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Abstract
Previous work has investigated the use of data clustering of regional species assemblages to estimate the 
relative risk of establishment of insect crop pest species. This paper describes the use of these techniques to 
estimate the risk posed by bacterial crop plant diseases. Two widely-used clustering algorithms, the Kohonen 
Self-Organising Map and the k-means clustering algorithm, were investigated. It describes how a wider variety 
of SOM architectures than previously used were investigated, and how both of these algorithms reacted to the 
addition of small amounts of random ‘noise’ to the species assemblages. The results indicate that the k-means 
clustering algorithm is much more computationally efficient, produces better clusters as determined by an 
objective measure of cluster quality and is more resistant to noise in the data than equivalent Kohonen SOM. 
Therefore k-means is considered to be the better algorithm for this problem. 
 
Keywords bacterial diseases; crop; risk; establishment; data clustering.
 
 
1 Introduction
There is a pressing need to identify which species of bacterial crop diseases pose the most risk to a particular 
geographical region. Identification of pre-emerged invasive diseases would allow more directed prevention or 
eradication and control if by chance the species were to establish. Computational modelling is one of the tools 
that can be used to assist decision makers in assessing the threat posed by various invasive species. Data 
clustering (Everitt et al., 2001) is an important and widely used method of data analysis and data mining that 
groups similar items together into subsets, or clusters, where each item in a cluster is more similar to the other 
items in the cluster than it is to items outside the cluster. By determining the cluster a geographical region, as 
represented by its species assemblage, belongs to, it is possible to infer which species may become established 
in that region. Worner and Gevrey (2006) and Gevrey et al (2006) were the first to use clustering with respect 
to invasive species, in this case insect pests. In their study a Kohonen Self-Organising Map (SOM, Kohonen 
(1990)), which is a type of artificial neural network (ANN, Kasabov (1996)) model was used to cluster insect 
species assemblages found in geographic regions. The rationale behind this approach is that regions that have 
climatic or other environmental properties in common are likely to have similar species assemblages (Worner 
and Gevrey, 2006). If a particular region in a cluster does not have an insect species present, yet that species is 
present in a large proportion of geographical regions that have highly similar assemblages (that is, the other 
regions in the cluster), then it is likely that the region possesses an environment conducive to the establishment 
of that species if it were introduced (Worner and Gevrey, 2006; Gevrey et al, 2006). A quantitative “risk 
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weighting” for each species was thus derived from the frequency at which each species appeared in a cluster, 
where a large risk weighting value for a species meant a large risk of that species establishing in the region, 
and the risk weighting of each species is the same for all regions in that cluster. SOM have been previously 
used in several ecological applications (Foody, 1999). These applications include modelling similar diatom 
distribution patterns across France (Park et al, 2006), characterisation of the spatial distribution of fish (Brosse, 
Grossman and Lek, 2007), analysis of the spatial distribution of invertebrates (Céréghino, Giraudel and 
Compin, 2001), and ecological community ordination (Giraudel and Lek, 2001). An advantage of Kohonen 
SOM is  that they perform vector quantisation, that is, vectors are projected from their original high 
dimensional space into a lower dimensional space, which allows for easier visualisation of the resulting 
clusters.  

In the paper Watts and Worner (2009) the results of clustering insect assemblages with Kohonen SOM were 
critically compared with the results of an alternative clustering algorithm, the k-means algorithm (Lloyd, 1982). 
Although this work found that k-means was in some ways superior to SOM, several issues were left 
unaddressed. These issues were as follows:  

1. The application of the method beyond insects was not investigated  
2. The effect of noise (small random changes) in assemblages for each algorithm was not investigated  
3. Only one size of SOM was investigated  

The work reported in this paper addresses these issues. It compares the performance of a range of SOM map 
sizes with the performance of equivalent k-means algorithms over assemblages of bacterial crop diseases. It 
also investigates the effects of adding noise to the assemblages. The following research questions are 
investigated:  

1. Which algorithm produces the ‘best’ clusters?  
2. What effect does adding varying levels of noise have on clustering performance? 
3. Which species of bacterial crop disease, that are not already listed as established, have the greatest risk 

of establishment for New Zealand? 
 
2 Method
2.1 Data  
Data was sourced from the CABI Crop Protection Compendium 2003 (CABI, 2003). This comprised the 
presence and absence of 114 bacterial crop disease species within 459 geographical regions listed within the 
compendium. These regions represent all of the world’s landmass. While there were more than 114 disease 
causing bacterial species listed in the compendium, only those species recorded as present in more than 5% of 
the geographic regions were retained. There were no empty regional assemblages, that is, no vectors in the data 
set consisted entirely of absences. 

