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Abstract 

This study aimed to investigate the structural characteristics of burrows and other hiding places for the 

chestnut crab, Cardisoma carnifex, from March 2021 to April 2022 in the Parangipettai mangrove habitat, 

Tamil Nadu, India. Burrows were randomly selected along the northern bank of the Vellar estuary for casting. 

The resident crabs were captured for morphological identification, and their morphometry (carapace length 

[CL] and carapace width [CW]) and sex were recorded. A total of 56 burrows were selected for studying 

distribution patterns, and six burrows were used for morphological observations. The study found a significant 

positive correlation between crab carapace length, carapace width, and burrow mouth diameter. Additionally, 

the burrow temperature dropped significantly at greater depths, providing a suitable environment for the crabs 

to survive in harsh conditions.  
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1 Introduction 

Semi-terrestrial crabs, though often not commercially significant, play crucial roles in coastal ecosystems. 

They contribute to nutrient cycling, process matter deposition, and facilitate plant growth by enhancing 

nutrient exchanges between sediment and water (Aschenbroich et al., 2016). Crab burrows serve as valuable 

indicators in research, with burrow counting being a simple and rapid method for estimating crab populations 

(Weilhoefer, 2011; Schlacher et al., 2016; Stelling-Wood et al., 2016; Min et al., 2023). For example, fiddler 

crab burrows have been used to evaluate salt marsh recovery from the Deepwater Horizon oil spill (McCall 

and Pennings, 2012). Previous studies have examined crab burrow distribution patterns across various habitats 

to assess factors such as water depth, plant communities (Mouton and Felder, 1996), soil water content 

(Reinsel and Dan, 1995), light, salinity (He and Cui, 2015), sediment characteristics (Spivak et al., 1994), food 
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resources (He and Cui, 2015), and tides (Luppi et al., 2013; Paul et al., 2019) that affect crab distribution. 

Cardisoma carnifex, a common species of semi-terrestrial Gecarcinidae crabs, is widely distributed in the 

Indo-Pacific region. It is typically found on muddy shores, mangrove swamps, or saline lowland soils near the 

coast (Hogue and Bright, 1971). These crabs excavate individual burrows into soft sediments throughout the 

high intertidal zone and in areas where groundwater is available during the dry season (Micheli et al., 1991; 

Vannini et al., 2003). The burrowing activities of crabs in mangroves and salt marshes can significantly impact 

substratum topography, granulometry (Warren and Underwood, 1986), and soil chemistry (Jones, 1984; 

Bertness, 1985). 

Cardisoma carnifex is commonly found around the Vellar estuary, with their burrows typically having a 

single entrance and being occupied by a single crab. However, the distribution patterns in different zones of 

the mangrove in the Vellar estuary are not well understood. This study aims to characterize the spatial 

distribution patterns of male and female C. carnifex and the architectural patterns of their burrows in the study 

area. 

 

2 Materials and Methods 

2.1 Study area 

The present study was carried out from March 2021 to April 2022 along the northern bank of the Vellar 

estuary on the southeast coast of India (lat. 11º 49' 15.638'' N, lon. 79 º 76' 52.287'' E and  lat. 11º 29' 29.6304'' 

N, lon. 79º 45' 54.8244'' E). The mangrove forest which is located on northern side of the Vellar estuary is rich 

in brachyuran crab diversity. 

2.2 Burrow distribution  

The burrows of C. carnifex can be easily identified based on the earlier report by Micheli et al. (1991). In this 

study, a total of 56 burrows (15 male and 41 female) were randomly selected and marked using GPS. The 

burrow density, the distance between male burrows, the distance between female burrows, and the distance 

between male and female burrows in the study zone were documented. This method of GPS marking allows 

for precise mapping and analysis of burrow distribution, providing valuable insights into the spatial patterns 

and potential territorial behaviors of C. carnifex. The documentation of distances between burrows is crucial 

for understanding the social structure and habitat preferences of these crabs within the mangrove ecosystem. 

