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Abstract  

The objective of the paper is to evaluate the ability of reactive transport models and their numerical 

implementations (such as MIN3P) to simulate simple microbial transformations in conditions of chemostat or 

gradostat models, that are popular in microbial ecology and waste treatment ecosystems. To make this 

comparison, we first consider an abstract ecosystem composed of a single limiting resource and a single 

microbial species that are carried by advection. In a second stage, we consider another microbial species in 

competition for the same limiting resource. Comparing the numerical solutions of the two models, we found 

that the numerical accuracy of simulations of advective transport models performed with MIN3P depends on 

the evolution of the concentrations of the microbial species: when the state of the system is close to a 

non-hyperbolic equilibrium, we observe a numerical inaccuracy that may be due to the discretization method 

used in numerical approximations of reactive transport equations. Therefore, one has to be cautious about the 

predictions given by the models.  

 

Keywords reactive transport models; chemostat model; microbial growth; numerical simulation.  

 

 

1 Introduction 

The chemostat is a popular apparatus, invented simultaneously by Monod (1950) and Novick and Szilard 

(1950) that allows the continuous culture of micro-organisms in a controlled medium. The chemostat has the 

advantage to study bacteria growth at steady state, in contrast to batch cultivation. The chemostat model serves 

also as a representation of aquatic natural ecosystems such as lakes. In the classical experiments involving 

chemostats, the medium is assumed to be perfectly mixed, that justifies mathematical models described by 

systems of ordinary differential equations (Smith and Waltman, 1995). In natural ecosystems, ground-waters 

or industrial applications that use large reservoirs, the assumption of perfectly mixed medium is questionable, 

leading to spatialized models such as systems of nonlinear partial differential equations (Steefel et al., 2005). 

However, nonlinear partial differential equations are difficult mathematical objects to understand, analyze and 

simulate. Even numerical schemes pose significant difficulties, particularly when solving coupled systems 

involving stiff reactions (Yeh et al., 2001; Nowack et al., 2006; Carrayron et al., 2010). Spatial considerations 

can be introduced in the “classical” model of the chemostat in simpler ways, as it is done in the gradostat 

model (Lovitt and Wimpenny, 1981) that mimics a series of interconnected chemostats of identical volumes. 

Other kinds of interconnection can be considered in order to cope with heterogeneity of porous media, 
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considering stagnant water with small diffusion, mixing due to porosity (Haidar et al., in press; Nakaoka and 

Takeuchi, 2006). If course, such representations are still oversimplified with regard to the complexity of 

natural porous media.  

Over the past three decades, numerous reactive transport codes have been developed to study complex 

interactions between geochemical and transport processes in porous media. A number of reactive transport 

computer codes exist. Let us mention for instance the models COMEDIE-2D (Cochepin et al., 2008), 

CRUNCH (Steefel, 2006), PHREEQC (Parkhust et al., 1999), ECOSAT (Keizer and van Riemstuk, 1995), 

ORCHESTRA (Meeussen, 2003), RAFT (Chilakapati et al., 2000), RT3D (Clement, 1997), HYTEC (van der 

Lee et al., 2003), HP1 (Jacques et al., 2008) and MIN3P (Mayer et al., 2002). To our knowledge, some of these 

numerical tools, such as COMEDIE-2D and PHREEQC, are not suitable for unsaturated porous media and 

thus cannot be readily applied to soils (excepted in the special case of wetland soils). A range of other 

limitations can be found as well. For example, RT3D does not include equilibrium-controlled reactions, while 

ECOSAT neglects kinetically-controlled reactions and is limited to a single spatial dimension.  

The standard approach for evaluating the computational accuracy of a reactive transport code is to compare 

its numerical results to those obtained from an analytical or a semi-analytical solution (Gérard et al., 1996; 

Nowack et al., 2006; Sun et al., 1999; van Genuchten, 1981). Unfortunately, analytical solutions are only 

available for simplified systems, such as the reactive transport of a single solute in 1-D homogeneous systems 

at steady state, which is well behind the actual capabilities of the models. To remediate to this, 

inter-comparison of numerical codes has been largely employed. This inter-comparison involves the 

independent solution of the same problem using a variety of numerical techniques (Carrayrou et al., 2010; de 

Dieuleveult and Erthel, 2010; Gérard et al., 1998; Cochepin et al., 2008; Mayer and MacQuarrie, 2010).  

