail: farhanaghory@yahoo.com

Received 17 March 2023; Accepted 20 April 2023; Published online 5 May 2023; Published 1 December 2023 (cc) EY

Abstract

The Alpheus lobidens is a widely distributed snapping shrimp that lives on soft and hard bottoms in warm coastal environments (Hamdy and Dorgham, 2018). The berried female of Alpheus lobidens De Haan, 1850 was collected from Buleji (Karachi, Pakistan) and kept in the laboratory. The larvae hatched after 2 days and existed within 7 days at room temperature $23^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$ in filtered seawater with a salinity of $37-40$ parts per thousand and a pH of 7.5-7.8. Artemia nauplii were used to feed the larvae. Two zoeal stages are described, illustrated and compared with those of its congener's larvae known previously.

Keywords Crustacea; Caridea; Alpheidae; Alpheus lobidens larvae.

Arthropods
ISSN 2224-4255
URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp
RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml
E-mail: arthropods@iaees.org
Editor-in-Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

In coastal tropical and subtropical regions, snapping shrimps of the genus Alpheus Fabricius, 1798 inhabit soft and hard bottoms within variable depths in estuaries, mangroves, and coral reefs (Anker et al., 2006). Different types of benthic animals were associated with some Alpheus species (e.g. Anker et al., 2008; Purohit et al., 2014). The global distribution of A lobidens indicates that it can live in diverse ecological environments, including changes in temperature, salinity, water flow, food availability, and other factors (Hamdy and Dorgham, 2018). Its representative exhibits lessepsian migration (Burukovsky et al., 2021).

Many inshore marine meroplankton larvae are of the Alpheidae family, but little is known about the larvae. The larvae of alpheid shrimp are poorly studied in Pakistan and its neighbouring waters, despite the fact that many species have been recorded here (Kazmi and Kazmi, 2012). We describe and illustrate in detail the zoeal stages of A. lobidens here. Furthermore, we compare these stages with those of other congeneric species.

2 Materials and Methods

2.1 Study area

An ovigerous female of Alpheus lobidens De Haan, 1850 was collected from Buleji near Karachi (Long. $66^{\circ} 49^{\prime} \mathrm{E}$, Lat. $24^{\circ} 59^{\prime} \mathrm{N}$). It is a rocky ledge located 30 kilometers away from Karachi (Fig. 1).

A planktonic sample was taken from Manora Channel (Long. $66^{\circ} 59^{\prime}$ E, Lat. $24^{\circ} 48^{\prime} \mathrm{N}$) on 1995 (Fig. 2). Two stations, A and B, 5 kilometers apart were sampled. The samples included four 10 minute tows using Bango net 300 micron mesh size equipped with a flow meter at shallow depth $15^{\prime}-20^{\prime}$.

Fig. 1 Map showing collection site of Buleji.

Fig. 2 Map showing sampling sites (solid circles) of plankton samples.

2.2 Methodology

Meteorological parameters, air and water temperature $\left({ }^{\circ} \mathrm{C}\right)$, salinity ($\mathrm{o} \%$), dissolved oxygen $(\mathrm{ml} / 1)$, pH and tide (m) were noted. We kept the ovigerous female in unfiltered seawater containing $37-40 \mathrm{ppt}$ salinity under laboratory conditions at room temperature between $23^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ until hatching occurred.

A total of five beakers were used to separate and divide the newly hatched larvae (ten in each beaker, 500 ml) filled by filtered seawater of the alike salinity and temperature. The mortality rate and next developmental stage of each beaker were assessed daily. The exuviae were preserved and the live larvae were transferred to clean beakers filled with freshly filtered seawater, and at the same time offered newly hatched Artemia nauplii as food.

2.3 Fixation and preservation of material

Temporary slides of each stage were made using glycerin and 5% formalin (3:1). Measurements of each stage were made with the aid of a micrometer. The total length (TL) was determined by adding the carapace length (CL) (measured from the tip of the rostral spine to the midposterior margin of the telson). Measurements are in millimeter (mm).

2.4 Microscopic observations

The specimens were dissected through tungsten needle by using a Nikon binocular microscope ($4 \times 10 / 21$ magnification). Olympus BH2 microscope ($1.25 \times 10,20$ and 40 magnifications) with Nomarski Differential Interference Contrast (D/C) and camera lucida attachment.

The spent female and the remaining larvae were deposited in the Marine Reference Collection and Resource Centre, University of Karachi.

Fig. 3 Alpheus lobidens De Haan, 1850.

2.5 Synopsis

Alpheus lobidens Tufail and Hashmi (1965) (Zoea I): 278-281 (as Alpheus crassimanus); Jang et al. (1999): 205; Yang et al. (2003) (early zoeas): 15-24.

