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Abstract 

Current publication is devoted to the construction of modification of well-known Beddington – Free – Lawton 

model of parasite – host system dynamics and its analysis. In basic model and in modified model there is one 

and the same assumption that under the determined values of sizes of interacting populations number of 

attacked hosts is determined by Poisson’ law. In modified model it was took into account that hosts, which 

were attacked two or more times by parasites, die, and it doesn’t lead to the increase of parasite population size. 

For modified model population dynamic regimes and structure of the space of model parameters are analyzed.  
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1 Introduction 

Big number of publications are devoted to construction of models and analysis of population dynamics of 

predator – prey (or parasite – host) system (see, for example, Brauer and Castillo-Chavez, 2001; Kolmogoroff, 

1936; Kostitzin, 1937; Turchin, 2003; Lotka, 1920, 1925; Volterra, 1931, and many others). All publications 

can be conditionally divided onto several groups. Part of articles are devoted to methodological problems, to 

analysis of possible variants of population size fluctuations at various types of interaction between populations 

and self-regulation etc. (see, for example, Berezovskaya et al., 2005; Csetenyi and Logofet, 1989; Logofet, 

1993; May, 1974, 1975; May and Oster, 1976, and others). Other part of publications is devoted to the problem 

of comparison of theoretical (model) results with real datasets (Berryman, 1981, 1991, 1992, 1995; Tonnang et 

al., 2009, 2010; Varley et al., 1978; Golubev et al., 1980 and others). One more part of publications is devoted 

to the use of discrete time mathematical models as a base for various ecological theories (see, for example, 

Isaev and Girs, 1975; Isaev and Khlebopros, 1973, 1977; Isaev et al., 2009; Nedorezov and Utyupin, 2011). 

It is important to note, that before the comparison of theoretical and empirical datasets (as before the use of 

one or other models as the base of various population theories) we have to be sure, that selected mathematical 

model corresponds to observed process. If model doesn’t correspond to observed phenomenon a’priori, it can 

lead to unrealistic results (see, for example, Gilpin, 1973). Thus, solutions of methodological problems of 

modeling of population processes are of extreme interest and important stage in analysis of every concrete 

biological species.   

In current publication we analyze one of possible modifications of well-known discrete time mathematical 

model of parasite – host system dynamics, which was first presented in article by Beddington et al. (1975). In 
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this publication authors used the following approach for modifying of Nicholson – Bailey model (Nicholson 

and Bailey, 1935). Authors assumed that for the fixed values of hosts and parasitoids the quota of non-attacked 

hosts (which produce the next generation) is equal to the probability P  of the event, that stochastic variable 

with Poisson distribution is equal to zero. Respectively, the quota of attacked hosts in population is equal to 

P1 . Note that similar ideas were used in some other models of parasite – host interaction (Rogers, 1972; 

Thompson, 1929). Authors assumed also that number of parasites of new generation is equal to the number of 

infected hosts multiplied by constant, which is less than one. It is obvious, because not every attacked host 

transforms into viable parasite of new generation.  

One more assumption of authors of model (Beddington et al., 1975) is following: the quota of attacked hosts 

depends on number of parasites only. Obviously, in general case this quota must depend on the relation of 

numbers of interacting populations. In current publication we followed the first author’s assumption. But we 

have to note, that this assumption correlates with additional limits for the domain of applicability of the model 

to the description of interaction of species: model doesn’t work in the domain of phase space where number of 

hosts is much bigger than number of parasites (multiplied on the number of hosts which can be attacked by one 

parasite). 

 

2 Description of Model 

Let kx  be the number of hosts, ky  be the number of parasites at time moment k . Let’s assume that host 

population dynamics is described by the Moran – Ricker model (Moran, 1950; Ricker, 1954) when number of 

parasites is equal to zero: 

kx
kk eAxx 

 1 .                                                          (1) 

Coefficient A  is maximum birth rate of population,   is a coefficient of self-regulation. It is possible to point 

out a huge number of publications which are devoted to analysis of model (1) and its application to various 

species (see, for example, May, 1974, 1975; May and Oster, 1974; Tonnang et al., 2009, 2010; Nedorezov et 

al., 2008; Nedorezov and Sadykova, 2008, 2010). In particular, it was proved that cyclic regimes and chaos 

can be observed in model (1) under various values of model parameters. 