A histogram of the prevalences of each species is presented in Fig. S.1 (supplementary material). This 
shows a log-normal distribution, with a large number of species with relatively low prevalence, and only a few 
of greater prevalence. As the technique used here is data-driven and utilises the associations between regional 
assembles, it was important to verify that the species assemblages were not random. This was done via a null 
model analysis (Gotelli, 2000). The software used for this analysis was EcoSim version 7 (Gotelli and 
Entsminger, 2006). Ten thousand iterations of the independent swap, sequential swap and random knight's tour 
algorithms were performed and the C-score, V-ratio, number of checker boards and number of species 
combinations were all evaluated. The default setting of retaining degenerate matrices was retained. The results 
of each run are presented in Table S.1 (supplementary material). These show that the assemblages were 
significantly non-random (p=0.001).  
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2.2 Kohonen self-organising maps  
The Kohonen Self-Organising Map (SOM, Kohonen (1990)) is an artificial neural network that learns 
representations of data via an unsupervised learning algorithm. That is, while many other ANN learn to model 
target data, the SOM learns the patterns within the data itself. It consists of two layers of artificial neurons: the 
input layer, which accepts the external input signals, and the output layer (also called the output map), which is 
usually arranged in a two-dimensional structure. The structure of the Kohonen SOM is shown in Figure S.2 
(supplementay material). Every input neuron is connected to every output neuron, and each connection has a 
weighting value attached to it. When an input vector is presented to the SOM, the Euclidean distance between 
the input vector and the incoming weight vector of each output map neuron is calculated. The output neuron 
with the smallest distance is declared the winner (This is also known as the Best Matching Unit (BMU)). SOM 
learning is an iterative process, during which training examples are propagated through the network, and 
connection weights modified according to equation (1). 
 
                                                              wi,j(t+1)=wi,j(t)+h(t)(xi-wi,j(t))             (1) 
 
where wi,j(t) is the connection weight from input i to map neuron j at time t,  xi  is element i of input vector x, 
and h is the neighbourhood function, as defined in equation (2).  
 

h(t)=� exp(-d2/(2�2(t)))                 (2) 
 
where � is the learning rate, which decays towards zero as time progresses, d is the Euclidean distance between 
the winning unit and the current unit j, and � is the neighbourhood width parameter, which also decays towards 
zero.  

The SOM algorithm is essentially a clustering algorithm that will assign training examples to neurons, 
where each neuron is equivalent to the centre of one cluster. The winning neuron for each vector thus 
determines which cluster the vector belongs to.  

The SOM simulator used was custom written in C++. The Euclidean distance measure was used and the 
output map was laid out in a rectangular configuration. In Worner and Gevrey (2006) a SOM output map of 
108 neurons was used in a rectangular map of nine by twelve neurons, where the size was determined by 
equation (3):  
 
                                                                              n=5v0.5                                (3) 
 
where n is the number of output map neurons and v is the number of training vectors. In this work, to address 
the third criticism listed in Watts and Worner (2009), a wider range of map dimensions was used. The 
dimensions of the output maps used are listed in Table S.2 (supplementay material) while the number of 
training epochs was calculated as 500 times the number of output map neurons, as recommended in Kohonen 
(1997). The map sizes ranged from what was considered to be the smallest usable map with two by four 
neurons, up to nine by twelve neurons, which was the size suggested by equation 3 and was the size used in 
Watts and Worner (2009) and Worner and Gevrey (2006).  
2.3 k-means clustering
The k-means algorithm (Lloyd, 1982) belongs to a family of algorithms known as optimisation clustering 
algorithms. In this family of algorithms, clusters are formed such that some criterion of cluster goodness is 
optimised. That is, the examples are partitioned into clusters such that the clusters are optimal according to 
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some measure. The name comes from the fact that k clusters are formed, where the centre of the cluster is the 
arithmetic mean of all vectors within that cluster.  

The k-means algorithm is as follows:  
1. Select k seed examples as initial centres (randomly generated vectors can also be used).  
2. Calculate the distance from each cluster centre to each example.  
3. Assign each example to the nearest cluster.  
4. Calculate new cluster centres, where each new centre is the mean of all vectors in that cluster.  
5. Repeat steps 2-4 until a stopping condition is reached.  

In the experiments reported here, the initial centres were vectors that were randomly selected from the data 
set, and the stopping criterion was based on the movement of the cluster centres: when vectors no longer 
changed clusters between iterations (the clusters had stabilised), the algorithm terminated. The number of 
clusters was set equal to the number of SOM output map neurons that were evaluated.  

