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Abstract 

We simulate the dynamical behavior of a few two – dimensional predator – prey systems in two – dimensional 

parameter spaces to gain insight into how functional responses affect community dynamics. The insight gained 

helps us design three dimensional systems. We construct models for a few ecosystems with three species and 

study them using computer simulations. The models have been developed by linking food chains which have 

both kinds of predators: specialist as well as generalist. The linking functions are weakly non-linear. The three 

dimensional model ecosystems have sexually reproducing top – predators. We perform extensive simulations 

to figure out dynamics of dynamical possibilities caused by changes in animal behavior. The animals change 

the foraging strategies and behave differently in different environments. At the end of the paper, we examine 

how diseases can govern transitions in meandering of dynamical models in bounded volume of their phase 

spaces.  

 

Keywords prey interference; prey toxicity; extinction – persistence; diseases in plant and animals; health of 

ecosystems; human health. 

 

 

1 Introduction 

Natural populations do oscillate (Kendall et al., 1989). These oscillations are caused either by pure predator- 

prey or inter-specific competition (Damgaard, 2011; Zhang, 2011). Weak trophic interactions are mutualism 

and interference. In this article, we consider model systems which are designed by linking food chains by 

linear or weakly non-linear trophic interactions. There exist four basic type of weakly non-linear trophic 

interactions; Holling type II, III, IV, Beddington – DeAngelis (BD). The Crawely – Martin(CM) functional 

response function is derived from BD by incorporating an additional aspect of animal behavior. We do not 

study the effect of other interactions except competition. The only type of competition considered is intra-

specific. Gause experiments have shown that competitive interactions can also generate oscillations. At this 

point, it should be noted that neutral stability of Lotka – Volterra models have been replaced by sustained 

periodic oscillations of predator – prey systems (Rosenzweig – MacAurthur, 1963). This is our subsystem A. 

Other kind of predator – prey systems which comprise generalist predators are known as Holling – Tanner 

class of systems (Pielou, 1977). This is subsystem B in the present article. The distinguishing feature of the 

latter is that the predator has alternative food items when its favorite food is in short supply. Various types of 
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functional responses are used to couple these food chain modules to design food webs (Rai, 2009). The food 

chains are derived by coupling two subsystems A and B; the first with specialist predator and the second with 

generalist predator. The specialist predators are ones which die out exponentially in the situation when their 

most favorite food choice is not available. The generalist predators are ones who still survive such a situation 

by switching to alternative food options. We understand that these mathematical models are only caricatures of 

reality. However, these models do help us get an idea about which kind of interactions are key players to 

explain patterns present in an observed time – series; which is often short and noisy. 

Rai and Upadhyay (2006) have shown that sustained periodic oscillations confine to a narrow region of 

parameter space in  Ka ,2  of RM predator – prey systems. We investigate into how the region is affected 

when we try three functional responses which are proven to be better that the Volterra response function: 

Beddington – DeAngelis(BD), Crawley – Martin ( CM) and Type IV. 

Functional response functions are per capita predation rates. Five main functional responses are listed below. 

Volterra response function is the per capita predation rate which grows linearly with the prey density. Holling 

(1969) proposed a response function which saturates for high prey densities. Before reaching the plateau, it 

grows through linear and non – linear phases. This is known as type II functional response. Beddington – 

DeAngelis (BD) functional response can be considered as a modification to prey – dependent Holling’s type II 

response function, which includes ‘searching for prey’ and ‘handling prey’. BD function includes a third 

behavioral trait ‘mutual interference’ with competitors’. Holling type IV functional response is related to type 

II response. This is a functional response in which predator’s per capita rate of predation decreases at 

sufficiently high prey density. This may be due to either prey interference (care for BD and CM functional 

responses), prey toxicity or group defense. It was used by Andrews (1968) as substrate uptake function. In the 

limit of large values of the immunity parameter, it reduces to type II functional response. We will discuss more 

about prey interference and prey toxicity in the ‘Discussion’ section.  

2 Community Dynamics in Two – dimensional Model Ecosystems 

Crawley (1992) has argued for a new kind of functional response which is either due to group defense in prey 

species or prey toxicity. For large value of the immunity parameter i , it reduces to a type II functional 

response. Rosenzweig – MacAuthur predator – prey system is modified to following system. 