This study aims at comparing the accuracy of a reactive transport model with other kinds of models such as 

the mathematical model of the chemostat. This confrontation takes place in the framework of microbial 

ecology, for which concepts of competition and coexistence are crucial (Aris and Humphrey, 1977; Bulter and 

Wolkowicz, 1985; El Hajji and Rapaport, 2009; Rapaport et al., 2008; Stephanopoulos et al., 1979; 

Stephanopoulos and Fredrickson, 1979). We have chosen the reactive transport code MIN3P (Mayer et al., 

2002) for this study. This reactive transport model is notably recognized for its numerical robustness (Mayer 

and MacQuarrie, 2010; Carrayou et al., 2010). In addition, the model MIN3P can simulate general reactive 

transport problems in variably saturated media for 1D to 3D systems. The flow solution is based on Richard’s 

equation (Neuman, 1973), and solute transport is simulated by means of the advection-dispersion equation. 

Gas transport can be taken into account as well, either by considering advection and Fick diffusion or the 

Dusty Gas Model (Molins and Mayer, 2007; Molins et al., 2008). A range of bio-geochemical processes are 

included in MIN3P (aqueous speciation, mineral dissolution-precipitation, gas dissolution/exsolution, ion 

exchange, and competitive or non competitive sorption). A generalized kinetic expression for 

dissolution-precipitation and intra-aqueous reactions allows the consideration of fractional order or 

Monod-type rate expressions, and parallel reaction pathways. This code has been used for a number of 

applications in different fields of environmental science, ranging from inorganic and organic contaminant 

transport and groundwater remediation (Molins et al., 2010; Masue-Slowey et al., 2011; Mayer et al., 2001; 

Mayer et al., 2006) to soil hydrology and bio-geochemical cycles in terrestrial ecosystems (Maier et al., 2009; 

Gérard et al., 2004; Gérard et al., 2008).  

The chemostat model is the simplest mathematical model for describing the dynamics of microbial growth 

under a constant flow of substrate, and its theory is well understood (Smith and Waltman, 1995). In this work, 

we consider a series of interconnected chemostats for the simulation a one-dimensional heterogeneity that we 

compare with the solutions provided by reactive transport models considering the same spatial structure.  
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2 Material and Method 

In practice, a chemostat in laboratory is an apparatus that consists of three connected vessels as shown in Fig. 1. 

The leftmost vessel is called the feed bottle and contains all of the nutrients needed for the growth of a 

microorganism. The central vessel is called the culture vessel, while the last is the overflow or collection 

vessel. The content of the feed bottle is pumped at a constant rate into the culture vessel, while the content of 

the culture vessel is pumped at the same constant rate into the collection vessel. We denote by [ ]inS mol l  

the constant concentration of nutrient pumped with a volumetric flow rate that we denote by 1[ ]Q l s . The 

dilution rate 1[ ]s  is defined as D Q V    where V  is the volume of the culture vessel. We shall also 

denote by 1( )[ ]s   the specific growth rate of micro-organisms and k  the yield factor of the 

bio-conversion. The dynamical model of the chemostat can then been written in the following way.  

 

 

( )
( )

( ( ) )

(0) 0 (0) 0

in

dS S
B D S S

dt k
dB

S D B
dt
S B





    

  


  


                       (1) 

 

Because of the boundary conditions (i.e. input of nutrients in the culture vessel and output of contents from 

the culture vessel), numerical implementations of reactive transport models such as MIN3P are not able to 

simulate straightforwardly a single ecosystem such as the one in the culture vessel. Indeed, the use of the 

logarithm of the concentrations in the numerical code prevents to having a null concentration of biomass at the 

input of the culture vessel. In order to simulate an ecosystem in a single tank, one has to consider three control 

volumes. Moreover, for intrinsic reasons, three control volumes is the minimum number for a one dimensional 

discretization in numerical implementations of reactive transport models, such as the MIN3P code that we 

have chosen to simulate our ecosystem. In this way, the numerical implementation is closer from the true 

laboratory experiment with three vessels, that we described above. Nevertheless, we shall refer in the 

following to the chemostat for the culture vessel only.   

 

 

 

 

 

 

 

 

 

Fig. 1 A schematic view of the chemostat experiment 
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With MIN3P we began by simulating a simple example of three chemostats in series having the same 

volume (Fig. 2), in presence of a single biomass B  and a single substrate S  with the same initial 

conditions in the three control volumes. The dynamical model representing n  chemostats connected in series 

is given by the equations:  

 

 
1

1

( )
( )

( ( ) )

i i
i i i i

i
i i i i i

dS S
B D S S

dt k
dB

S D B D B
dt
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



    

    


 

 

Where Di = Q / Vi, Si(resp Bi) represents the dilution rate, substrate concentration (resp biomass concentration) 

in the ith  bioreactor (i=1..n). 0 inS S  and 0 0B   and V
i nV  .  