The disadvantage of k-means compared to SOM is that it does not perform vector quantisation, that is, it 
does not naturally result in a form that can be easily visualised. The advantage of k-means over SOM is that it 
is more computationally efficient and can thus run much faster.  
2.4 Generating risk lists  
The goal of the experiments reported here was to generate lists of bacterial crop disease species that were 
ordered according to the risk they pose to the target region, which in this case was New Zealand. The same 
method was used to generate these lists from the clusters that were generated by SOM and the clusters that 
were generated by k-means.  

As was discussed in the Introduction, the fundamental assumption made in this paper is that regions that 
have similar species assemblages have similar environmental conditions that encourage or discourage 
establishment of certain species. The algorithm for finding risk rankings from clusters is based on that 
assumption, and is as follows:  

� for each repetition 
o Find the cluster the target region is in (the target cluster).  
o Identify all regions that are in the target cluster (the neighbour regions). These assemblages 

form the target matrix.  
o Calculate the frequency each species appears in the target matrix (the risk factors).  
o Use these frequencies to calculate the ranks of each species, where higher frequency species 

rank more highly than species with lower frequencies.  
� Calculate the mean and standard deviation of the ranks for each species.  
� Order species by their mean ranks.  

Thus, by this algorithm, species that frequently appear in regions that are similar to the target region are 
given a higher rank than species that do not. Rankings are assigned in descending order. Species with the same 
risk values are given an average ranking. For example, if three species with the same risk values are ranked 18, 
17 and 16, each will be given the rank of 17, and the following species assigned the rank 15 (unless that 
species also shares a risk value with other species).  

Risk lists were also generated directly from SOM weights, as was done for insects in (Worner and Gevrey, 
2006; Gevrey et al, 2006; Watts and Worner, 2009), whereby the connection weight associated with each input 
(species) is taken as the species risk weighting. The rationale behind this approach was that the weights of the 
SOM represent cluster centres. Note that risk lists were not generated from the centres of k-means clusters, 
because the centre of a k-means cluster is the same as the mean of all items in that cluster.  
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2.5 Measuring cluster quality  
There are many measures of cluster quality (Hansen and Jaumard, 1997), most of which are based on the 
distance between cluster centres or the distance between items in the cluster and items outside the cluster. We 
used the quantisation error, which is the mean distance between each vector and the centre of its cluster, to 
measure the quality of each clustering run. This measure, which is described in equation (4), yields a single 
value for all clusters, as opposed to other measures listed in Hansen and Jaumard (1997) that yield a 
measurement for each cluster. For this measure, a lower score is better.  
 
                                                                            Q=�di,c/v                           (4) 
 
where Q is the quantisation error,  di,c is the Euclidean distance between vector i and the centre c of the cluster 
it belongs to, and v is the number of vectors in the data set.  

The computational efficiency of each algorithm was also considered, that is, which algorithm performed the 
task the fastest. It is well-known that k-means is faster than SOM, especially over the relatively large number 
of variables used in this problem. This is because the number of calculations required in each iteration of 
k-means is less, and the number of iterations tends to be much smaller (Kasabov, 1996).  

The variation of results between runs was considered by measuring the Jaccard distance between each 
unique pair of neighbour vectors, where a neighbour vector had a one for each region that was in the target 
region's cluster, and a zero in all other positions. That is, for each run, a 459-element vector was constructed 
where each element corresponded to one of the regions being clustered (one element for each region). A one 
was entered in that element if the corresponding region was present in the same cluster as the target, that is, if 
the region was a neighbour region. At the completion of all trials for that experiment, the Jaccard distance was 
measured between each unique pair of vectors and the mean and standard deviation of distances found. This 
directly measured the variation between the clustering runs in terms of the contents of the clusters. The Jaccard 
similarity was used because it is a simple and well-known measure of similarity between two binary vectors. 
To further compare the results of SOM and k-means, the Euclidean distance was measured between both the 
species risk weightings and regional neighbour frequencies produced by each algorithm. The distance between 
the species risk weightings were measured to determine the similarity of risk assigned to the species by each 
algorithm. The distance between the neighbour frequencies was measured because the final risk weightings are 
determined by the frequency at which other regions are clustered with the target region.  
2.6 Adding noise
Noise was added by randomly changing a presence to an absence, or vice versa. Noise was added either to the 
target assemblage, or to the entire assemblage matrix. When adding noise to the entire matrix, the assemblages 
that the noise was added to were randomly selected. The number of ‘bits’ of noise (the number of presences or 
absences that were flipped) varied: when adding noise to the target assemblage only, between one and sixteen 
bits were flipped. When adding noise to the entire matrix, the number of bits ranged from one to sixteen and 
from 459 to 7344. The second range was calculated so that the proportion of bits flipped in the entire matrix 
was equal to the proportion of bits flipped in the target row, when only that row had noise added. This was 
done so that the affect of the overall proportion of noise could be investigated.  
 