2.3 Burrow structure  

Six burrows were evacuated to capture the crabs and measure their morphological characteristics. The 

locations of these burrows are shown in Fig. 2b. Burrows entrance diameter were measured using a digital 

calliper (Zhart, India) with 0.1 mm accuracy. Burrow casting was performed by pouring a slurry of Plaster of 

Paris (POP) (water: POP = 1:2) into each burrow mouth, allowing it to dry for 2 hours as described by Qureshi 

and Saher (2012). Once the casts were dry, they were carefully excavated using a spade, removing soil from all 

sides. Measurements of burrow diameter (BD), total burrow length (TBL), and total burrow depth (TBD) were 

recorded using a measuring tape. The patterns and shapes of the burrows were demonstrated through visual 

observations of the casts. 

2.4 Physico-chemical parameters  

The important physico-chemical parameters viz., air temperature, burrow temperature, salinity, pH, TDS and 

specific gravity of the burrow water was measured fortnightly in every month during the study period.  

2.5 Statistical analysis  

The data were analyzed by one way analysis of variance (ANOVA) (Zar, 1996; Zhang and Qi, 2024). All 

numerical data are represented as the mean ± standard deviation (SD) unless otherwise stated. Statistical 

differences were considered significant when P = 0.05. 
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3 Results 

3.1 Distribution pattern 

The results indicate that the C. carnifex (Fig. 1) population in the study area has a sex ratio of approximately 

1:3 (male: female). Females were observed to live closer to each other than males. The distances between two 

male burrows ranged from 300 to 900 meters, while the distances between two female burrows ranged from 

1.7 to 8 meters. This suggests that males are territorial, placing their burrows far from each other, whereas 

females are more social, living closer together. Fig. 2a illustrates the distribution pattern of C. carnifex 

burrows in the study area, highlighting these spatial relationships. 

 

 

Fig. 1 Cardisoma carnifex. 

 

3.2 Physico-chemical parameters  

The physico-chemical parameters such as air temperature, burrow temperature, salinity, pH, TDS and specific 

gravity of the burrow water and soil is given in Table 1.   

 

 

Table 1 Physico-chemical parameters of the study zone (mean ± SD) 

Zone A (n=15) B (n=6) C (n=7) D (n=9) E (n=7) F (n=12) 

Air temperature (ºC) 29 ± 4 a 29 ± 4 a 29 ± 4 a 29 ± 4 a 29 ± 4 a 29 ± 4 a 

Burrow temperature 

(ºC) 

25 ± 0.5 a 25 ± 0.5 a 25 ± 0.5 a 25 ± 0.5 a 25 ± 0.5 a 25 ± 0.5 a 

TDS (ppm) 106 ± 5a 211± 7b 193±7c 404±9d 199±8c 91±3e 

pH 8.2±0.5a 7.8±0.5a 8.3±0.7a 8.0±0.7a 8.2±0.8a 7.9±0.4a 

Salinity (ppt) 7.5±0.5a 8.0±0.5a 8.0±0.5a 7.5±0.5a 8.5±0.5a 8.5±0.5a 

Specific gravity 1.004 ± 

0.002a 

1.006 ± 0.003a 1.004 ± 0.002a 1.007 ± 0.003a 1.004 ± 0.003a 1.005 ± 0.003a 

The values along the rows sharing the common superscript is dot significantly different at p<0.05 level. 
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3.3 Burrow structure 

Totally six burrows were observed for their detailed architecture pattern. The burrow location map is given in 

Fig. 2b. 

 

Fig. 2 (a) Distribution pattern of C. carnifex burrows in different zone; (b) Selected burrows for morphology study and their 

coordinates. 

 

Pattern 1: This burrow belonged to a male crab and was located at 11°29’25.9''N 79°45’53.3''E beneath a 

man-made brick wall (Fig. 3A). The burrow was linear with two entries, one on either side of the brick wall. 

The burrow mouth was roughly circular, with a diameter of 10 cm. This linear burrow measured approximately 

0.45 meters in length and 0.3 meters in depth and featured a broad central chamber. The crab was observed at 

the burrow entrance during dawn and dusk, retreating deeper during the hot hours of the day. The presence of 

gravel around the burrow appeared to limit its expansion, resulting in a unique shape and size. This type of 

burrow may be influenced by anthropogenic factors. 