 

21
dX X wXY

rX
Xdt K

X D
i

    
   

           

(Holling Type IV) 

Ya
dt

dY
2 +  1

2

w X Y

X
X D

i
 

 

 

where K is the carrying capacity and i is the immunity parameter. D is the prey density at which the per capita 

predation rate attains half of its maximum value. This can also be interpreted as the protection provided by the 

environment to individuals of prey. X denotes prey density and Y that of the predator. We performed two – 

dimensional parameter scans to investigate frequencies of occurrence of oscillatory and equilibrial dynamics. 

The oscillatory dynamics is represented by stable limit cycles and equilibrial dynamics by stable focus in the 

phase space of the model system. Results of these scans are presented in Fig. 1.
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                                                                                 (b) 
 
Fig. 1 Two – dimensional parameter scans showing the regions which are inhabited by limit cycle  
solutions and by stable equilibrium solutions for a model community. 

 

 

If we compare Fig. 1b. with Fig. 1 (Rai and Upadhyay, 2006), it is found that the region housing periodic 

solutions is enhanced.  Asymptotic equilibrium dynamics is confined to a narrow region of the parameter space. 

2.1 Model  system 2   
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                        (b) 
 
Fig. 2 Two – dimensional parameter scans showing the regions which are inhabited by limit cycle solutions and by stable 
equilibrium solutions for  second model community. 
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It is clear from Fig. 1(a) that the parameter structure remains the same; i. e., periodic solutions remain 

confined to a narrow region of the parameter space.  For smaller values of the protection provided by the 

environment to the prey, one obtains oscillatory dynamics in this two species system. 

2.2 Model  system 3  

 

1
1

dX X w X Y
rX

dt K Y X X Y  
        

 

           (Crowley - Martin type)
 

Ya
dt

dY
2 + 1
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Fig. 3 Two – dimensional parameter scans showing regions of two types of dynamical behavior for third model community. 

 

 

3 Community Dynamics in 3D Model Ecosystems 

Two dimensional predator – prey systems were used as a template to build three – dimensional systems which 

support both oscillations and chaos.  

We link two subsystems (cf. section 2) through weakly non-linear functions (Holling type II, BD, CM) to 

design three – dimensional (3D) model ecosystems which are non – linear food chains. Linear Food chains are 

the ones in which oscillations at one trophic level induce oscillations at the next level. The overall dynamics is 

governed determined by the coupling of these two oscillation: one original and other induced. In non – linear 

food chains, both oscillations are independent and represent intrinsic system dynamics. If coupled through type 

BD, CM and type IV response functions, dynamics in natural ecosystems are modeled. In what follows, we 

investigate the nature of dynamics in three model ecosystems by computer simulations. We have allowed 

transient to die out so that we capture the asymptotic dynamics instead of trajectory meandering. It is assumed 

that individuals of all the species are abundant. 

These model ecosystems are similar in some sense to ones introduced by Rai (2004) and further studied by 

Rai and Upadhyay (2006). The present model systems are food chains constructed by linking the Rosenzweig 

– MacArthur (Rosenzweig and MacArthur, 1963) and Holling – Tanner (Pielou, 1977) 2- species systems 

using type II, BD and CM functional responses as linking mechanism.  

3.1 Model system 1 
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1

1 2
2

1 2

2
2 3

3

1 (1.1)

(1.2)

(1.3)

dX X wXY
a X

dt K X D

dY w XY w YZ
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dt X D Y D

w ZdZ
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   
 

 


    

 

3.2 Model system 2 

 

1

1 2
2

1 2

2
2 3

3

1 (2.1)

(2.2)

(2.3)

dX X wXY
a X

dt K X D
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  

 


     (B-D) 

 

3.3 Model system 3 

 

1

1 2
2

1

2
2 3

3

1 (3.1)

(3.2)
1

(3.3)

dX X wXY
a X

dt K X D

dY w XY w YZ
a Y

dt X D dY bZ bdYZ

w ZdZ
cZ

dt Y D

      

   
   

 


  (C- M) 

 

We mention that top predator Z  is sexually reproducing. We assume that number of males and females are 

equal in any random sample drawn from populations of these species inhabiting any geographical area. c  is 

the rate of per capita growth of the generalist predator. 

In the next section, we present analyses which help us make choices for biologically realist parameter values. 