3 Results 
Table 1 presents the results of measuring the cluster quality for Kohonen SOM. Although there are no trends 
clearly apparent, the minimum quantisation error of 3.01 was found for the 4×6 map size. Two things about the 
numbers presented in this table are striking: firstly, the values of the Jaccard distance between neighbour 
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vectors, which were zero up until the 8×12 output map; secondly, the values of the standard deviations for the 
other measures, which were also zero up until the 8×12 output map. This shows that for output map sizes less 
than 8×12 neurons, there was no variation between runs. In other words, the results were identical for each run 
of the SOM algorithm, up to a map size of 8×12 or larger1. The variation that arose at the larger map sizes was 
large: the coefficient of variation (CV) for the quantisation error ranged only from 10.62 to 12.17%, the CV for 
target size ranged from 36.13% for the 9×12 map to 52.72% for the 8×12 map. The differences between the 
risk weights derived from connection weights and those derived from clusters varied but were generally higher 
for the larger maps. As the 4×6 map size yielded the lowest quantisation error, this configuration was used for 
the following experiments. Also, the difference between the species weightings derived from connection 
weights and the species weightings derived from clusters was lowest for the 4x6 map. For comparison 
purposes, therefore, twenty four clusters were selected for the k-means clusters.  
 
 

Table 1 Results for Kohonen SOM and k-means. ‘Quantisation Error’ is the mean and standard deviation  
of the cluster quantisation error. ‘Target Size’ is is the mean and standard deviation of the number of 
 assemblages in the target cluster. ‘Jaccard’ is the mean jaccard distance between each unique pair of 
 neighbour vectors, where a neighbour vector has a one for each region that is in the target region's  
cluster, and a zero in all other positions. ‘Weight Diff.’ is the difference (Euclidean distance)  
between the species mean weightings as determined from the weights and species mean weightings as  
determined from the weights and species mean weightings as determined from the clusters. 

  SOM   
Map Size Quantisation Error Target Size Jaccard Weight Diff.

2×4 3.99/0 18/0 0/0 5.73 
3×5 3.90/0 4/0 0/0 5.82 
4×6 3.01/0 9/0 0/0 5.45 
5×7 3.9/0 4/0 0/0 6 
6×9 3.91/0 3/0 0/0 5.91 
7×11 3.10/0 5/0 0/0 5.81 
8×12 3.39/0.36 4.59/2.42 0.67/0.27 6.03 
9×12 3.45/0.42 3.1/1.12 0.59/0.29 6.08 

  k-Means   
Clusters Quantisation Error Target Size Jaccard  

8 2.29/0.02 23.29/8.51 0.64/0.20  
15 2.18/0.02 14.66/5.60 0.70/0.19  
24 2.09/0.01 11.14/4.57 0.78/0.17  
35 2.02/0.01 8.76/4.05 0.79/0.17  
54 1.92/0.02 6.87/3.14 0.77/0.19  
77 1.81/0.02 5.35/2.66 0.77/0.19  
96 1.71/0.03 4.34/2.28 0.74/0.20  

108 1.65/0.03 3.84/2.14 0.70/0.22  
 
 

Table 1 also presents the results of measuring the cluster quality for k- means. Here it can be seen that the 
quantisation error and target cluster size all steadily decrease as the number of clusters increases, while the 
Jaccard measurement increases. Whereas there was zero variation in these measures for the SOM, the CV over 
the quantisation errors for k-means ranged from 0.48% for twenty-four clusters to 1.82% for 108 clusters. The 
CV over the target cluster size went from 36.54% for eight clusters to 55.73% for 108 clusters. The CV of the 
                                                        
1Although this was not investigated in Watts and Worner (2009), the criticism therein of Worner and Gevrey (2006) using only 

one trial is borne out, as a 9×12 output map was used there.  
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target cluster entropy ranged from 78.12% for twenty-four clusters to 119.98% for 108 clusters, while the CV 
of the Jaccard measure ranged from 21.52% for thirty-five clusters to 31.28% for eight clusters. Thus, while 
the mean performance measures for SOM were not as good as for k-means, k-means yielded much more 
variation.  