We consider that the qualitative behavior of this system of ordinary differential equations (ODE) is today 

well understood (see the Appendix), and we used different robust numerical schemes for solving this system of 

ODE (Runge-Kutta, LSODA ...) that were all thoroughly consistent with the analytic analysis of the steady 

states and their stability. That amounts to assume that we can trust the numerical solutions obtained by the 

numerical integration of ODEs for this model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Configuration of three control volumes 

 

 

For the simulation of the chemostat model with reactive transport models, we consider a boundary domain 

in three dimensions. The boundary conditions for the liquid flow are of first type with a value of 0  in the 

output face, and of second type specifying a flux of 1[ ]Q l s  in the input and output faces. A specific choice 

of flow condition gave us a fully water saturated medium at any time. The boundary conditions for the reactive 
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part are of second type in the output face and of third type in the input face with a value of the substrate 

concentration equal to inS .  

To simulate several chemostats connected in series without diffusion, we have chosen the free diffusion 

coefficient in water and air, as well as the specific storage coefficient equal to zero. The porosity of the 

medium formed by one domain only is chosen equal to one. The day has been chosen as the time unit, with a 

maximum time increment of 310 day and a starting time step of 1010 day.  

Finally, we have introduced a simple theoretical irreversible reaction expressing the bio-conversion of moles 

of substrate into one mole of biomass. The specific growth rate of biomass considered here is of Monod’s type:  

 ( ) max

s

S
S

k S

 
 


 

where 1[ ]max s   represents the maximum of the intra-aqueous kinetic reaction and [ ]sk mol l  the half 

saturation constant.  

In a second stage, we consider the same spatial considerations but with two species instead of one, assuming 

that each species has a growth function that follows a Monod law, as described above. We assume that their 

interaction is due only to a common limiting resource, that is the species compete for the same substrate. We 

focus on the case of a “true” competition, in the sense that we assume that a species is the most efficient one 

when the resource is very rare, while the other species is better when the resource is less rare.  

 

3 Results and Discussion 

Denoted by MS   (resp. CS  ) the value of the substrate concentration computed by MIN3P (resp. by the 

chemostat model) at the steady state, and by MB  the value of the biomass concentration at steady state given 

by MIN3P. Let   be the absolute value of the difference between MS   and CS  , that serves as an indicator of 

divergence between simulations of both models.  

For the comparison of the two models, we first represent the indicator   as a function of Q . For the 

study of the effect of a spatial discretization, we shall then consider   as a function of the number of cells.   

For convenience, we shall omit the units of the numerical values that we give below (concentrations are 

assumed to be measured in 1mol l  , volumes in l , flux in 1l s  and growth rates in 1s ).  

3.1 The single species case 

Choosing 54 10max   , we have studied the variation of   with respect to Q  in the first and third 

control volume. The total volume has been chosen equal to 1. On the graphs of   that correspond to the first 

(resp. third) control volume (see Fig. 3, Output (resp. Input)), we notice that for 6 510 10Q   , one faces a 

significant difference between simulations of both models in the input control volume, and that is even greater 

in the output control volume. But for 5 610 15 10Q    , one has almost no difference in the input control 

volume, and one can observe a jump of   about 510Q   in the output control volume. For the 

simulations, we have chosen 3 1 (0) 2in sS k B      and (0) 5S     

We know from the theory of the chemostat (see Appendix, Proposition 4), that for a "perfectly mixed" tank, 

with a single species growing on a single limiting substrate, the condition ( ) 1inS
D

   ensures that the biomass 

B  is not wash-out. This result is surprisingly not observed in simulations with MIN3P. To show that, we 

studied the variation of the biomass concentration B  with respect to Q  in the input control volume. We 
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notice that the biomass is washed out for 68 10Q    (see Fig. 3, MB  in dashed line). But 

when 6 58 10 10Q    , we have
5

1

( ) 10 1inS
D Q

   , and one can observe on the graph of   and the 

difference between MIN3P and the chemostat simulations in the input control volume.  

For the case of three chemostats connected in series with the same volume and traversed by the same flow 

rateQ , the removal of the biomass in the input control volume has to lead theoretically to its removal in the 

output control volume. But this is not the case with MIN3P and we can notice on Fig. 3 (Output), that for 
6 68 10 15 10Q     , we obtain the wash-out of biomass in the input control volume, the biomass in the 

output control volume being not yet washed out. In other words, under certain conditions, the microbial 

growths predicted by both simulations are radically different.  