For these 3- dimensional system, we focus on existence persistence events. Persistence means coexistence all 

the species. Extinction means the situation in which any of the three species become extinct. 

 

4 Analysis 

We employ a method for the dynamical study of three-species ecosystems discovered by Upadhyay and Rai 

(1997). Species are related through trophic interactions. The top prey (X) and the middle predator (Y) give a 

biologically meaningful subsystem (subsystem A). In order to be a biologically meaningful system, a 

subsystem should qualify as a Kolmogorov system (Upadhyayet al., 2008). The last term in Eq. (1.2) is 

omitted to get this subsystem. The subsystem is  
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1

1
2

1

1 (4.1)

(4.2)

dX X wXY
a X

dt K X D

dY w XY
a Y

dt X D

      

  


        (Subsystem A) 

 

4.1 Kolmogorov analysis 

For the above subsystem  ( , )F X Y  and ( , )F X Y  are given by 

1

1
2

1

( , ) 1

( , )

X wY
F X Y a

K X D

w X
G X Y a

X D

      

  


 

Applying the conditions of the Kolmogorov theorem, we obtain the following:   

      (i)                                                0 /( ) 0
F

w X D
Y


    


       

The condition is satisfied as w  and D  are positive constants. 

      (ii)                                       2
10 ( ) 0

F F
X Y a X D KwDY

X Y

 
     

 
     

This condition holds in the domain , 0X Y   as 1, ,a D K  and w  are positive constants. 

(iii)     0
G

Y





 is automatically satisfied. 

(iv)     1 1 10 0 0
G G

X Y w D X D
X Y

 
     

 
. 

(v)      (0,0) 0F   gives 1 0a  . This condition is automatically satisfied as 1 0a  . 

(vi)   *(0, ) 0F A   gives *
1 /A a D w . Since 1, ,a D w  are positive constants, this implies * 0A  , 

which is true. 

(vii)    *( ,0) 0F B   gives *B K . Since K  is a positive constant this implies * 0B  , which is true. 

(viii)   *( ,0) 0G C   gives *
2 1 1 2/( )C a D w a  . Since * 0C  , we get a constraint 1 2w a . 

(ix)      The condition * *B C  gives the constraint 

                                                                     1 2 2 1( )K w a a D  . 

Thus, Kolmogorov theorem is satisfied when 

                                     1 2w a ,   1 0D  ,                                                   (4.3) 

1 2 2 1( )K w a a D  .                                                (4.4) 
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4.2 Linear stability analysis 

For X- isocline 

                  10 1 0.
dX X wY

a
dt K X D

        
                                      (5.1) 

For Y - isocline 

                  1
2

1

0 0.
dY w X

a
dt X D

    


                                                 (5.2) 

There are three equilibrium points 00 (0,0)E  , 10 (0, )E K and * *
20 ( , )E X Y . The intersection of the 

two isoclines is the equilibrium point * *( , )X Y , where *
2 1 1 2( ) /( )X a D w a   and 

*
* *1 1 ( )

a X
Y X D

w K

 
   

 
 exist under the Kolmogorov condition (4). 

For the analysis of the equilibrium points of subsystem (3) we generate the variational matrix at the point (X, 

Y) 

                                                         ( , )

F F
X F X

X YV X Y
G F

Y Y G
X Y

      
     

 

where  

                                       1
1 2

1

( , ) 1 , ( , ) ,
X wY w X

F X Y a G X Y a
K X D X D

          
 

1
2

1 1
2

1

, ,
( ) ( )

, 0.
( )

F a wY F w

X K X D Y X D

G w D F

X X D Y

 
    

   
 

 
  

 

 

The variational matrix at 00 (0,0)E  is 

                                                                          
1

2

0
(0,0)

0

a
V

a

 
   

. 

This implies that the equilibrium point 00 (0,0)E  is a saddle point. 

The variational matrix at 10 (0, )E K is 
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1

1
2

1

( )
( ,0)

0
( )

wK
a

K D
V K

w K
a

K D

 
  
    

. 

This implies that the equilibrium point 10 (0, )E K  is saddle point if 1 2 1( )w K a K D   and is locally 

asymptotically stable if 1 2 1( )w K a K D  . 