 
 

Table 2 Region neighbour frequencies for Kohonen SOM and k-means. 
SOM  k-means  

Region Name Frequency Region Name Frequency 
New Zealand 1 New Zealand 1 

Romania 1 United Kingdom 0.52 
Victoria 1 Romania 0.49 

Western Australia 1 France 0.47 
Bulgaria 1 Italy 0.45 

Russian Federation 1 Germany 0.42 
Ontario 1 Netherlands 0.39 
Canada 1 Victoria 0.36 

Colombia 1 Western Australia 0.34 
 Greece 0.33 
 Switzerland 0.32 
 South Australia 0.29 
 Canada 0.29 
 Bulgaria 0.28 
 Hungary 0.28 
 Iran 0.28 
 New South Wales 0.27 
 Denmark 0.26 
 Spain 0.24 
 Yugoslavia 0.24 
 Queensland 0.21 
 USA 0.21 
 Israel 0.2 
 Russian Federation 0.2 
 Poland 0.19 
 South Africa 0.19 
 Australia 0.17 
 Turkey 0.17 
 Ontario 0.16 
 Egypt 0.16 
 Japan 0.14 
 Zimbabwe 0.14 
 Austria 0.13 
 Tasmania 0.13 
 India 0.12 

 
 

The top eighty ranked species, in terms of threat posed to New Zealand, as determined by SOM, are 
presented in Table S.3 (supplementary material). These risk values were derived from 4×6 SOM clusters, 
rather than weights, so that a direct comparison could be performed with the results of k-means. As there was 
no variation between trials of the SOM, the standard deviation of the risk values in this table is zero. Species 
that were recorded as already present in New Zealand dominate the top of the list, while non-established 
species are present lower down the list. The top eighty ranked species as determined by k-means are presented 
in Table S.4 (supplementay material). As there was variation between the runs of this algorithm, there was 
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variation in the species risk weightings. Species that had a lower risk weighting were observed to have larger 
variation in those weightings. This was expected as species that had low weightings would also have been of 
lesser frequency in the data set.  

The regional neighbour frequencies, that is, the frequency with which regions appeared in the target cluster, 
are listed in Table 2 for SOM and k-means. The results in this table again show that there was no variation at 
all between runs for the SOM algorithm, with exactly the same regions being mapped into the target cluster 
each time. This lack of variation explains why there were only nine regions in the cluster, including the target. 
There are thirty-five regions listed including New Zealand for k-means. As there was much more variation 
from the k-means algorithm, there was a much greater range of frequencies of appearance for these 
neighbouring regions.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Species risk weightings derived from SOM vs risk weightings derived from k-means  
for 4×6 map/24 clusters. The line indicates 1:1 agreement between the two algorithms. 

 
 
The results of comparing the risk weightings from SOM clusters with the risk weightings from k-means are 

presented in Table S.5 (supplementary material). A plot of the mean risk values derived from a 4×6 SOM 
versus the mean risk values from 24-cluster k-means is presented in Fig. 1, where a strong similarity can be 
seen. The correlation coefficient of these two series was 0.8681, which indicates a strong level of similarity 
between the two algorithms. That is, in terms of mean risk weightings, the two algorithms produced highly 
similar results, despite the large difference in speed of the two algorithms.  
3.1 Adding noise to the target assemblage 
Table 3 presents the results of adding noise to the target region assemblage only. It is immediately apparent 
that adding any noise, even changing one presence to an absence or vice-versa, is enough to disrupt the SOM 
clustering process. Target cluster size for both SOM and k-means was significantly smaller (two-tailed t-test, p 
=0.001) after adding noise, but quantisation errors were not significantly changed (which is expected, as the 
number of bits that were changed were a small proportion of the bits in the overall clusters). However, for the 
SOM the CV of the quantisation errors altered from zero (for the 4x6 map with pristine data) to a minimum of 
10.38% (for two bits of noise) and a high of 14.47% (for one bit of noise). The CV of the target cluster size 
ranged from 43.99% for seven bits of noise to 99.87% for 14 bits of noise, while the CV of the Jaccard 
distance measured ranged from 23.08% for fourteen bits to 40.85% for one bit. This shows that while adding 
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any noise is enough to cause a significant disruption to the clustering process, this disruption was not 
necessarily greatly increased by adding more noise. That is, adding any noise disrupted the SOM clustering, 
but more noise did not disrupt it any further.  