For the study of the effect of a spatial discretization on the difference between numerical reactive transport 

and chemostat models at steady state, we took the same conditions as before, with a maximal kinetic rate equal 

to 45 10max    and a flow 510Q    We did vary the number of discretization steps between 3n   

and 50n   and studied the variation of   with respect to n  (the total number of cells) in the input and 

output control volumes. Denote by nD  the dilution rate in each control volume for a discretization in n  

cells. On the graphs of   that corresponds to the input (resp. output) control volume (see Fig. 4, Input (resp. 

Output)), we notice for 3 37n   (that theoretically corresponds to the survival of biomass, because one 

has
( ) 75

2 1in

n

S
D n

   ) that we have the same behavior of   as before. Similarly, for 39 50n   (values that 

correspond to
( ) 1in

n

S
D

  ), we have no difference between MIN3P and the chemostat model in the input and 

output control volumes. But for 38n  , we observe the same jump of   in the output control volume as 

previously observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Comparison for three control volumes 

 

 

We have observed on this example a significant difference between reactive transport and chemostat models 

when passing from a steady state of survival of the biomass to the wash out steady state (Fig. 4). This 
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corresponds to a bifurcation passing from two equilibriums (wash-out and biomass survival) to a single 

equilibrium (wash-out). The limiting case corresponds to a non-hyperbolic equilibrium (see the Appendix for 

the definition of hyperbolic equilibriums). Because of the use of the logarithm in the MIN3P code, we expect 

the internal solution to take very large values when the concentration of biomass tends to zero. One can also 

detect this phenomenon on the simulations when noticing a "time lag" between MIN3P and chemostat 

trajectories about the steady state. 

3.2 The two species case 

To emphasize the problem that occurs about non-hyperbolic equilibrium in the case of one species, we present 

in this part a more subtle situation, considering two species that compete for the same substrate. The extension 

of the model (1) is given by the following equations:  

 

 

1 2
1 2

1 2

1
1 1

2
2 2

( ) ( )
( )

( ( ) )

( ( ) )

in

S SdS
B B D S S

dt k k

dB
S D B

dt
dB S D B
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

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    

 

 

            (2) 

 

where functions 1( )   and 2 ( )   denote the kinetics of species 1B  and 2B  respectively. For this system, 

the Proposition 5 given in the Appendix shows that non-hyperbolic equilibrium points could exists away from 

the wash-out equilibrium. For the one species case, a non-hyperbolic equilibrium could exists but on the 

boundary of the positive domain only. For the two species case, many non-hyperbolic equilibriums could 

exists on the interior of the positive domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Comparison with several control volumes 
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Let i  be the positive solution, when it exists, of ( )i S D   for 1 2i   . Under the 

condition 1 2max( )inS    , the system (2) admits generically three equilibrium points, given by 

0 1 1 1 1( 0 0) ( ( ) 0)in inE S E k S        and 2 2 2 2( 0 ( ))inE k S    . We distinguish now two different cases. 

If for some 1 2i    one has i inS  , then the equilibrium 0E  is non-hyperbolic as before (see Proposition 4 

in the Appendix). Moreover if one has 1 2 inS   , then 1 2E E  is also a non hyperbolic equilibrium 

(Proposition 5 in the Appendix). Starting from our observations in the case of one species, we have built 

suitable examples to study the behavior of MIN3P about those non-hyperbolic equilibriums.   

To understand the comparison, we first recall that the mathematical theory of the model (2) predicts the 

competitive exclusion in the generic case, that is at most one competitor avoids the extinction (see the 

Appendix). This property refers to the well-known Competitive Exclusion Principle in ecology, that has been 

widely studied in the literature (see for instance Aris and Humphrey, 1977; Stephanopoulos et al, 1979; Butler 

and Wolkowicz, 1985, or El Hajji and Rapaport, 2009). For the chemostat model, the Principle can be stated as 

follows.  

Considering two increasing growth rates 1( )   and 2 ( )   such that both 1  and 2  are smaller than 

inS  (for a sufficiently large inS ). Then, one has the following issue of the competition for large times:  

- when 1 2  , the species 1B  avoids the extinction,  

- when 1 2  , the species 2B  avoids the extinction.  

For the non generic case 1 2  , it is possible to predict the coexistence of the two species, invalidating the 

Principle (on this single chemostat case).  

In the simulations, we have considered two species 1B  and 2B  with a specific growth rate given by  

 

 3 3
1 2( ) 1 10 and ( ) 3 10

5 30

S S
S S

S S
      

 
 

 

One can notice on Fig. 5 (left) that the graphs of these two functions intersect away from zero. This implies 

that depending on the dilution rate D , the corresponding value of 1  can be less or greater than 2 . The input 

concentration inS  has been chosen equal to 20  and the initial state vector has been kept equal to 

 

 

Fig. 5 Two species in competition in a single chemostat 
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1 2( (0) (0) (0)) (5 2 3)S B B     . A simple calculation shows that for 42 10Q   , one has 15
1 2 2 inS    . 