The variational matrix at * *
20 ( , )E X Y is 

                                          

* *
* 1

* 2 *
* *

*
1 1
* 2

1

( ) ( )
( , )

0
( )

a wY wX
X

K X D X D
V X Y

w D Y

X D

   
        

 
  

. 

The characteristic equation of above matrix is 

                                                                             2 0P Q    , 

where 11 22 11 22 12 21( ),P a a Q a a a a     . 

Thus the equilibrium point * *
20 ( , )E X Y  is locally asymptotically stable if the following condition hold 

if 2 1
1 1

2

( ) 0
a D

w w Dw w K
w a

 
     

. 

 

5 Simulations of Three Species Model Food Chains 

We present results of simulation experiments in tables and graphs. The parameter sets are selected in 

accordance with inequalities in the last section. 

 
Table 1 Holling Type II functional response (Extinction table)  

Group Range in which parameter varied Outcome 

1( , )a c  1a  

0.01-4.0 

c  
0.04 

 
Y  becomes extinct 

( , )K c  K  
10 
35 

c  
0.04 
0.04 

 
Y  becomes extinct 
Y  becomes extinct 

3( , )c w  c  
0.001 
0.01 

3w  

0.02 
0.2 

 
Y  becomes extinct 
Y  becomes extinct 

Simulation experiments of model system Eq. (1) with fixed parameter values 

2 1 1 2 2 31 .0 , 1 0 , 0 .7 , 2 .0 , 1 0 , 0 .4 0 5 , 1 0 , 2 0w D a w D w D D        . The parameter values which are 

common in all the experiments are 1 31.93, 36, 0.027, 0.8a K c w    . And initial condition is [0.5, 0.5, 0.5] and 

domain is 60 , 60; 40 40X Y Z      . 
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Table 2 Holling Type II functional response (Coexistence table)  

Group Range in which parameter varied Species Coexistence Outcome 

1( , )a K  1a  

0.01-0.75 
 
1.0 
 
 
1.25 
 
 
1.50 
 
 
1.75 
 
 
 
 
2.0 
 
 
 
 
 
2.25 
 
 
 
 
 
 
2.50 
 
 
 
 
2.75 
 
 
 
 
3.0 
 
 
 
 
3.25 
 
 
 
 
 
3.50 
 

K  
10-20 
21-70 
10-22 
23 
24-70 
10-20 
21-31 
32-70 
10-18 
19-39 
40-70 
10-15 
16-19 
23-24 
28-48 
49-70 
10-14 
15-19 
22 
26-28 
31-56 
57-70 
10-12 
13-18 
21 
24 
28 
34-66 
67-70 
10-11 
12-20 
28 
33 
36-70 
10-11 
12-20 
27 
36 
39-70 
10 
11-21 
26 
38 
43-70 
10 
11-20 
24 
35-37 
41 
46-70 
10-23 
36-37 
44 

 
Coexists on Stable focus 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
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3.75 
 
 
4.0 

49-70 
10-22 
36 
53-70 
10-22 
35 
50 
56-70 

Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

1( , )a c  1a  

0.01-0.75 
1.0-2.0 
 
2.25-2.50 
2.75-3.50 
 
3.75-4.0 
 

c  
0.001-0.03 
0.001-0.02 
0.3 
0.001-0.02 
0.001-0.01 
0.02 
0.001-0.01 
0.02-0.03 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 

1 3( , )a w  1a  

0.01-0.25 
0.50-0.75 
 
1.0 
 
1.25 
 
1.50-1.75 
 
2.0-2.25 
 
2.50-2.75 
 
3.0 
 
3.25 
 
3.50 
 
 
3.75 
 
 
4.0 

3w  

0.6-2.0 
0.6 
0.7-2.0 
0.6-0.7 
0.8-2.0 
0.7 
0.8-2.0 
0.7-0.8 
0.9-2.0 
0.8-0.9 
1.0-2.0 
0.8-1.0 
1.1-2.0 
1.0-1.1 
1.2-2.0 
1.0-1.2 
1.3-2.0 
0.8 
1.2 
1.3-2.0 
0.8 
1.0-1.3 
1.4-2.0 
1.1-1.3 
1.4-2.0 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

( , )K c  K  
15 
 
20-25 
30 
 
35 
40-70 

c  
0.03 
0.04 
0.04 
0.03 
0.04 
0.03 
0.03 
0.04 

 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 

3( , )K w  K  
10 
 
15 

3w  

0.6 
0.7-2.0 
0.6-0.8 

 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 
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20 
 