Table 1 Analyses of Alpheus lobidens De Haan, 1850, larval stages and appearance times.

Stage	Days Elapsed After Hatching	Total Length TL \pm SD (mm)
Zoea I	2 days	$2.59 \mathrm{~mm} \pm 2.89 \mathrm{~mm}$
Zoea II	1 day	$2.78 \mathrm{~mm} \pm 2.88 \mathrm{~mm}$
Zoea III	1 day	$2.53 \mathrm{~mm} \pm 2.75 \mathrm{~mm}$
Zoea IV	1 day	$2.62 \mathrm{~mm} \pm 2.87 \mathrm{~mm}$
Zoea V	2 days	$2.43 \mathrm{~mm} \pm 2.50 \mathrm{~mm}$

2.6 Systematics

Class: Malacostraca
Order: Decapoda
Infraorder: Caridea Dana, 1825
Family: Alpheidae Rafinesque, 1815
Genus: Alpheus Weber, 1795
Alpheus lobidens De Haan, 1850 (Fig. 3)

2.7 Synonymised names

Alpheus lobidens De Haan, 1849: 179; Banner \& Banner, 1985: 19; Chace, 1988: 34; Hayashi, 1998: 394; Naderloo \& Türkay, 2012: 10; Anker \& De Grave, 2016: 364.
Alpheus lobidens lobidens Banner \& Banner, 1974: 430; Banner \& Banner, 1978: 223; Banner \& Banner, 1982: 252.

Alpheus lobidens polynesica Banner \& Banner, 1974: 429; Banner \& Banner, 1982: 256.
Alpheus crassimanus Heller, 1862: 526; 1865: 170; Bate, 1888: 554; de Man, 1902: 880; Kemp, 1915: 299; Barnard, 1950: 756; Johnson, 1962: 53; Banner \& Banner, 1966: 138; Johnson, 1979: 36.

2.8 Distribution

Eastern and Central Mediterranean and entire Indo-Pacific: Red Sea to Hawaii, Gulf of Oman and Arabian Sea.

2.9 Habitat

Typically found in the intertidal and shallow sub tidal areas, usually under rocks and large pieces of coral rubble, muddy intertidal, estuaries and mangroves areas.

3 Results

3.1 Description of the larvae

3.1.1 Zoea I (Fig. 4A - K)

Diagnostic Features

Carapace (Fig. 4A). - Smooth with a medio-dorsal hump; rostrum broad and distally pointed; eyes stalked.
Antennule (Fig. 4B). - Peduncle 2 -segmented with 4 and 4 plumodenticulate setae, respectively; endopod present in a form of long plumose seta on distal segment; outer ramus (exopod) with 5 aesthetascs and 1 seta. Antenna (Fig. 4C). - Biramous, peduncle with a distal spine on inner margin; endopod with 2 plumose setae and 1 spine; scaphocerite (exopod) 5 -segmented with $2,3,1,1$ and 3 setae.
Mandible (Fig. 4D). - Well developed.
Maxillule (Fig. 4E). - Coxal endite with 2 cuspidate and 1 plumodenticulate seta; basial endite with 2 cuspidate and 1 plumodenticulate seta; endopod with 1 plumodenticulate seta.

Maxilla (Fig. 4F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with $3+5$ plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 4 setae.
Maxilliped I (Fig. 4G). - Coxopod naked; basipod with 5 setae; endopod 3-segmented, distal segment with 3 plumodenticulate setae; exopod with 2 terminal and 4 subterminal plumose natatory setae.
Maxilliped II (Fig. 4H). - Coxopod naked; basipod with 2 setae; endopd 4-segmented with 1, 0, 0 and 5 (4 setae +1 spine); exopod with 2 terminal and 4 subterminal plumose natatory setae.
Maxilliped III (Fig. 4I). - Coxopod broken; basipod naked; endopod 4-segmented, distal segment with 1 long strong spine with 5 simple setae; exopod 2 -segmented with 2 and 4 (2 terminal and 2 subterminal) plumose natatory setae.
Pereiopods I-V (Fig. 4J). - Rudimentary.
Abdomen (Fig. 4A). - 6-somites.
Telson (Fig. 4K). - Triangular, posterior margin with 8 pairs of long plumose setae, uropod rudimentary.

Fig. 4 Alpheus lobidens De Haan, 1850. Zoea I: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G-I, maxillipeds I - III; J, pereiopods I - V; K, telson.