Then for this choice of 1 2   and Q  the dynamical system (2) admits positive non-hyperbolic 

equilibriums. We aim to study the numerical evolution of the species concentrations about those equilibriums 

in both models, depending on the choice of the flowQ . For this purpose, we have plotted the graphs of the 

species concentrations at steady state given by MIN3P and the chemostat model in the input control volume 

(see Fig. 5, right), denoting by M iB
  (resp. )C iB

  for species 1 2i   . We observe that for 510Q  , both 

simulations present almost the same solutions. When Q  increases a difference between the models begins to 

appear until we detect a wrong prediction of the species that avoids the extinction. This happens 

for 5 415 10 4 10Q     . For 44 10Q   , both simulations show again almost the same solutions.   

So we have observed another significant difference between simulations of reactive transport and chemostat 

models about a bifurcation point, where the species that avoid extinction switches.   

To study the effect of a spatial discretization in the case of two species, we have chosen a specific example 

of twenty perfectly-mixed tanks that are interconnected in series. The volumes ( 1 20)iV i   , the input 

concentration inS , the flux Q  and the specific growth rates 1( )   and 2 ( )   are chosen as follows, in such 

a way that the species 1B  passes from the wash-out state (in 1 2 3and )V V V  to a coexistence state 

(in 4 20iV i   ).   
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Fig. 6 Two species in competition in a series of chemostats 

Nth control volume 
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Under MIN3P we have discretized the domain into twenty control volumes, and have compared the 

solutions of both models in each control volume at steady state.  

On Fig. 6 (right), one can observe that the substrate concentrations computed at steady state with both 

models are almost identical in the first control volumes, up to the third one where the solutions are different, 

and become radically divergent in further control volumes. Here, the solution computed by MIN3P does not 

predict the coexistence of two species... Let us underline that the species coexistence is no longer a 

pathological case when chemostats of different volumes are connected in series (see for instance 

Stephanopoulos and Fredrickson, 1979; Rapaport et al, 2008).  

To summarize, we have shown that under certain circumstances the issue of the winner of the competition 

between the two species are predicted radically different by the simulations of both models.  

 

4 Conclusion 

Our results show a possible inaccuracy of numerical reactive transport models in the simulation of the 

dynamics of simple ecosystem of chemostat type. Our objective was not to challenge the model MIN3P for its 

ability to simulate complex problems involving mass flow and multicomponents reaction networks, but we 

raise the fact that the numerical accuracy of the model MIN3P depended on the evolution of microbial species. 

When the hydrodynamic conditions make the system close to a washing-out of one or several microbial 

species, or to the coexistence of species, we observe numerical bias in the computation of the solution that 

leads to radically different predictions. Consequently one may wonder if the numerical issue found here in 

simple systems (a single substrate and one or two microbial species, advective transport) prevails in more 

complex systems, when a network of kinetically-controlled reactions is considered to simulate for instance 

remediation problems in ground-waters. We believe that a study of the eigenvalues of the linearized dynamics 

about steady states is important, for detecting possible numerical inaccuracy.  

 

Appendix 

For the study of the behavior of autonomous dynamical system in Rn 

 

                              ( )
dX

F X
dt

                                (3) 

With FC1(Rn), one usually determine first its equilibrium points (denoted *X ) as solutions of F(X)=0,  
and then study the eigenvalues of the linear dynamics  

 

*( ) ,
dX

J X X
dt

  

 

called the linearization of (3) about *X , where *( )J X  is the Jacobian matrix of F at *X . If all the 

eigenvalues vi (i=1,…,n) of *( )J X  have nonzero real parts, then we said that *X is hyperbolic When at 

least one of its eigenvalues have a zero real part, then we said that *X  is non-hyperbolic. (see for instance 

Perko (1991)). 

We recall now the usual definitions of stability and a main result allowing to conclude about the nature of an  
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equilibrium (see Perko (1991) for more details). 

 

Definition 4.1 The equilibrium *X  is said to be stable if for every 0  there exists 0   such that 

* *
0 0( ) ( )X t X X t X t t        . 

If this condition its not satisfied, the equilibrium is unstable. 

 

Definition 4.2 The equilibrium *X  is said to be (locally) exponentially stable if for every 0   there 

exists three real numbers 0, 0 0a b and     such that 

 
* * *

0 0 0( ) ( ) ( ) btX t X X t X a X t X e t t         . 