25 
 
30 
 
35 
 
 
40-50 
 
55-70 
 

0.9-2.0 
0.6 
0.9-2.0 
0.9-1.0 
1.1-2.0 
0.7-0.9 
1.0-2.0 
0.6 
0.8-0.9 
1.0-2.0 
0.7-0.8 
0.9-2.0 
0.7 
0.8-2.0 

Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

3( , )c w  c  
0.001 
 
0.006 
 
0.01 
 
 
0.06 
 
0.1 

3w  

0.03 
0.04-2.0 
0.2 
0.3-2.0 
0.2 
0.3 
0.4-2.0 
1.2 
1.7-2.0 
2.0 

 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 

Simulation experiments of model system Eq. (1) with fixed parameter 

values
2 1 1 2 2 31 .0 , 1 0 , 0 .7 , 2 .0 , 1 0 , 0 .4 0 5 , 1 0 , 2 0w D a w D w D D        . The parameter values which 

are common in all the experiments are 
1 31 .93, 36, 0 .027 , 0 .8a K c w    . And initial condition is [0.5, 0.5, 0.5] 

and domain is 60 , 60; 40 40X Y Z      . 

 

 

Table 3 Beddington-Deangelis type functional response (Extinction table) 

Group Range in which parameter varied Outcome 

1( , )a c  1a  

0.01 
0.50-0.75 
1.25 
2.0-2.25 

c  
0.04 
0.04 
0.04 
0.04 

 
Y  becomes extinct 
Y  becomes extinct 
Y  becomes extinct 
Y  becomes extinct 

( , )K c  K  
15 
55-60 

c  
0.04 
0.04 

 
Y  becomes extinct 
Y  becomes extinct 

( , )b c  b  
0.001-0.1 

c  
0.04 

 
Y  becomes extinct 

3( , )c w  c  
0.001 
0.01 

3w  

0.02 
0.2 

 
Y  becomes extinct 
Y  becomes extinct 

Simulation experiments of model system Eq. (2) with fixed parameter values 

2 1 1 2 2 31.0, 10, 0.7, 2.0, 10, 0.405, 10, 20w D a w D w D D        . The parameter values which are 

common in all the experiments are 1 31.93, 36, 0.2, 0.027, 0.8a K b c w     . And initial condition is [0.5, 0.5, 

0.5] and domain is 60 , 60; 80 80X Y Z      . 
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Extinction – Persistence Graphs: For the extinction – persistence graphs corresponding to model systems (1), 

(2) and (3), the base value of the parameters are  

1 2 1 1

2 2 3 3

1.93, 36, 1.0, 10, 0.7, 2.0, 10,

0.405, 10, 0.027, 0.8, 20.

Initial condition = [0.5, 0.5, 0.5]. 

a K w D a w D

w D c w D

       
     



                                     (5.3) 

(a) For the extinction – persistence graphs of model system (1) with base (5.3), domain is 

60 , 60; 40 40X Y Z      . 

(b) For the extinction – persistence graphs of model system (2) with base (5.3), domain is 

60 , 60; 80 80X Y Z       and 0.2b  . 

(c) For the extinction – persistence graphs of model system (3) with base (5.3), domain is 

60 , 60; 10 10X Y Z       and 0.2b  ,  
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      (b) 

 

Fig. 4 Summary of results of simulation experiments on model ecosystem 1.  
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                         (c) 

 
Fig. 5 Summary of results of simulation experiments on model ecosystem 2. We show extinction – Persistence events in different 
parameter spaces. 
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Table 4 Beddington - DeAngelis type functional response (Coexistence table)  

Group Range in which parameter varied Species Coexistence Outcome 

1( , )a K  1a  

0.01-0.75 
 
1.0 
 
 
1.25 
 
 
1.50 
 
 
1.75 
 
 
2.0 
 
 
2.25 
 
 
 
 
2.50 
 
 
 
2.75 
 
 
 
3.0 
 
 
 
3.25 
 
 
 