3.1.2 Zoea II (Figs. 5A - 6D)

Diagnostic Features

Carapace (Fig. 5A). - Smooth, rostrum small in size; eyes stalked.
Antennule (Fig. 5B). - Peduncle 2-segmented with 3 and 8 plumodenticulate setae, respectively; inner ramus (endopod) with 1 seta; outer ramus (exopod) with 4 aesthetascs and 1 seta.
Antenna (Fig. 5C). - Endopod with 2 plumose setae; scaphocerite with 10 setae.
Mandible (Fig. 5D). - Well developed.
Maxillule (Fig. 5E). - Coxal endite with 1 cuspidate and 3 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta.
Maxilla (Fig.5F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with $3+3$ plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 5 setae.
Maxilliped I (Fig. 5G). - Coxopod broken; basipod with 6 setae; endopod 3 -segmented with 1, 0, and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 3 subterminal setae.
Maxilliped II (Fig. 5H). - Coxopod broken; basipod with 1 seta; endopd 5-segmented with 1, 0, 0, 1 and 4 (3 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 5 subterminal setae.
Maxilliped III (Fig. 5I). - Coxopod broken; basipod with 1 setae; endopod 5-segmented with 1, 0, 0, 0 and 4 (3 setae +1 spine) plumodenticulate setae, respectively; exopod 2 -segmented with 3 and 4 (2 terminal and 5 subterminal) plumose natatory setae.
Pereiopods I-V (Figs. 6A-C). - Biramous; pereiopod I (Fig. 6A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 6B) rudimentary; pereiopod V (Fig. $6 \mathrm{C}) 5$-segmented terminal segment ending in long strong spine with serrated tip.
Abdomen (Fig. 5A). - 5-somites.
Telson (Fig. 6D). - Triangular, posterior margin with 8 pairs of long plumose setae, uropod biramous; endopod naked; exopod with 6 long plumose setae.

Fig. 5 Alpheus lobidens De Haan, 1850. Zoea II: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G-I, maxillipeds I - III.

Fig. 6 Alpheus lobidens De Haan, 1850 . Zoea II: A - C pereiopods I - V; D, telson with uropods.

3.1.3 Zoea III (Figs. 7A - 8D)

Diagnostic Features

Carapace (Fig. 7A). - Smooth, rostrum small in size; eyes stalked.
Antennule (Fig. 7B). - Peduncle 2 -segmented with 5 and 7 plumodenticulate setae, respectively; inner ramus (endopod) with 1 plumodenticulate setae; outer ramus (exopod) with 3 aesthetascs and plumodenticulate seta.
Antenna (Fig. 7C). - Endopod with 2 plumose setae; scaphocerite with 11 setae.
Mandible (Fig.7D). - Well developed.
Maxillule (Fig.7E). - Coxal endite with 4 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta.
Maxilla (Fig. 7F). - Coxal endite with 2 plumodenticulate setae; basial endite with $3+3$ plumodenticulate setae; endopod with 3 plumodenticulate setae; scaphognathite with 5 setae.
Maxilliped I (Fig. 7G). - Coxopod with 2 and basipod with 5 plumodenticulate setae; endopod 3-segmented with 1, 0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal plumose setae.

Maxilliped II (Fig. 7H). - Coxopod broken; basipod with 3 plumodenticulate setae; endopd 5 -segmented with 1, $0,0,1$ and 4 (3 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 5 subterminal setae.
Maxilliped III (Fig. 7I). - Coxopod broken; basipod naked; endopod 5-segmented with 0, 0, 0, 2 and 3 (2 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal plumose setae.
Pereiopods I-V (Figs. 8A-C). - Biramous; pereiopod I (Fig. 8A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 8B) rudimentary; pereiopod V (Fig. 8C) 5-segmented terminal segment ending in long strong spine with serrated tip.
Abdomen (Fig. 7A). - 5-somites.
Telson (Fig. 8D). - Triangular, posterior margin with 1 pairs of spine and 7 pairs of long plumose setae, uropod biramous; endopod with 2 setae; exopod with 6 setae.

Fig. 7 Alpheus lobidens De Haan, 1850. Zoea III: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G-I, maxillipeds I - III.

Fig. 8 Alpheus lobidens De Haan, 1850. Zoea III: A - C pereiopods I - V; D, telson with uropods.