 

Theorem 4.3   

- If all the eigenvalues of *( )J X  have negative real parts then the equilibrium point *X is 

exponentially stable. 

- If one of the eigenvalues of *( )J X  has a positive real part then the equilibrium point *X is unstable. 

 

Remark: If the Jacobian matrix *( )J X  has at least one eigenvalue with zero real part, then we need to use 

other results to conclude about the behavior of the trajectory of the system (3). 

For the chemostat model (1), one has the following result.  

 

Proposition 4.4  Denote by   the solution, when it exists, of ( )S D   

- If ( )inD S , the system (1) admits two equilibrium points given by 1( ,0)inE S  which is unstable 

and 2 ( , ( ))inE k S   which is localy exponentially stable. 

- If ( )inD S  the only non-negative equilibrium point it is 1E  which is locally exponentially stable 

excepted for the case ( )inD S  for which it is non-hyperbolic. 

 

Proof. We can easly verify that for any 0t  , the trajectories of (1) remains in the first positif orthant, and are 

bounded: one can straightforwardly write  

( )in

dB dS
k D kS B kS

dt dt
     

from which one deduces that ( ) ( )t B t kS t   is bounded that the trajectories of the system are bounded. 

Determining the equilibrium points of the system (1) amounts to solve the following system   

( )
( ) 0

(4)
( ( ) ) 0.

in

S
B D S S

k
S D B





   

  

 

The wash-out equilibrium point 1( ,0)inE S  is always solution, and there is a possibility of another 
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equilibrium point * *
2 ( , ( ))inE S k S S  with *S  , when *

inS S . To study the stability of these 

equilibrium points, we write the Jacobian matrix of the system (1):   

'( ) ( )
( , )

'( ) ( )

S S
B D

J S B k k
S B S D

 

 

    
   

, 

whose eigenvalues are  

1( , ) 0S B D     

and 

2

'( )
( , ) ( ) .

S
S B S D B

k

     

At 1E , one has 2 1( ) ( )inE S D    and at the non-trivial equilibrium 2E (when it exists), one has 

*
*

2 2

'( )
( ) 0.

S
E B

k

     

So, when ( )inS D  , we conclude that the non-trivial equilibrium does not exist and we obtains that 1E  is 

locally exponentially stable. When ( )inS D  , 1E  is unstable and 2E  is locally exponentially stable. For 

the particular case ( )inS D  , the non-trivial equilibrium does not exist and 1E  is a non-hyperbolic 

equilibrium. 

Proposition 4.5  Denote by i the solution (when it exists) of ( )i i D   . Under the condition that 

1 2max( , ),inS   the system (2) admits three equilibrium points given by 0 ( ,0,0)inE S , 

1 1 1 1( , ( ),0)inE k S   and 2 2 2 2( ,0, ( ))inE k S  . Furthermore, one has 

- When i j  , iE  is locally exponentially satble and 0 jE and E  are both unstable. 

- when 1 2  then  1 2E E  is a non-hyperbolic equilibrium point. 

 

Proof. As before, the equilibrium points are given by the following system 

1 2
1 2

1 2

1 1

2 2

( ) ( )
( ) 0

( ( ) ) 0 (5)

( ( ) ) 0

in

S S
B B D S S

k k

S D B

S D B

 




    
  
  


 

One can find that there exist at most three equilibrium points 0 ( ,0,0)inE S , 1 1 1 1( , ( ),0)inE k S   and 

2 2 2 2( ,0, ( ))inE k S  .  
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For the study of their stability, we write for convenience the dynamics in variables 1 2( , , )Z B B  with 

1 2

1 2

.
B B

Z S
k k

    

1 2
1 1 1

1 2

1 2
2 2 2

1 2

( )

( ( ) )

( ( ) )

in

d
Z D S Z

dt
B Bd

B Z D B
dt k k

B Bd
B Z D B

dt k k






 




   



   


 

In these coordinates, the Jacobian matrix takes the following form: 

' '
1 1

1 2 1 1 1
1 2

' '
2 2

2 2 2
1 2

0 0

( ) ( )
( , , ) * ( ) .

( ) ( )
* ( )

D

S S
J Z B B B S D B

k k

S S
B B S D

k k

 

  

 
  
 

     
 
 
     
 

 

At 0E , we can check that 0( )J E  admits three eigenvalues: 

1 0 2 0 1 3 0 2( ) 0, ( ) ( ) 0 ( ) ( ) 0.in inE D E S D and E S D              

Thus 0E  is unstable. At 1E , the eigenvalues are  

'
1 1

1 1 2 1 1 1 3 1 2 1
1

( )
( ) 0, ( ) ( ) 0 ( ) ( ) ,inE D E k S and E D

k

                

and symmetrically for : 

'
2 2

1 2 2 2 2 2 3 2 1 2
2

( )
( ) 0, ( ) ( ) 0 ( ) ( ) .inE D E k S and E D

k

                

One can notice that 3( ) 0i j iE      and conclude that when i j  , iE  is locally 

exponentially stable and jE  is unstable. 