3.50 
 
 
3.75 
 
 
4.0 

K  
10-20 
21-70 
10-23 
24 
25-70 
10-22 
23-31 
32-70 
10-19 
20-39 
40-70 
10-17 
18-47 
48-70 
10-15 
16-57 
58-70 
10-13 
14-23 
28 
33-66 
67-70 
10-12 
13-22 
25-26 
35-70 
10-11 
12-23 
38 
40-70 
10-11 
12-24 
41 
43-70 
10 
11-22 
43 
46-70 
10-22 
47-48 
51-70 
10-21 
51-52 
55-70 
10-20 
22-23 
55-56 
59-70 

 
Coexists on Stable focus 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

1( , )a b  1a  

0.01-1.25 
1.5 
1.75 

b  
0.001-1.0 
0.001-0.4 
0.001-0.2 
0.001-0.2 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
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2.0-2.25 
2.5 
 
 
2.75 
3.0-3.25 

0.001-0.006 
0.02 
0.05-0.2 
0.09-0.1 
0.03 

Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

1( , )a c  1a  

0.01-1.0 
1.25-1.75 
 
2.0-4.0 

c  
0.001-0.03 
0.001-0.02 
0.03 
0.001-0.02 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

1 3( , )a w  1a  

0.01-0.25 
0.50-0.75 
 
1.0 
 
1.25 
 
1.50-1.75 
 
2.0-2.25 
 
2.50 
 
2.75-3.0 
 
3.25-3.50 
 
3.75-4.0 

3w  

0.6-2.0 
0.6 
0.7-2.0 
0.6-0.7 
0.8-2.0 
0.7 
0.8-2.0 
0.7-0.8 
0.9-2.0 
0.8-0.9 
1.0-2.0 
0.8-1.0 
1.1-2.0 
0.9-1.1 
1.2-2.0 
1.0-1.2 
1.3-2.0 
1.0-1.3 
1.4-2.0 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

( , )K b  K  
10 
15 
 
20 
 
25 
 
 
30 
 
35 
40 
45 
50 
55-70 

b  
0.001-1.0 
0.001-0.06 
0.07-1.0 
0.07-0.4 
0.5-0.6 
0.001-0.002 
0.04-0.4 
0.5 
0.001-0.07 
0.1-0.2 
0.001-0.2 
0.001-0.3 
0.001-0.5 
0.001-0.9 
0.001-1.0 

 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus  
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

( , )K c  K  
10 
15-25 
 
30 
35-70 

c  
0.001-0.04 
0.001-0.02 
0.03 
0.001-0.02 
0.001-0.02 
0.03 

 
Coexists on Stable focus  
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Stable focus 
Coexists on Limit Cycle 

3( , )K w  K  
10 

3w  

0.6 

 
Coexists on Limit Cycle 
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15 
 
20 
 
25 
 
30-35 
 
40-50 
 
55-70 
 

0.7-2.0 
0.6-0.7 
0.8-2.0 
0.6-0.8 
0.9-2.0 
0.8-1.0 
1.1-2.0 
0.8-0.9 
1.0-2.0 
0.7-0.8 
0.9-2.0 
0.7 
0.8-2.0 

Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

( , )b c  b  
0.001-0.1 
 
0.6-0.1 

c  
0.001-0.02 
0.03 
0.001-0.02 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

3( , )b w  b  
0.001 
 
0.006-0.06 
 
0.1 
 
0.6 
 
1.0 

3w  

0.8-0.9 
1.0-2.0 
0.7-0.9 
1.0-2.0 
0.7-0.9 
1.0-2.0 
0.9 
1.0-2.0 
1.0-2.0 

 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 

3( , )c w  c  
0.001 
0.006 
0.01 
 
0.06 

3w  

0.04-2.0 
0.2-2.0 
0.3 
0.4-2.0 
1.7-2.0 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 

Simulation experiments of model system Eq. (2) with fixed parameter 

values
2 1 1 2 2 31 .0 , 10, 0 .7 , 2 .0 , 10, 0 .405, 10, 20w D a w D w D D        . The parameter values which 

are common in all the experiments are 1 31.93, 36, 0.2, 0.027, 0.8a K b c w     . And initial condition is [0.5, 

0.5, 0.5] and domain is 60 , 60; 80 80X Y Z      . 