Influence of parasites on host population dynamics can be taken into account by various ways. For example, 

for fixed values kx  and ky  the quota q  of uninfected hosts (and these hosts can only produce the next 

generation) increases with decrease of number of parasites. If number of parasites is equal to zero the quota q  

is equal to one. With unlimited growth of parasites q  converges to zero asymptotically. In particular case q  

can be presented in the following form: 

yeq  .                                                                 (2) 

In expression (2) y  is the number of parasites, coefficient  , 0 const , is efficiency of parasitism. 

Amount of this coefficient depends on various factors and conditions, and in particular, it depends on the type 

of parasite’s strategy in finding hosts. Expression (2) can be explained in other way. Namely, it is assumed 

a’priori that probability of every separated host to be infected by parasites is determined by Poisson law. Thus, 

expression (2) is the probability of event that one host will not be infected.  

Taking into account expression (2) the equation (1) can be transformed into the form: 

kk yx
kk eeAxx  

 1 .                                                      (3) 
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Respectively, we have that q1  is the probability of event that every host will be attacked by parasite or 

parasites. If we assume that every attacked host can potentially produce one viable parasite, we have the 

following equation for changing of number of parasites in time: 

)1(1
kk yx

kk eeAbxy  
  .                                           (4) 

Non-negative coefficient b , 1 constb , allows to take into account in the model the event that not every 

attacked host transforms into viable parasite. Part of individuals can die in a result of impacts of various 

stochastic factors, part of individuals can die in a result of effect of over-infection etc. Thus, combination of 

equations (3) and (4) gives us Beddington – Free – Lawton model of parasite – host system dynamics 

(Beddington et al., 1975).  

It is important to note that for various natural populations (for example, for insects; Isaev et al., 2009; 

Nedorezov, 1986) model (3)-(4) gives unrealistic description of interaction between two species. The point is 

that hosts, which were attacked two or more times, die without increase of number of parasites (over-infection 

effect). This effect realizes in all situations when host’s body doesn’t contain enough food for normal 

development of two or more parasite’s larvae.  

Let’s consider the following modification of model (3)-(4) when successive development of parasite’s larva 

is possible if and only if host was attacked one time only. Within the limits of assumptions, which were used 

for the construction of Beddington – Free – Lawton model, the probability that host was attacked by one 

parasite only is determined by the expression: 

yyeq  1 . 

Taking it into account, we have the following equation for parasites dynamics: 

kk yx
kkk eeyxAby  

 1 .                                        (5) 

Combination of equations (3) and (5) gives us modified Beddington – Free – Lawton model with over-

infection effect.  

 

3 Properties of Model 

With linear transformation of variables considering model can be presented in following form (without loosing 

a generality of analysis we can assume that 1  and 1 ): 

kk xy
kk eAxx 

 1 , kk yx
kkk eyCxy 

 1 .                             (6) 

It is obvious that 0,  constCA  and AC  . Initial values of population sizes must be non-negative, 

0, 00 yx . Model (6) has the following properties: 

1. If 00 x  and 00 y  then 0kx , 0ky  for all 0k . If 00 x  and 00 y  then 0ky  for all 

0k ; in this case host dynamics describes by the Moran – Ricker model (Moran, 1950; Ricker, 1954).   

2. Stable invariant compact   exists in 2
R : 

}0,0:),{(2   yxyxR . 

If ),( 00 yx  then for all 0k  ),( kk yx . If ),( 00 yx  then trajectory of model (6) converges to 

  asymptotically: 
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 21 ,  CeAe . 

3. Stationary state )0,0(  is complex equilibrium. If 1A  this point is global stable equilibrium. In this 

case we have a regime of non-conditional extinction of both interacting populations. Intersection of bifurcation 

line 1A  at 1A  equilibrium )0,0(  is a saddle type point with characteristic values A1  and 02  . 

It also leads to appearance of stationary state )0,(ln A . On Fig. 1 domain of stability of stationary state )0,0(  

is marked by yellow color. 

4. Jacoby matrix determined in point )0,(ln A  is following: 













 


A

AC
AA

AJ ln
0

lnln1
)0,(ln . 

Thus, characteristic numbers are following: 

Aln11  , 
A

AC ln
2  . 