For the particular case of 1 2   we find that 3 1 3 2( ) ( ) 0E E   . Therefore in this case 1E  (that 

coincides with 2E ) is a non-hyperbolic equilibrium point. 

 

236



Computational Ecology and Software, 2011, 1(4):224-239 

 IAEES                                                                                                          www.iaees.org

References 

Aris R, Humphrey A. 1977. Dynamics of a chemostat in which two organisms compete for a common 

substrate. Biotechnology and Bioengineering. 19: 1375-1386  

Butler G, Wolkowicz G. 1985. A mathematical model of the chemostat with a general class of functions 

describing nutrient uptake. SIAM Journal on Applied Mathematics, 45(1): 138-151  

Carrayrou J, Hoffmann J, Knabner P, et al. 2010. Comparison of numerical methods for simulating strongly  

nonlinear and heterogeneous reactive transport problems-the MoMas benchmark case. Computational 

Geosceinces, 14: 483-502  

Chilakapati A, Yabusaki A, Szecsody J, et al. 2000. Groundwater flow, multicomponent transport and 

biogeochemistry, Development and application of a coupled process model. Journal of Contaminant 

Hydrology, 43: 303-325  

Clement T. 1997. RT3D-A modular computer code for simulating reactive multi-species transport in 

3-dimensional groundwater aquifers. Pacific Northwest National Laborary, Richland, Washington, USA  

Cochepin B, Trotignon L, Bildstein O, et al. 2008. Approaches to modelling coupled flow and reaction in a 2D 

cementation experiment. Advances in Water Resources. 31: 1540-1551  

de Dieuleveult C, Erthel J. 2010. A global approach to reactive transport, application to the MoMas benchmark. 

Computional Geoscience, 14: 451-464  

El Hajji M, Rapaport A. 2009. Practical coexistence of two species in the chemostat-A slow-fast 

characterization. Mathematical Biosciences, 218(1): 33-39  

Gérard F, Clément A, Fritz B, et al. 1996. Introduction of transport phenomena into the thermo-kinetic code 

KINDIS: The code KIRMAT. C.R. Acad. Sci. Paris 322IIa, 377-384  

Gérard F, Clément A, Fritz B. 1998. Numerical validation of an Eulerian hydrochemical code using a 1-D 

multisolute mass transport system involving heterogeneous kinetically-controlled reactions. Journal of 

Contaminant Hydrology, 30: 201-216  

Gérard F, Tinsley M, Mayer K. 2004. Preferential flow revealed by hydrologic modeling based on predicted 

hydraulic properties. Soil Science Society of America Journal, 68: 1526-1538  

Gérard F, Mayer K, Hodson M, et al. 2008. Ranger J. Modelling the biogeochemical cycle of silicon in soils: 

application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 72: 741-758  

Haidar I, Rapaport A, Gérard F. 2011. Effects of spatial structure and diffusion on the performances of the 

chemostat. Mathematical Bioscience and Engineering, 8(4): 953-971  

Jacques D, Simunek J, Mallants D, et al. 2008. Modelling coupled water flow, solute transport and 

geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma, 145: 449-461  

Keizer M, Van Riemsdijk W. 1995. ECOSAT, a computer program for the calculation of chemical speciation 

and transport in soil-water systems. Wageningen Agricultural University, Netherlands  

Perko L. 1991. Differential Equations and Dynamical Systems. Springer-Verlag, New York, USA  

Lichtner P. 1996. Continuum formulation of multicomponent-multiphase reactive transport, Ch. 1 in Reactive 

transport in porous media. Rev. Min., 34: 1-81  

Lovitt R, Wimpenny J. 1981. The gradostat: a bidirectional compound chemostat and its applications in 

microbial research. Journal of General Microbiology, 127: 261-268  

Maier U, DeBiase C, Baeder-Bederski O, et al. 2009. Bayer P. Calibration of hydraulic parameters for 

large-scale vertical flow constructed wetlands. Journal of Hydrology, 369: 260-273  

Masue-Slowey Y, Kocar B, Jofre S, et al. 2011. Transport Implications Resulting from Internal Redistribution 

of Arsenic and Iron within Constructed Soil Aggregates. Environmental Science and Technology, 45(2): 