 

 

Table 5 Crowley–Martin functional response (Extinction table) 

 Group Range in which parameter varied Outcome 

1( , )a c  1a  

0.01-3.25 

c  
0.04 

 
Y  becomes extinct 

( , )K c  K  
10-70 

c  
0.04 

 
Y  becomes extinct 

( , )b c  b  
0.001-0.1 

c  
0.04 

 
Y  becomes extinct 

3( , )c w  c  
0.001 
0.01 

3w  

0.02 
0.2 
0.4 

 
Y  becomes extinct 
Y  becomes extinct 
Y  becomes extinct 
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Simulation experiments of model system Eq. (3) with fixed parameter 

values
2 1 1 2 31 .0, 10, 0 .7 , 2 .0, 10, 0 .405, 0 .13, 20w D a w D w d D        . The parameter values which 

are common in all the experiments are 
1 31 .9 3 , 3 6 , 0 .2 , 0 .0 2 7 , 0 .8a K b c w     . And initial condition is [0.5, 

0.5, 0.5] and domain is 60 , 60; 10 10X Y Z      . 

 

 

Table 6 Crowley–Martin functional response (Coexistence table) 

Group Range in which parameter varied Species Coexistence Outcome 

1( , )a K  1a  

0.01-0.75 
 
1.0 
 
1.25 
 
 
 
1.50 
 
 
 
1.75 
 
 
 
2.0 
 
 
 
2.25 
 
 
 
 
 
 
 
2.50 
 
 
 
 
 
 
 
2.75 
 
 
 
 
 
3.0 
 
 

K  
10-20 
21-70 
10-23 
24-70 
10-21 
22 
27-28 
29-70 
10-18 
19-22 
28-33 
34-70 
10-15 
17-22 
30-38 
39-70 
10-13 
14-23 
31-41 
42-70 
10-12 
13-22 
33-47 
48 
49 
50 
51 
52-70 
10-11 
12-20 
35-55 
56 
57 
58-59 
60 
61-70 
10 
11-19 
36-56 
57 
58-60 
61-70 
10 
11-18 
39-63 
64 

 
Coexists on Stable focus 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
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3.25 
 
 
 
3.50 
 
3.75 
 
4.0 

65-66 
67 
68-69 
70 
10-17 
39-68 
69 
70 
10-16 
43-70 
10-16 
44-70 
10-15 
46-70 

Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

1( , )a b  1a  

0.01-1.5 
1.75 
 
 
 
 
 
2.0 
2.25-2.50 
2.75 

b  
0.001-1.0 
0.001-0.006 
0.007 
0.008-0.009 
0.01-0.06 
0.07-0.09 
0.1-0.5 
0.001-0.4 
0.001-0.3 
0.001-0.2 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

1( , )a c  1a  

0.01-1.50 
1.75-2.25 
 
2.50 
2.75-3.0 
 
3.25-3.75 
 
4.0 

c  
0.001-0.03 
0.001-0.02 
0.03 
0.001-0.02 
0.001-0.02 
0.03 
0.001-0.01 
0.02 
0.001-0.01 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

1 3( , )a w  1a  

0.01-0.25 
0.50-1.0 
 
1.25 
 
1.50 
 
1.75 
 
2.0 
 
2.25 
 
2.50 
 
3.0 
 
3.25 
 
3.50-3.75 

3w  

0.6-2.0 
0.6 
0.7-2.0 
0.6-0.7 
0.8-2.0 
0.7 
0.8-2.0 
0.6-0.8 
0.9-2.0 
0.7-0.8 
0.9-2.0 
0.7-0.9 
1.0-2.0 
0.8-1.0 
1.1-2.0 
0.9-1.1 
1.2-2.0 
1.0-1.1 
1.2-2.0 
1.0-1.2 

 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
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4.0 

1.3-2.0 
1.1-1.3 
1.4-2.0 

Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 

( , )K b  K  
10 
15 
20 
35 
40 
 
45 
 
 
 
50 
 
55-70 

b  
0.001-1.0 
0.001-0.4 
0.001-0.2 
0.001-0.4 
0.001-0.04 
0.05-0.6 
0.001-0.2 
0.3 
0.4 
0.5-1.0 
0.001-0.9 
1.0 
0.001-1.0 

 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Limit Cycle 
Coexists on Limit Cycle 

( , )K c  K  
10 
15-20 
 
25 
30 
 
35-70 

c  
0.001-0.03 
0.001-0.02 
0.03 
0.001-0.02 
0.001-0.02 
0.04 
0.001-0.02 
0.03 
0.04 