3.1.4 Zoea IV (Figs. 9A - 10D)

Diagnostic Features

Carapace (Fig. 9A). - Smooth, rostrum small in size; eyes stalked.
Antennule (Fig. 9B). - Peduncle 2-segmented with 5 and 5 plumodenticulate setae, respectively; inner ramus (endopod) with 1 plumodenticulate setae; outer ramus (exopod) with 1 aesthetascs and 2 plumodenticulate seta.
Antenna (Fig. 9C). - Endopod with 2 plumose setae; scaphocerite with 13 setae.
Mandible (Fig. 9D). - More developed.
Maxillule (Fig. 9E). - Coxal endite with 5 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta.
Maxilla (Fig. 9F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with $3+4$
plumodenticulate setae; endopod with 1 plumodenticulate seta; scaphognathite with 6 setae.
Maxilliped I (Fig. 9G). - Basipod with 5 plumodenticulate setae; endopod 3-segmented with 1, 0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal setae.
Maxilliped II (Fig. 9H). - Coxopod broken; basipod with 3 plumodenticulate setae; endopd 5 -segmented with 1, $0,0,2,3$ and 4 (3 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 3 subterminal setae.
Maxilliped III (Fig. 9I). - Coxopod broken; basipod with 1 seta; endopod 5 -segmented with 0, 0, 0, 2 and 3 (2 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal setae.
Pereiopods I-V (Figs. 10A-C). - Biramous; pereiopod I (Fig. 10A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 10B) rudimentary; pereiopod V (Fig. 10C) 5 -segmented, terminal segment ending in long strong spine with serrated tip.
Abdomen (Fig. 9A). - 5- somites.
Telson (Fig. 10D). - Posterior margin with 1 pairs of spines and 5 pairs of plumose setae; endopod and exopod with 7-8 setae, respectively.

Fig. 9 Alpheus lobidens De Haan, 1850. Zoea IV: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G-I, maxillipeds I- III.

Fig. 10 Alpheus lobidens De Haan, 1850. Zoea IV: A - C pereiopods I - V; D, telson with uropods.

3.1.5 Zoea V (Figs. 11A - 12E)

Diagnostic Features

Carapace (Fig. 11A). - Smooth, rostrum small in size with pointed tip; eyes stalked.
Antennule (Fig. 11B). - Peduncle 2-segmented with 5 and 8 plumodenticulate setae, respectively; inner ramus (endopod) with 1 plumodenticulate setae; outer ramus (exopod) with 2 aesthetascs and 1 seta.

Antenna (Fig. 11C). - Endopod with 2 plumose setae; scaphocerite with 8 setae.
Mandible (Fig. 11D). - More developed.
Maxillule (Fig. 11E). - Coxal endite with 4 plumodenticulate setae; basial endite with 2 cuspidate and 1 seta; endopod with 1 plumodenticulate seta.
Maxilla (Fig. 11F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with $4+4$ plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 6 setae.
Maxilliped I (Fig. 11G). - Coxopod broken; basipod with 5 plumodenticulate setae; endopd 3-segmented with 1,0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal plumose natatory setae.
Maxilliped II (Fig. 11H). - Coxopod broken; basipod with 4 plumodenticulate setae;
endopd 5 -segmented with $1,0,0,2$ and 4 (3 setae +1 spine) plumodenticulate setae, respectively; exopod with 4 terminal plumose natatory setae.
Maxilliped III (Fig. 11I). - Coxopod broken; basipod with 1 seta; endopod 5-segmented with 0, 0, 0, 2 and 3 (2 setae +1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal plumose natatory setae.

Pereiopods I-V (Figs. 12A-C). - pereiopod I (Fig. 12A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal setae; pereiopod II (Fig. 12B) with rudimentary endopod and exopod with 8 setae pereiopods III \& IV (Fig. 12B) rudimentary; pereiopod V (Fig. 12C) 5-segmented, terminal segment ending in long strong spine with serrated tip.
Abdomen (Fig. 11A). - 5-somites.
Telson (Fig. 12E). - Posterior margin with 1 pairs of spine and 4 pairs of setae; endopod and exopod both with 8 setae.

Fig. 11 Alpheus lobidens De Haan, 1850. Zoea V: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III.

Fig. 12 Alpheus lobidens De Haan, 1850. Zoea V: A - D pereiopods I - V; E, telson with uropods.

4 Discussion

Alpheus sp. exhibit prolonged larval development. While some species of Alpheidae shows abbreviated development. Conspecific individual livings under different environmental conditions produce larvae with vastly different developmental modes (Knowlton, 1973). Brooks and Herrick (1892) claimed that the same species in different localities may produce different types of larvae.

Lebour, 1932 and Knowlton, 1973 have been described complete larval development of Alpheus macrocheles and A. heterochaelis respectively, another 23 species (A. normanni by Brooks and Herrick, 1892; A. laevis by Coutiěre, 1899; A. pacificus and A. lottini by Gurney, 1938; Gohar and Al-Kholy, 1957; A. rapacida and A. strenuous by Prasad and Tampi, 1957, A. rapax and A. ventrosus by Al-Kholy, 1960, A. lobidens by Tufail and Hashmi, 1965 as = Alpheus crassimanus; Jang et al., 1999; A. dentipes by FernándezMuñoz, 1987; A. euphorsyne richardsoni by Yang and Kim 1996, A. brevicristatus by Yang and Kim, 1998; A. heeia by Yang and Kim, 1999; Yang et al., 2003, A. sudara by Yang et al., 2003, A. armillatus by Mossolin et al., 2006, A. albatrossaie by Yang and Kim, 2006; A. estuariensis Pires et al., 2008; Alpheus brasileiro by Pescinelli et al., 2017; Alpheus formosus and Alpheus malleator 2020; A. japonicas, A. digitalis by Yang and Kim, 2022; A. edwardsii by Ghory, 2023) failed to develop in culture attempts and so descriptions of their larval stages are incomplete.