Pattern 2: This burrow belonged to a female crab and was located at 11°29’32.7''N 79°45’54.7''E along a man-

made brick wall (Fig. 3B). It was situated a few meters away from the high tide line. The burrow had a 

horizontal entrance with a steep angle, leveling off for a distance before taking a sharp 90-degree turn 

downward until it reached the water level. The burrow mouth was roughly circular with a diameter of 10 cm. 

This burrow measured about 1.5 meters in length and 0.8 meters in depth, with a broad terminal chamber. The 

crab was observed at the burrow entrance during dawn and dusk, retreating deeper during the hot hours of the 

day. It was noted that the internal temperatures of the burrow remained 3-5  cooler than the outside ℃

temperature. 

Pattern 3: This burrow belonged to a female crab and was located at 11°29’17.1''N 79°45’41.3''E (Fig. 3C). It 

was situated near huts and houses, resulting in high human intervention and frequent changes in water levels. 
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The burrow was spiral with a “Y” type architecture and had a single opening. The burrow mouth was roughly 

circular with a diameter of 7.5 cm. The shaft descended obliquely at a 45° angle before splitting into two paths 

leading to circular and oblong chambers, both stopping at the water level. The burrow measured approximately 

1.55 meters in length and 1.3 meters in depth, with the first chamber being smaller than the second. The crab 

was observed at the burrow entrance during dawn and dusk, retreating deeper during hot hours. The burrow 

temperature was observed to be 4-5  cooler than the outside temperature.℃  

Pattern 4: This burrow was occupied by a female crab and was located at 11°30'06.4"N 79°46'15.6''E (Fig. 3D) 

in a dry, arid area near a lighthouse, surrounded by beach sand and high salinity. The burrow had a horizontal 

slide morphology, starting with a steep entrance angle that leveled off before taking a sharp 90-degree 

downward turn, not reaching the water level, likely due to the water level being below the burrow terminus. 

The burrow mouth was roughly circular with a diameter of 10 cm. This “J” architecture burrow was about 1.65 

meters in length and 1.4 meters in depth, featuring a broad terminal chamber. 

Pattern 5: This pattern was a hide structure occupied by a medium-sized male crab, located at 11°29’25.9''N 

79°45’53.3''E (Fig. 3E). It was a hiding place rather than a burrow, as the crab was observed inside a rainwater 

drainage pipe. This indicates that some crabs have adapted to living in man-made structures due to 

anthropogenic intervention. Although these hides could be temporary, this particular specimen was observed in 

the pipe throughout the study period. 

Pattern 6: This burrow belonged to a female crab and was located at 11°29’46.1''N 79°46'01.5"E (Fig. 3F) 

beside the road towards Annankovil beach. The burrow had a horizontal slide morphology, starting with a 

steep entrance angle that leveled off before taking a sharp 90-degree downward turn, reaching the water level. 

The burrow mouth was roughly circular with a diameter of 8 cm. This “J” shape architecture burrow was about 

1.5 meters in length and 1.4 meters in depth, with a broad terminal chamber. The crab was observed at the 

burrow entrance during dawn and dusk, retreating into the burrow during hot and busy hours of the day. The 

burrow temperature was observed to be 4  cooler than the outside air temperature.℃  
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Fig. 3 Pattern of C. carnifex burrows. 

 

 

4 Discussion 

The morphology of C. carnifex burrows showed considerable variation in shape, size, and complexity, ranging 

from single entrance shafts with no branches to multiple entrances. In this study, six different burrow 

architectures were recorded (Fig. 3). According to Chakrabarti (1981) and Chan et al. (2006), the J-shaped and 

single-tube burrows of juvenile crabs were shallow in depth with narrower opening diameters and lesser 

volume. Cardisoma carnifex burrows are among the most distinctive and often the largest of all crab species' 

burrows. The burrow mouths were often perfectly round and notably larger in diameter than the width of the 

occupant’s carapace (Micheli et al., 1991). In the present study, we also found similar burrow mouths with 

diameters of 10-12 cm for C. carnifex. 

As per our observations, the average burrow duration was 45 days for C. carnifex. However, Micheli et al. 