 
Coexists on Stable focus 
Coexists on Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
Coexists on Stable focus and Limit Cycle 
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Fig. 6 Extinction – persistence events for model ecosystem 3. 
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Fig. 7 a) Chaotic attractor b) time –series for model ecosystem 1 designed by using Holling Type II functional response as the 

link between two subsystems. 
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Fig. 8  a) Chaotic attractor b) time – series in the model ecosystem designed by using Beddington – DeAngelis functional 

response as the link between two subsystems 
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Fig. 9 a) Chaotic attractor b) Time – series for the model ecosystem obtained by linking two subsystems through Craweley –

Martin functional response. Note the excursions of generalist’s population to extinction – sized densities. Parameter values used 

to generate these figures are as follows 
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6 Discussion 

From Figures (3 – 6), it is clear that persistence events dominate species extinctions. We present typical 

strange chaotic attractors and corresponding time – series (Figs. 7 – 9) for all three species. We have not 

computed basin boundary structures which would have provided insight into how these ecosystems would 

behave when acted upon by environmental perturbations. Existence of chaos might mean extinction for species 

whose population densities crashes to near zero (note the population densities of the generalist predators in 

Figures 7 – 9). Therefore, one should be careful while drawing inferences from these studies on these well – 

mixed mechanistic models.  

As we noted earlier, mathematical models are caricatures of reality. In this article we have not analyzed any 

time – series which represents measurements on a real world ecosystem with prefixed sample rate and 

precision (we always commit mistakes in estimating the population densities of plants and animals due to 

various). At this juncture, the relevant question to ask is What use these mathematical models are for. The 

answer is both benign and humble. These simulations serve as the guide for experiments and field observations. 

The mathematical modeling and computer simulations have paved the way for better time – series on model 

ecosystems (ecotron) and gathering of data derived from field observations (John Van der Meer, Agroforestry). 

We review a few behavioral traits in animals and its relations to nonlinear phenomena (bifurcations and 

chaos). According to a recent study, Rhesus Macaques, Macca mulatta generate highly complex and 

unpredictable vocalizations without requiring equivalently complex neural control mechanisms. These 

vocalizations are related to the sexual behavior of female rhesus monkeys. 

Van Gemerden (1974) has carried out experiments on uptake of hydrogen sulphide by a bacterium purple in 

color.  He could fit in type IV functional response to the data. Animals which exhibit group defense also 

endorse this kind of functional response. For example, musk ox are successful in fending wolves when in herds 

than when alone (Freedman and Wolkowicz, 1986).  

Inducible defenses are responses activated through a previous encounter with a consumer or competitor that 

offers some degree of resistance so subsequent attacks. Although the structural defenses produced by 

invertebrates to their competitors and predators are not the same, as immune response triggered by parasites; e. 

g., bacteria, viruses and fungi, two share three common properties 1) Specificity, 2) amplification, and 3) 

memory. The ecological consequences and evolutionary causes can be found in Bourdeau (2010). 

The adaptive response in marine snail (Nucella lamellosa) has been investigated to examine if induced 

thickening of shells leads to an increased structural strength. Results indicate that the response is a by – 

product of reduced feeding and somatic growth rather than an active physiological response to predation risk. 

Experiments on tropical water flea Daphnia lumholtzi have suggested that this species becomes dominant in 

comparison to the native species Daphnia pulicaria when challenged by fish predators (Engel, 2009). In the 

presence of predatory fishes, this invasive species formed an inducible defense against predation risk and 

becomes dominant. 

The other reality which we have not considered is the disease condition in individuals of either plant or 

animal species. It may be brought to the notice of all concerned that Trichinosis, a disease caused by eating 

undercooked meat containing cysts of Trichinella spiralis, is found in pork, fox, rat, horse, and lion meat. Wild 

animals especially carnivores (meat eaters) or omnivores (animals that eat both both meat and plants) are 

considered a possible source of this roundworm disease. The sexually reproducing species in our model 

ecosystems are animals with low reproduction rates. For suitable choices of parameters, it can represent homo 

sapiens as well. The roundworm tends to invade muscle tissues, including the heart and diaphragm (the 

breathing muscle under the lungs). They can also affect the lungs and brain.  
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