The rostrum is present in the A. lobidens (present study) and A. edwardsii, while absent in all other species. The number of setae on the maxillule coxal endite is also diversable: A. estuariensis, A. euphorosyne richardsoni, A. heeia, A. digitalis, A. japonicus and A. brevicristatus, A.albatrossae, A.edwardsii, and A. lobidens (present study), all have three, whereas in A. sudara, A. lobidens and A. heterochaelis they vary from

1-5. As well all A. estuariensis, A. brevicristatus, A. heterochaelis, A. heeia and A.edwardsii have the similar number of spines on the maxillule basal endite and be deficient in setae, although in A. lobidens, A. japonicus, A. digitalis, A. euphorsyne richardsoni and A. sudara have one or two supplementary setae are present.

A morphological comparison shows that the first zoeal stage of A. lobidens larvae is similar to that of other Alpheus species (Table 4). Due to this similarity, specific identification may be difficult. In spite of this, there are some differences that could be useful for identification. Larvae caught from plankton are difficult to identify. Comparing larvae reared in laboratory conditions and accompanied by illustrations is the only way to accurately identify such material.

Table 2 Comparison between laboratory reared zoea I of Alpheus lobidens (present study) with previously reared zoea I of same species: Zoea I.

Characters	A. lobidens Present study	A. lobidens Tufail \& Hashmi (1965)	A. lobidens Yang \& Kim (2002)	A. lobidens Yang et al. (2003)
Rostrum	present	present	absent	absent
Antennule: peduncle	2-segmented	not mentioned	unsegmented	unsegmented
endopod	present in a form of long plumose seta	lobe like endopod present	not mentioned	present in a form of long plumose seta
exopod	5 aesthetascs +1 seta	2 setae	3 aesthetascs	3 aesthetascs
Antenna: endopod	Unsegmented with 2 setae +1 spine	2-segmented with 2 setae	not mentioned	unsegmented with 1 seta and 1 spine
exopod	5-segmented with 10 setae	unsegmented with 8 setae	6-segmented with 11 setae	6 -segmented with 11 setae
Maxillule: setae coxalendite	3 setae	not mentioned	2 setae	4 setae
basialendite	2 spines +1 seta	not mentioned	2 setae +2 spines	4 setae
Maxilla: setae scaphognathite	4 setae	12 setae	3-5 setae	5 setae
Maxilliped I: setae coxopod	without setae	not mentioned	not mentioned	1 seta
Basipod	5 setae	3 setae	not mentioned	7 setae
Endopod	3 setae	4 setae	not mentioned	4 setae
Maxilliped II: setae endopod	5 -segmented with 1,0 , 0 and 5 setae	not mentioned	4-segmented	5-segmented with $1,0,1,3$ setae
Maxilliped III:	developed	underdeveloped	not mentioned	developed

setae				
basipod	without setae	not mentioned	not mentioned	1 seta
endopod	4-segmented with 0, 0, 0,6 setae	not mentioned	not mentioned	4-segmented with 0,0,
Telson:			2,2 setae	
setae posterior margin	8 pairs	8 pairs	7 pairs	

Table 3 Comparison between laboratory reared zoea II - IV and planktonic caught zoea II of Alpheus lobidens.
Zoea II.

Characters	A. lobidens Present study, lab. reared	A. lobidens Present study, planktonic	A. lobidens Yang et al. (2003)
Antennule: setae peduncle	2-segmented with 3 , 8 setae	2-segmented with 3 , 5 setae	2-segmented with 3 , 5 setae
exopod	4 aesthetascs +1 seta	2 aesthetascs +1 seta	not mentioned
Maxillule: setae basial endite	2 setae	2 setae	3 setae
Maxilla: setae endopod	2 setae	$1+2$ setae	3 setae
Maxilliped I: setae endopod	3 -segmented with $1,0,3$ setae	3 -segmented with $0,0,3$ setae	unsegmented with 3 setae
exopod	4 setae	5 setae	4 setae
Maxilliped II: setae endopod	5 -segmented with $1,0,0,1,4$ setae	3-segmented with $0,2,3$ setae	5 -segmented with $1,0,0,1,3$ setae
exopod	7 setae	4 setae	not mentioned
Maxilliped III setae basipod	1 seta	setae absent	not mentioned
endopod	5 -segmented with $1,0,0,0,4$ setae	5 -segmented with $1,0,0,1,3$ setae	5 -segmented with $0,0,0,2,2$ setae
Telson: uropod	developed	developed	underdeveloped