The results for the k-means showed a resistance to disruption: the CV of the quantisation error was 0.48% 
for all levels of noise, while the CV of the target size ranged from 37.13% (for eight bits of noise) to 50% (for 
sixteen bits), and the CV for the Jaccard measure ranged from 18.52% (for ten bits) to 23.68% (for three bits). 
These variations were not significantly larger than those displayed by the k-means carried out over the initial 
data set, which suggests that the k-means algorithm was more resistant to noise than the SOM.  

Table 3 Results of adding noise to target assemblage for Kohonen SOM and k-means. ‘Bits’ is the number of  
presences or absences that were flipped. Other column labels are as in Table 1. 

  SOM   
Bits Quantisation Error Target Size Jaccard Weight Diff. 

1 3.18/0.46 7.56/3.79 0.71/0.29 6.25 
2 3.18/0.33 7.27/3.5 0.74/0.25 5.77 
3 3.23/0.35 6.29/3.25 0.73/0.22 5.81 
4 3.33/0.4 6.66/3.49 0.75/0.21 5.96 
5 3.23/0.34 6.35/3.37 0.75/0.21 5.85 
6 3.35/0.45 6.3/3.5 0.75/0.2 6.06 
7 3.29/0.41 6.91/3.04 0.75/0.21 5.92 
8 3.26/0.41 6.81/3.66 0.75/0.21 5.91 
9 3.30/0.37 6.94/4.16 0.75/0.22 5.94 

10 3.28/0.37 6.93/3.55 0.76/0.2 5.83 
11 3.36/0.49 6.7/5.11 0.76/0.19 5.72 
12 3.31/0.38 6.18/4.85 0.77/0.19 5.54 
13 3.41/0.46 6.4/3.9 0.77/0.19 5.78 
14 3.34/0.41 7.56/7.55 0.78/0.18 5.43 
15 3.34/0.39 6.3/4.45 0.77/0.19 5.68 
16 3.32/0.39 7.17/5.58 0.78/0.19 5.52 

  k-means   
Bits Quantisation Error Target Size Jaccard  

1 2.09/0.01 10.97/4.48 0.78/0.18  
2 2.09/0.01 11.19/4.91 0.79/0.17  
3 2.09/0.01 10.68/4.93 0.76/0.18  
4 2.10/0.01 10.45/4.44 0.79/0.17  
5 2.1/0.01 10.5/4.45 0.8/0.17  
6 2.1/0.01 10.04/3.96 0.79/0.16  
7 2.1/0.01 10.72/4.57 0.79/0.17  
8 2.09/0.01 10.75/3.99 0.8/0.16  
9 2.1/0.01 10.49/5.0 0.80/0.16  

10 2.09/0.01 10.14/4.3 0.81/0.15  
11 2.09/0.01 9.96/4.22 0.81/0.16  
12 2.09/0.01 11.17/4.9 0.8/0.17  
13 2.1/0.01 10.25/5.18 0.8/0.18  
14 2.1/0.01 10.81/5.07 0.81/0.16  
15 2.1/0.01 9.21/4.08 0.81/0.17  
16 2.1/0.01 10.44/5.22 0.81/0.16  

3.2 Adding noise to the entire matrix  
Table 4 presents the results of adding noise to the entire matrix. The quantisation errors of the SOM showed a 
steady increase as the amount of noise increased, although it was not greater than that in Table 3. The variation 
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over the CV decreased with noise: the maximum CV over quantisation error was 15.74% for five bits of noise, 
while the minimum was 4.11% for 7344 bits. The target cluster size showed much more disruption, with CV 
ranging from 48.19% for three bits to 151.97% for 7344 bits. The quantisation errors of the k-means are again 
comparable to those in Table 3, with the variation again staying quite low, ranging from a low of 0.42% for 
459 bits of noise to 1.06% for 6426 bits.  

The variation over the target cluster sizes ranged from 33.04% for nine bits of noise to 66.78% for 6885 bits. 
Again, these results showed that k-means was more resistant to noise than SOM. 

Table 4 Results of adding noise to the entire matrix for Kohonen SOM and k-means. Column headings are 
 as for Table 3. 