Consequently, if the following inequalities are truthful the stationary state )0,(ln A  is global stable 

equilibrium: 

21 eA  , 
A

A
C

ln
 ,                                  (7) 

On Fig. 1 domain of stability of this stationary state is marked by red color. Bifurcation curve 1 on Fig. 1 is 

determined by the equation:  

A

A
C

ln
 .                                          (8) 

If first inequality in (7) isn’t truthful, 2eA  , and the second inequality in (7) is truthful, then stationary state 

)0,(ln A  becomes unstable, and there appears global stable (in 2
R ) attractor on x  axis. Note that curve (8) is 

monotonic increasing unlimited function, and it leads to very interesting dynamic effect. For every fixed value 

of parameter C  increase of the amount of parameter A  leads to extinction of parasites. It looks natural that 

increase of parameter A  (for example, in a result of increase of productivity of hosts) leads to the respective 

increase of the base of existence of population of parasites, and to increase of number of parasites. On the 

other hand, increase of parameter A  leads to increase of variation of host fluctuations, and, moreover, cyclic 

fluctuations of hosts can be observed in the domain where number of hosts is extremely low. In the end it leads 

to parasite extinction. 

On Fig. 2 bifurcation diagrams are presented. The pointed out dynamical effect can be easily observed on 

Fig. 2b: if 18A  we have coordinates of stable attractors in positive part of phase space, but after 19A  

there are stable attractors on axis x  only (Fig. 2a). As we can see on Fig. 2 various cyclic regimes can be 

realized in model (6). Note, that before the value 10A  (Fig. 2) bifurcation diagrams have no relation to 

model (6) because parameter A  must be bigger or equal to C . 
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Fig. 1  Domains of stability of equilibriums of model (6). 

 

5. If the second inequality in (7) isn’t truthful the stationary state )/ln,/( CAACA   appears in positive 

part of phase space. The Jacoby matrix determined in this point has the form: 














CAACAAAC

CAAAC
CAACAJ

/ln1/)(ln1/(

//)(
)/ln,/( . 

Thus, we have the following equation for characteristic values: 

01)2(ln2 
C

A
A .                                        (9) 

Consequently, if values of model parameters belong to the domain which is bounded by the curves 

AA

A
C

2lnln4

4


 , 

Al

A
C

ln4 
 , 

(Fig. 1, curves 3 and 2 resp.) roots of equation (9) are real and its absolute values are less than one. Under 

these conditions the stationary state is stable. In the domain which is over the curve 3 (Fig. 1, this domain is 

marked by brown color) stationary state has complex roots with radius which is less than one. In this situation 

we have fading fluctuations near stationary state. But curve 3 is in the domain where AC  . Thus, regime of 

fading fluctuations cannot be realized in considering model.  

As we can see on Fig. 1, increase of parameter C  for some fixed values of parameter A  can lead to 

asymptotic stabilization of both populations on one non-zero level. On Fig. 3 there are bifurcation diagrams 

which were obtained for 10A . For these diagrams parameter C  changes from 0 to 10. If amount of 

parameter C  is small enough cycle of the length 2 on the x  axis is global stable attractor (for determination 

of coordinates of asymptotically stable attractors model run free 10000 steps for 400 various initial values of 

90



Computational Ecology and Software, 2011, 1(2):86-94 

IAEES                                                                                                                                                                       www.iaees.org 

 

population sizes and for every fixed values of model parameters). After intersection of critical value (Fig. 3) 

we can see stable limit cycle of the length 2 in positive part of phase space. Intersection of the next bifurcation 

value leads to appearance of global stable equilibrium in positive part of phase space.  

 

 

 

 

 

 

 
Fig. 2 Bifurcation diagrams for model (6) at 10C . a – changing of abscissas of stable attractors in phase space at increase of 
parameter A  (number of hosts); b – changing of ordinates of stable attractors in phase space of the same attractors (number of 
parasites). 
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Fig. 3 Bifurcation diagrams for model (6) at 10A . a – changing of abscissas of stable attractors in phase space at increase of 
parameter C  (number of hosts); b – changing of ordinates of stable attractors in phase space of the same attractors (number of 
parasites).  

 

 

4 Conclusion 

Analysis of modified Beddington – Free – Lawton model of parasite – host system dynamics shows that in 

model can be realized complicated dynamical regimes, in particular, cycles of various length. Numerical 

analysis of model allows us to conclude that in most cases parasites play the role of stabilizer of the system. 

Increase of surviving of parasites can lead to the transformation of initially complicated dynamical regime to 

much simpler regime. Sometimes it can lead to the regime with one global stable equilibrium in positive part 

of phase space. 

92



Computational Ecology and Software, 2011, 1(2):86-94 

IAEES                                                                                                                                                                       www.iaees.org 

 

It is also important to point out very interesting dynamical regime which can be observed in model at 

increase of productivity of hosts. Increase of the value of the respective parameter at fixed value of other 

parameter of model leads to asymptotic extinction of parasites.  
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