Zoea III:

Characters	A. lobidens Present study, lab. reared	A. lobidens Yang et al. (2003)
Antennule: setae peduncle	2-segmented with 5, 7 setae	2-segmented with 6, 7 setae
Maxillule: setae coxal endite	4 setae	6 setae
Basial endite	2 setae	4 setae
Maxilla: setae basial endites	$3+3$ setae	$4+5$ setae
scaphognathite	5 setae	7 setae
Maxilliped I: setae coxopod	2 setae	1 seta
basipod	5 setae	7 setae
endopod	3 -segmented with $1,0,3$ setae	unsegmented with 3 setae
exopod	4 setae	4 setae
Maxilliped III: setae basipod	without setae	1 seta
endopod	5 -segmented with $1,0,0,0,4$ setae	5 -segmented with $0,0,0,2,2$ setae
Telson: posterior margin	8 pairs setae	7 pairs setae
Uropod: endopod	2 setae	without setae

Zoea IV:

Characters	A. lobidens present study, lab. reared	A. lobidens Yang et al. (2003)
Antennule: setae peduncle	2-segmented with 5,5 setae	2-segmented with 6,10 setae
Maxillule: setae coxal endite	5 setae	6 setae
basial endite	2 setae	4 setae
Maxilla: setae basial endite	$3+4$ setae	$5+5$ setae
endopod	1 seta	3 setae
scaphognathite	6 setae	7 setae
Maxilliped I: setae coxopod	2 setae	1 seta
basipod	5 setae	8 setae
endopod	3 -segmented with $1,0,3$ setae	unsegmented with 4 setae
Maxilliped II: setae basipod	3 setae	4 setae
Maxilliped III: setae basipod	without setae	1 seta
Telson: setae uropod endopod and exopod	7-8 setae	11-12 setae

Table 4 Comparison of morphological features of first zoeal stage of 11 species belonging to the Alpheidae species (after Ghory, 2023): Zoea I.

Characters	A.lobiden s, Present study	A.hetero chaelis Knowlto n (1973)	A. euphosyne Richardson i Yang \& Kim (1996)	A.brevicr istatus Kim (1998)	A.digitalis Kim (1998)	A.heeia Kim (1999)	A.japonicu s Kim (2002)	A.obidens Yang et al. (2003)	A.sudar a Yang et al. (2003)	A.albatr ossae Yang \& Kim (2006)	A.estuari ensis Pires et al. (2008)	A.edwar $d s i i$, Ghory, (2023)
Rostrum	present	absent	present									
Antennule Peduncle segment	2segmente d	unsegme nted	unsegmente d	unsegme nted	Unsegmen ted	Unsegme nted	unsegment ed	unsegment ed	unsegm ented	unsegme nted	unsegme nted	3- segmente d
Outer flagellum	5 aesthetas $\mathrm{cs}+1$ seta	3 aesthetas cs	3 aesthetascs	3 aesthetas cs	3 aesthetasc s	3 aesthetas cs	3 aesthetascs	3 aesthetascs	3 aesthet ascs	4 aesthetas $\mathrm{cs}+1$ seta	4 aesthetas cs	1 aesthetas $\mathrm{cs}+1$ seta
Antenna Distal segment	4	5	4	3	5	5	4	6	6	5	4	unsegme nted
Exopodite	10 setae	11 setae	11 setae	11 setae	11 setae							
MaxilluleE ndopodite	1 seta											
Basal endite	2 spines +1 seta	2 spines	$\begin{aligned} & 2 \text { spines }+ \\ & 1 \text { seta } \end{aligned}$	2 spines	$\begin{aligned} & 2 \text { spines }+ \\ & 1 \text { seta } \end{aligned}$	2 spines	$\begin{aligned} & 2 \text { spines }+ \\ & 2 \text { setae } \end{aligned}$	$\begin{aligned} & 2 \text { spines }+ \\ & 2 \text { setae } \end{aligned}$	$1 \text { spine }$ $+\quad 2$ setae	$\begin{aligned} & 2 \text { spines } \\ & +\quad 2 \\ & \text { setae } \end{aligned}$	2 spines	2 spines
Coxalendite	3 setae	1 seta	$3+1$ seta	3 setae	5 setae	3 setae	3 setae	2 setae	4 setae	3 setae	3 setae	3 setae
Maxilla Scaphognat hite	4 setae	$8-10$ setae	5 setae									
Maxilliped II:Endopod segment	5segmente d	4- segmente d	4segmented	Incomple te 3 segments	4segmented	4segmente d	3segmented	4segmented	4segmen ted	3- segment ed	4- segmente d	5segmente d
Telson	8 pairs	7 pairs										