(1991) reported a duration of 25 days, which may depend on the season and soil conditions. Due to the dryness 

of the upper soil layers, burrow entrances frequently collapse and are dug again, while the deeper parts, which 
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probably do not collapse as often, continue to be inhabited by the crabs. Thus, only entrances are continuously 

rearranged and often repositioned. Micheli et al. (1991), as well as Seiple and Salmon (1982), reported similar 

observations for C. carnifex and Sesarma reticulatum in salt marshes and suggested that crabs shift burrow 

entrances to approach new plants to feed on. This frequent digging may enrich the mud surface by oxygenating 

the soil and bringing organic material to the upper layers. The soil turnover achieved by burrowing is known to 

increase the productivity of Spartina alterniflora vegetation in salt marshes (Montague, 1982; Bertness, 1985). 

Crabs like Uca pugilator, Sesarma longipes, Cardisoma carnifex, and Macrophthalmus parvimanus create 

temporary burrows like single tubes and bulb shapes as refuges during high tides or to protect themselves from 

predators (Braithwaite and Talbot, 1972; Christy, 1982). However, in our observation, most of the burrows 

were permanent and occupied by crabs throughout the study period. James (2007) notes that Cardisoma 

burrows are very deep and extend down to the water level, even during the dry season. Our study confirmed 

that most of the burrows are deep and reach the water level. Colonies of Cardisoma burrows discovered were 

randomly scattered on the ground in tree lines abutting marshes or beaches (James, 2007). There was no 

apparent relation of burrow placement to the protection of trees or rocks. In our study, the burrows were 

located in sand and mud soils in open ground, but burrow density was higher near tree trunks and walls. Beach 

colonies were recorded in the tree line off the beach and usually near river mouths. Swamp colonies were 

found along the estuary bank. 

Earlier studies reported that crab burrow architecture is affected by several environmental factors such as 

temperature, moisture level, and wind (Lucrezi et al., 2009), as well as geomorphological properties of sandy 

shores like sand compaction, beach slope, sand grain size (Dixon et al., 2015; Pombo et al., 2017), and soil 

erosion (Hobbs et al., 2008). Burrow architecture also varies based on the size and sex of the resident crab 

(Lim and Diong, 2003). The present study revealed that both male and female C. carnifex construct differently 

shaped burrows, with male crab burrows being longer and more voluminous than female crab burrows. Similar 

findings were reported by Maheta and Vachhrajani (2023) for the fiddler crab Austruca sindensis. Males build 

longer and deeper breeding burrows to attract females for mating purposes (Backwell and Passmore, 1996; 

Tina et al., 2018). 

Atkinson and Taylor (1988) discussed that burrows provide protection against high external temperatures 

and environmental extremes. According to Maheta and Vachhrajani (2023), the temperature of the sand 

surface dropped along the depths of the burrows, suggesting that the burrows provide refuge for the crabs 

during stressful summer periods. Temperature could be even lower further down the burrow, although 

measurements at greater depths were not obtained. As burrows are important for providing refuge from 

desiccation for intertidal crabs (Takeda and Kurihara, 1987; Thongtham and Kristensen, 2003), the depth of 

burrows is influenced by the water content of the sediment. In the present study, the burrow temperature was 

4-5ºC cooler than the outside air temperature. According to Wolfrath (1992), temperature variations inside 

crab burrows are inversely related to outside air temperatures, with burrow temperatures being lower during 

the day and higher during the night than the outside temperature. If the temperature exceeds the optimal range, 

it reduces the ventilatory and cardiac performance in crabs, leading to a lesser supply of oxygen to the tissues 

and reduced endurance capacity (Allen et al., 2012). 

 

5 Conclusion 

The present observations reveal that the burrow architecture of C. carnifex varies significantly and that this 

species can adapt to extreme environmental changes. They utilize whatever natural materials and habitats are 

available, and their survival is not solely dependent on specific food sources. Previous studies have also found 

that C. carnifex burrows are remarkably resistant to disturbances. They can rebuild and restore their burrow 
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entrances within a week, even after intensive blockage, resisting low-level surface developments by humans 

(Hurley, 2012). This adaptive nature helps them survive and thrive despite significant disturbances in their 

environment. Further research is needed to determine the extent of the impact of various environmental factors 

on burrow morphology and to understand the circumstances under which these crabs choose manmade 

structures as hiding places. This will provide a deeper understanding of their adaptive behaviors and the 

resilience of their burrowing activities in response to environmental challenges. 
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