582-588  

237



Computational Ecology and Software, 2011, 1(4):224-239 

 IAEES                                                                                                          www.iaees.org

Mayer K, Benner S, Frind E, et al. 2001. Reactive transport modeling of processes controlling the distribution 

and natural attenuation of phenolic compounds in a deep sandstone aquifer. Journal of Contaminant 

Hydrology, 53: 341-368  

Mayer K, Frind E, Blowes D. 2002. Multicomponent reactive transport modeling in variably saturated porous 

media using a generalised formulation for kinetically controlled reactions. Water Resources Research, 38: 

1174  

Mayer K, Benner S, Blowes D. 2006. Process-based reactive transport modelling of a permeable reactive 

barrier for the treatment of mine drainage. Journal of Contaminant Hydrology, 85: 195-211  

Mayer K, MacQuarrie K. 2010. Solution of the MoMas reactive transport benchmark with MIN3P-model 

formulation and simulation results. Computational Geosciences, 14: 405-419  

Meeussen J. 2003. ORCHESTRA: an object-oriented framework for implementing chemical equilibrium 

models. Environmental Science and Technology, 37: 1175-1182  

Molins S, Mayer K. 2007. Coupling between geochemical reactions and multicomponent gas diffusion and 

advection- a reactive transport modelling study. Water Resources Research, 43: W05435  

Molins S, Mayer K, Scheutz C, et al. 2008. Kjeldsen P. Transport and reaction processes affecting the 

attenuation of landfill gas in cover soils. Journal of Environmental Quality, 37: 459-468  

Molins S, Mayer K, Amos R, et al. 2010. Vadose zone attenuation of organic compounds at a crude oil spill 

site-Interactions between biogeochemical reactions and multicomponent gas transport. Journal of 

Contaminant Hydrology, 112(1-4): 15-29  

Monod J. 1950. La technique de la culture continue: théorie et applications. Annales de l’Institut Pasteur, 79: 

390-410  

Nakaoka S, Takeuchi Y. 2006. Competition in chemostat-type equations with two habitats. Mathematical 

Biosciences. 201: 157-171  

Neuman S. 1973. Saturated-Unsaturated seepage by finite elements. J. Hydraul. Div. Am. Soc. Civ. Eng., 99 

(HY12): 2233-2250  

Novick A, Szilard L. 1950. Description of the chemostat. Science. 112: 715-716  

Nowack B, Mayer K, Oswald S, et al. 2006. Verification and intercomparison of reactive transport codes to 

describe root-uptake. Plant and Soil, 285: 305-321  

Parkhust D, Appelo C. 1999. User’s guide to PHREEQC (version 2). A computer program fo speciation, 

batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water resources 

investigations report 99-4259. US Geological Survey, USA, 312  

Rapaport A, Harmand J, Mazenc F. 2008. Coexistence in the design of a series of two chemostats. Nonlinear 

Analysis: Real World Applications, 9: 1052-1067  

Smith H, Waltman P. 1995. The theory of the chemostat: dynamics of microbial competition. Cambridge 

Studies in Mathematical Biology (Vol. 13). Cambridge University, UK  

Steefel C, DePaolo D, Lichtner P. 2005. Reactive transport modeling: An essential tool and a new research 

approach for the Earth sciences. Earth and Planetary Science Letters, 240: 539-558  

Steefel C. 2006. Crunch-users Guide. Lawrence Berkeley Laboratory, USA 

Stephanopoulos G, Aris R, Frederickson A. 1979. A stochastic analysis of the growth of competing microbial 

populations in a continuous biochemical reactor. Mathematical Biosciences, 45: 99-135  

Stephanopoulos G, Fredrickson A. 1979. Effect of inhomogeneities on the coexistence of competing microbial 

populations. Biotechnology and Bioengineering, 21: 1491–1498  

Sun Y, Petersen J, Clement T. 1999. Analytical solutions for mutiple species reactive transport in multiple 

dimensions. Journal of Contaminant Hydrology, 35: 429-440  

238



Computational Ecology and Software, 2011, 1(4):224-239 

 IAEES                                                                                                          www.iaees.org

Van der Lee J, Langeau V, Goblet P. 2003. Module-oriented modelling of reactive transport with HYTEC. 

Computers and Geosciences, 29: 265-275  

Van Genuchten M. 1981. Analytical solutions for chemical transport with simultaneous adsorption, zero-order 

production and first-order decay. Journal of Hydrology, 49: 213-233 

Yeh G, Siegel M, Li M. 2001. Numerical modeling of coupled variably saturated fluid flow and reactive 

transport with fast and slow chemical reactions. Journal of Contaminant Hydrology, 47: 379-390  

 

239