References

Al-Kholy AA. 1960. Larvae of some macruran Crustacea (from the Red Sea). Publications of Marine Biology Stn. Al Ghardaqa, 11: 73-78

Anker A, Ahyong ST. Noel PY, Palmer AR. 2006. Morphological phylogeny of alpheid shrimps: parallel preadaptation and the origin of a key morphological innovation, the snapping claw. Evolution, 60: 25072528
Anker A, De Grave S. 2016. An updated and annotated checklist of marine and brackish caridean shrimps of Singapore (Crustacea: Decapoda). Raffles Bulletin of Zoology, 34: 343-454
Anker A, Hurt C, Knowlton N. 2008. Revision of the Alpheus formosus Gibbes, 1850 complex, with redescription of A. formosus and description of a new species from the tropical western Atlantic (Crustacea: Decapoda: Alpheidae). Zootaxa, 1707: 1-22

Banner AH, Banner DM. 1966. The alpheid shrimp of Thailand. The Siam Society Monograph Series, 3: 1168
Banner AH, Banner D M. 1974. Contributions to the knowledge of the alpheid shrimp of the Pacific Ocean Part XVII. Additional notes on the Hawaiian alpheids: new species, subspecies, and some nomenclatorial changes. Pacific Science, 28: 423-437
Banner DM, Banner AH. 1982. The alpheid shrimp of Australia. Part III: The remaining alpheids, principally the genus Alpheus and the family Ogyrididae. Records of the Australian Museum, 34: 1-357
Banner DM, Banner AH. 1985. The alpheid shrimp of Indonesia, based upon J. G. De Man's The Decapoda of the Siboga Expedition, Part II. Family Alpheidae (1911). Marine Research in Indonesia, 25: 1-79
Banner DM, Banner AH. 1978. Annotated checklist of alpheid and ogyridid shrimp from the Philippine Archipelago and the South China Sea. Micronesica, 14 (2): 215-257
Brooks WK, Herrick FH. 1892. The embryology and metamorphosis of the Macroura. Series: Memoirs of the National Academy of Sciences, 5: 321-576
Burukovsky RN, Ansari Z, Maghsoodlou A. 2021. Biology of the Shrimp Alpheus lobidens De Haan 1849 (Decapoda: Alpheidae) from the littoral of the Makran Coast, Gulf of Oman, the Arabian Sea. Environmental Science, Biology Bulletin, 48(Suppl. 1): S58-S68
Chace FA Jr. 1988. The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 19071910, Part 5: Family Alpheidae. Smithsonian Contributions of Zoology, 466: 1-99
Coutiěre H. 1899. Les "Alpheidae" morphologie externe et interne, formes larvaires, bionomie. Annales des sciences naturelles. Zoology. 9: 1-56
De Haan W. 1849. Crustacea. In: Fauna Japonica, sive Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava imperium tenent, suscepto, annis 1823-1830 collegit, notis, observationibus et adumbrationibus illustravit P. F. de Siebold. Conjunctis studiis C. J. Temminck et H. Schlegel pro Fertebratis atque W. de Haan pro Invertebratis elaborata Regis aupicus edita. Decas FI. 165-196, Lugduni- Batavorum, Leiden, Netherlands
Fernández-Muñoz R, García-Raso JE. 1987. Study of a population of Alpheus dentipes Guerin, 1832 from calcareous bottoms in the southern Spain. Investigaciones Pesqueras, 51(Suppl. 1): 343-359
Ghory FS. 2023. Morphological study of laboratory reared first and second zoeal stages of Alpheus edwarsii (Audouim, 1826)(Crustacea: Decapoda: Caridea: Alpheidae). Arthropods, 12(1): 69-77
Gohar HAF, Al-Kholy AA. 1957. The larvae of four decapod Crustacea (from the Red Sea). Publications of the Marine Biological Station, Al Ghardaqa, 9: 177-2

Gurney R. 1938. The larvae of the decapod Crustacea. Palaemonidae and Alpheidae. Great Barrier Reef Exped. Report, 6(1): 1-60
Hamdy R, Dorgham M. 2018. Alpheus lobidens De Haan, 1849 (Decapoda: Alpheidae) as a new record to the Egyptian Mediterranean Coast. Egyptian Journal of Aquatic Biology \& Fisheries, 22(5): 473-482
Hayashi KI. 1998. Prawns, shrimps and lobsters from Japan (81). Family Alpheidae - Genus Alpheus. Aquabiology, 118: 390-395
Heller C. 1862. Neue Crustaceen, gesammelt wahrend der Weltumseglung der k. k. Fregatte Novara. Zweiter vorlaufiger Bericht. Ferhandlungen des Kaiserlich-koniglichen Zoologischbotanischen Gesellschaft in Wien, 12: 519-528
Jang JJ, Sheen JH, Shy JY, Yu HP. 1999. Morphological observation on the development of larval Alpheus lobidens (Crustacea: Decapoda) reared in the laboratory. The Annual Meeting of the Fishery Society of Taiwan, Kaohsiung, Taiwan, China
Johnson DS. 1962. A synopsis of the Decapoda Caridea and Stenopodidea of Singapore, with notes on their distribution and a key to the genera of Caridea occurring in Malaysian waters. Bulletin of the National Museum Singapore, 30: 44-79