 SOM   
Bits Quantisation Error Target Size Jaccard 

1 3.28/0.37 7.23/3.77 0.73/0.25 
2 3.31/0.39 7.1/3.52 0.72/0.23 
3 3.32/0.38 7.45/3.59 0.73/0.22 
4 3.36/0.46 6.56/3.81 0.74/0.22 
5 3.43/0.54 6.22/3.55 0.73/0.21 
6 3.35/0.4 6.66/4.06 0.74/0.2 
7 3.37/0.43 5.98/3.48 0.73/0.21 
8 3.35/0.4 7/3.99 0.74/0.21 
9 3.34/0.43 6.5/3.89 0.75/0.21 

10 3.34/0.38 6.57/3.46 0.73/0.19 
11 3.39/0.4 6.69/3.87 0.74/0.21 
12 3.37/0.40 7.15/4.13 0.73/0.2 
13 3.34/0.39 6/3.62 0.74/0.2 
14 3.34/0.39 6.37/3.79 0.74/0.2 
15 3.33/0.46 5.84/3.60 0.73/0.21 
16 3.36/0.45 6.94/3.72 0.74/0.19 
459 3.46/0.356 7.47/3.76 0.74/0.2 
918 3.56/0.33 6.49/3.64 0.76/0.17 

1377 3.71/0.32 6.87/4.04 0.76/0.17 
1836 3.84/0.31 7.42/4.18 0.76/0.17 
2295 3.93/0.29 7.1/4.22 0.76/0.16 
2754 4.06/0.29 7.57/4.08 0.77/0.15 
3213 4.13/0.27 7.53/3.99 0.78/0.14 
3672 4.23/0.27 7.77/4.24 0.79/0.14 
4131 4.27/0.24 7.35/4.15 0.79/0.14 
4590 4.4/0.24 7.26/4.2 0.78/0.15 
5049 4.47/0.24 7/3.72 0.79/0.13 
5508 4.53/0.23 8.12/4.23 0.8/0.12 
5967 4.62/0.22 7.72/4.05 0.8/0.13 
6426 4.73/0.22 7.02/4.84 0.81/0.13 
6885 4.80/0.21 7.5/5.03 0.82/0.12 
7344 4.87/0.2 12.95/19.68 0.86/0.11 

    
    
 k-means   

Bits Quantisation Errors Target Size Jaccard 
1 2.09/0.01 10.76/4.13 0.78/0.18 
2 2.1/0.01 10.93/4.8 0.76/0.18 
3 2.1/0.01 11.11/4.12 0.76/0.19 
4 2.1/0.01 11.79/4.75 0.78/0.18 
5 2.1/0.01 10.62/3.85 0.79/0.18 
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6 2.1/0.01 11.31/4.64 0.79/0.17 
7 2.1/0.01 10.4/4.48 0.78/0.17 
8 2.1/0.01 10.97/3.9 0.78/0.18 
9 2.1/0.01 10.08/3.33 0.76/0.19 

10 2.1/0.01 11.32/4.51 0.78/0.17 
11 2.1/0.01 10.4/3.65 0.77/0.18 
12 2.1/0.01 11.72/5.31 0.78/0.17 
13 2.1/0.01 10.82/4.2 0.77/0.18 
14 2.11/0.01 10.92/4.14 0.77/0.19 
15 2.1/0.01 10.54/4.35 0.79/0.16 
16 2.11/0.01 10.83/4.4 0.77/0.18 
459 2.36/0.01 10.06/4.02 0.81/0.15 
918 2.54/0.01 11.53/5.02 0.77/0.18 

1377 2.7/0.02 11.19/4.43 0.8/0.15 
1836 2.84/0.02 11.1/5.15 0.81/0.14 
2295 2.96/0.02 11.95/6.28 0.81/0.13 
2754 3.08/0.02 11.08/5.47 0.83/0.12 
3213 3.18/0.03 10.69/5.83 0.83/0.13 
3672 3.28/0.02 11.73/5.97 0.82/0.13 
4131 3.39/0.03 11.8/6.55 0.83/0.11 
4590 3.47/0.03 12.23/6.83 0.81/0.12 
5049 3.55/0.04 14.01/7.47 0.82/0.12 
5508 3.63/0.03 13.91/8.46 0.83/0.11 
5967 3.71/0.04 13.82/8.27 0.83/0.12 
6426 3.77/0.04 14.13/8.89 0.85/0.1 
6885 3.83/0.04 14.54/9.71 0.85/0.1 
7344 3.91/0.04 13/17.04 0.88/0.1 

4 Discussion 
The first research question investigated was which algorithm produced the best clusters over this data set. 
There are two criteria to consider when determining which algorithm produced the best clusters. Firstly, which 
algorithm produced clusters with the best objective measures of cluster quality? Secondly, which algorithm 
was the most consistent in terms of the regions that were clustered together?  