Johnson DS. 1979. Prawns of the Malacca Straits and Singapore waters. Journal of the Marine Biological Association of India, 18: 1-54

Kazmi QB, Kazmi MA. 2012. Biodiversity and Biogeography of Caridean Shrimps of Pakistan. MRC and HEC Publication

Knowlton RE. 1973. Larval development of the snapping shrimp Alpheus heterochaelis Say, reared in the laboratory. Journal of Natural History, 7: 273-306

Lebour MV. 1932. The larval stages of the Plymouth Caridea. IV. The Alpheidae. Proceedings of the Zoological Society of London, 463-469
Mossolin EC, Shimizu RM, Bueno SLS. 2006. Population Structure of Alpheus Armillatus (Decapoda: Alpheidae) in São Sebastião and Ilhabela, Southeastern Brazil. Journal of Crustacean Biology, 26(1): 48-54

Naderloo R, Turkay M. 2012. Decapod crustaceans of the littoral and shallow sublittoral Iranian coast of the Persian Gulf: faunistics, biodiversity and zoogeography. Zootaxa, 3374(1): 1-67
Pasinatto K, Mantelatto FL, Terossi M. 2020. First zoeal stage of the snapping shrimps Alpheus formosus Gibbes, 1850 and Alpheus malleator Dana, 1852 (Caridea: Alpheidae), with new characters to the genus. Zootaxa, 4820(3)
Pescinelli RA, João AFP, Fernando LM, Rogério CC. 2017. Morphological description of early zoeal stages of Alpheus brasileiro Anker, 2012 reared in the laboratory, including a revision of the larval morphology of the first zoeal stage of the genus Alpheus Fabricius, 1798 (Caridea: Alpheidae). Zootaxa, 4269(2): 265-276
Pires MAB, Abrunhosa FA, Maciel CR. 2008. Early larval development in the laboratory of Alpheus estuariensis (Crustacea: Caridea) from the Amazon Region. Revista Brasileira de Zoologia, 25: 199-205
Prasad RR, Tampi PRS. 1957. Notes on some decapod larvae. Journal of the Zoological Society of India, 9(1): 22-39

Purohit B, Saini D, Soni GM, Trivedi JN, Vachhrajani KD. 2014. First record of two species of snapping shrimp of genus Alpheus from Gujarat. Marine Biological association of India. Marine Ecosystem: Challenges and Opportunities. 163-164, Kochi, India
Tufail M, Hashmi, SS. 1965. A contribution to the biology and larval development of the pistol shrimp. Alpheus crassimanus. Pakistan Journal Science and Industrial Research, 7(4): 278-281

Yang HJ, Kim CH. 1996. Zoeal stages of Alpheus euphorosyne richardsoni Yaldwyne, 1971 (Decapoda: Macrura: Alpheidae) reared in the laboratory. Korean Journal of Zoology, 39: 106-114
Yang HJ, Kim CH. 1998. Zoeal stages of Alpheus brevicristatus De Haan, 1849 (Decapoda: Macrura: Alpheidae) with a key to the first zoeal larvae of three Alpheus Species. Korean Journal of Biological Science, 2: 187-193

Yang HJ, Kim CH. 1999. The early zoeal stages of Alpheus heeia Banner \& Banner, 1975 reared in the laboratory (Decapoda: Caridea: Alpheidae). Crustaceana, 72(1): 25-36

Yang HJ, Kim CH. 2002. Early zoeas of two snapping shrimps Alpheus digitalis De Haan, 1850 and Alpheus japonicus Miers, 1879 (Decapoda: Caridea: Alpheidae) with notes on the larval characters of the Alpheidae. Korean Journal of Biological Science, 6: 95-105
Yang HJ, Kim W. 2006. First zoeas of Alpheus albatrossae (Decapoda: Caridea: Alpheidae) hatched in the laboratory. Korean Journal of Biological Sciences, 22(2): 189-194
Yang HJ, Kim MJ, Kim CH. 2003. Early zoeas of Alpheus lobidens De Haan, 1850 and Alpheus sudara Banner and Banner, 1996 (Decapoda: Caridea: Alpheidae) reared in the laboratory. Animal Cells and Systems, 7(1): 15-24