The quantisation errors were lower for k-means than for Kohonen SOM. There was however, a complete 
absence of variation in the clusters for SOM output maps smaller than 8x12. That is, while k-means produced 
better clusters, SOM produced clusters that were identical for every run. Even with randomly initialised 
connection weights, the SOM algorithm still produced clusters that were consistent between runs. So, k-means 
was the best algorithm in terms of the clusters it produced, but SOM was the best in terms of consistency. This 
means that the judgement of which algorithm was the best overall must be made with consideration of the 
effects of adding noise to the assemblages.  

The second research question investigated in this work was concerned with the effect of adding noise 
(randomly changing presences to absences or vice versa) to the assemblage data. It was shown that adding 
noise to the species assemblage vectors caused a disruption to the clustering for both algorithms. This 
disruption was most pronounced for the Kohonen SOM compared to k-means. Changing a single species 
presence flag (changing either a presence to an absence, or an absence to a presence) caused a disruption of the 
clustering process. The variation to the clustering caused by this disruption, as measured by the Jaccard 
coefficient between neighbour vectors, was the same as the variation shown by k-means before the addition of 
noise. That is, adding a single bit of noise was sufficient to cause as much variation in the SOM as was 
apparent in k-means. Disruption of the k-means algorithm was less apparent, with there being very little 
difference between the results produced by clustering noisy and noiseless data. For both algorithms, there was 
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no apparent difference between adding noise to the target assemblage vector (which meant that the noise was 
added to a single vector between runs) and adding noise to the entire assemblage matrix (which meant that the 
noise was randomly distributed throughout the matrix) when the number of bits was equivalent. Only when the 
number of bits of noise approached a large fraction of the total matrix did the disruption greatly increase. 
Overall, while the SOM algorithm was vulnerable to the addition of noise, the k-means algorithm was more 
resistant to its effects. When combined with the results of the cluster quality measures, this leads to the 
conclusion that k-means was the better algorithm for this problem for this data set, especially when the much 
greater speed and simplicity of the k-means algorithm is considered.  

As determined by the k-means algorithm, the five bacteria species or groups which are not recorded as being 
present in New Zealand, and pose the greatest threat as ranked by their risk weightings, are: Xanthomonas 
hortorum pv. pelargonii; Pseudomonas syringae pv. morsprunorum; aster yellows phytoplasma group; 
Xanthomonas axonopodis pv. malvacearum; and pear decline phytoplasma. All of these had a risk weighting 
greater than 0.5. The following were also in the top five non-established species as determined by the Kohonen 
SOM: aster yellows phytoplasma group; Xanthomonas axonopodis pv. malvacearum; Xanthomonas hortorum 
pv. pelargonii. The risk weightings of these were all above 0.6. As they are very common in regions with 
similar species assemblages as New Zealand, as determined by two differnt algorithms, these five species are 
considered to pose a significant threat of establishment within New Zealand.  

The most significant advantage offered by the SOM algorithm is the ability to easily visualise the clusters 
that result. This is because SOM perform vector quantisation, that is, they reduce the dimensionality of the 
vectors into the two- dimensional space of the output map. While methods of quantising the clusters that result 
from k-means exist, such as Sammon projection (Sammon, 1969), it is desirable to produce a single 
visualisation across all trials. This, however, is an open research issue, as the variation in cluster contents 
between trials of the k-means algorithm complicates this process.  

A challenge with a study of this type lies in verifying the predictions made. It is neither ethical nor desirable 
to release plant pathogens into the New Zealand agricultural system just to see if they will establish: thus, it is 
not possible to perform controlled experiments to verify these predictions. Although the k-means algorithm is 
more resistant to noise than SOM, as a data-driven technique it is still vulnerable to problems with the data. If 
there are wide-spread problems with the data used to construct the clusters, then the results will be unreliable. 
These problems can include mis-identification of species and unrecorded results of successful control or 
eradication campaigns against established species.  

Future work will further investigate the potential of establishment of the five diseases named above via the 
construction of models that relate regional environmental variables to regional species presence or absence. 
Additional clustering algorithms, such as the Evolving Clustering Method (Song and Kasabov, 2001) will also 
be investigated. 
 
5 Conclusions 
The work reported in this paper has shown that, for the task of predicting the invasiveness of bacterial crop 
diseases, the k-means clustering algorithm is better than the Kohonen Self-Organising Map algorithm. It was 
shown that k-means produced better clusters, as measured by an objective cluster measure, and was more 
resistant to the effects of noise in the data. While the SOM produced more consistent clusters at smaller output 
map sizes, and made it easier to visualise the resulting clusters, k-means is considered to be the best algorithm 
for this task, at this time.  
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