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Abstract  

In current publication the stochastic model of individual migrations within the limits of closed domain and 

processes of data collections using in entomology are considered. The behavior of data variation with respect 

to changing of population size is analyzed. In particular, it was shown that dependence of standard deviations 

has a non-linear character under the population density increasing. It was also shown that confidence level to 

datasets of population density which were obtained with traditional methods and under the low value of 

population density must be extremely low. 
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1 Introduction  

Estimations of model parameters of mathematical models of population dynamics are among the main items 

for creating forecasts of population size changing in time, for finding optimal methods of population 

management, and for solution of many other important problems. In many cases the process of model 

parameters estimation starts with the words “Let’s consider a time series of population density (or population 

size) changing in time…” }{ *
kx , Nk ,...,0 , where 1N  is a sample size. Also this investigation starts 

with the words “Let’s consider the following mathematical model with unknown parameters which describes 

the population density changing”: 

),,( xtF
dt

dx
 .                                                          (1) 

In equation (1) )(tx  is a population density at time t ;   is a vector of unknown model parameters; F  is 

non-linear function which satisfies to a set of known limits (Nedorezov and Utyupin, 2011; McCallum, 2000; 

Brauer and Castillo-Chavez, 2001; Bjornstad et al., 1999; Kendall et al., 1999, 2005; Tonnang et al., 2009, 

2010; Nedorezov, 2011a; Turchin, 2003 and others). Of course, model (1) may be of other type (for example, 

it can be a system of recurrence equations; Isaev et al., 2009; Ivanchikov and Nedorezov, 2011; Nedorezov and 

Sadykova, 2005, 2008, 2010, and other) but the problem will be the same: for existing time series }{ *
kx  values 

of model (1) parameters   must be determined. It is important to note, that in various cases initial value of 

population density )0(0 xx   must also be determined using existing datasets. Even in the case when we have 

experimental datasets, initial value 0x  is known and doesn’t need to be determined (Nedorezov, 2011b).   
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It is possible to oint out a lot of various approaches to the problem of estimation of model parameters (see, 

for example, Pawitan, 2001; McCallum, 2000; Wood, 2001a, b). Least squares method is one of the basic 

methods and it is widely used in practice (Hudson, 1970; Gubarev, 1985; Nedorezov and Sadykova, 2005, 

2008, 2010; Nedorezov et al., 2008; Demidenko, 1981). The use of least squares method assumes that we have 

to find the global minimum for squared deviations between theoretical (model) values (which must be obtained 

with model (1)) and empirical dataset }{ *
kx . For example, we have to find the global minimum for the 

following functional form: 





N

k
kk xtxxxQ

0

2
0

*
0 )),,((),(  .                                            (2) 

In (2) ),,( 0xtx k   is the respective theoretical value (for global fitting it is a solution of equation (1); Wood, 

2001a, b) which is obtained with equation (1) for concrete values of model parameters   and initial value of 

population density 0x .  

There are some additional assumptions for models which are assumed to be suitable for fitting of 

considering time series. In particular, it is assumed that deviations between theoretical and empirical values 

must correspond to Normal distribution with zero average. In this case the natural question arises: what is the 

base for the assumption that deviations between theoretical and empirical values must have Normal 

distribution? And additional question is: what is the base for the assumption that all deviations have one and 

the same Normal distribution? The answer is obvious: there are no real bases (which are determined by the 

biology of investigated object) for both these assumptions.  

Requirement about the equivalence of arithmetic average to zero (in this situation we must talk about 

requirement but not about assumption) is obvious – in a set of measurements the systematic errors cannot be 

observed. It is also understandable that distribution of deviations must be a symmetric function (with respect to 

origin), and realization of bigger deviation must have smaller probability. From these two obvious 

requirements we can’t conclude that distribution of deviations is Normal. We have also to say that assumption 

about normality of deviations is in contradiction with common sense: for example, if we estimate the weight of 

larva in milligrams we cannot have a mistake in several tons with positive probability in principle. We can’t 

also to have a negative value of weight (with positive probability also). 

In current publication we analyze other important problem – we consider the base of assumption about the 

equivalence of distributions of deviations. It is obvious a’priori that if local population size is equal to zero for 

every number of measurements (for every number of trial areas or number of “casts of frame”) the average will 

be equal to zero, and sample variation will be equal to zero too. Increase of population density leads to the 

respective increase of average and sample variation. And we have to take it into account in expression (2) if we 

want to have all deviations )(*
kk txx   are equally distributed.  

In a situation when small deviations (especially in the case when population density is small enough) play 

the similar role like big deviations (i.e. small deviations have the same contribution to the estimations of model 

(1) parameters) researchers use so-called weights }{ kw . Expression (2) transforms into the following form: 





N

k
kkk xtxxwxQ

0

2
0

*
0 )),,((),(  .                                                  (3) 

Weights }{ kw  have the following properties:  
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0 constwk , 1
0




N

k
kw . 

The use of these weights }{ kw  leads to appearance of new set of questions. For example, how can we 

choose amounts of weights for making parameter estimations better? Unfortunately, up to current moment we 

have no criterions for the weights selection. Introduction weights into the formula (2) looks like a good wish 

only. It is very important to note that solution of this problem (the problem of finding of the best weights for 

the expression (3)) is outside of the domain of model parameter estimations, analyses of properties of initial 

sample, or analyses of deviations between theoretical and empirical datasets. Solution of this problem can be 

found in the domain of modeling and analyses of existing methods of information collection, field methods of 

estimation of population density. It has strong correlation with modeling and analyses of migration processes 

in populations and types of interaction of individuals with each other.  

In current publication we give possible values of the weights }{ kw  when migration processes in a local 

population are organized rather simple. It is assumed that movements of individuals from one place to another 

(within the boundaries of finite domain on a plane) are stochastic, and depend on the relations between 

population sizes in neighboring plots. It is also assumed that population size is constant (thus, every time real 

population density is well-known), and “methods of data collection” (within the framework of considering 

model) can be identified with a method of “casting of the frame” (which is used, for example, for the 

estimation of insect population density on the field) or with a method of “excision of squared meter of forest 

floor in autumn”.  

For considered model it was found that for low value of population density the confidence level of 

obtained results (estimations of population density) must be extremely low (even in the cases when “frame 

casts” several times, or several plots of forest floor are used for obtaining estimations). It was also obtained 

that dependence of standard deviations on the real population density changing has non-linear character; but in 

the case when population density is small enough it can effectively be approximated by linear function. 

 

2 Description of the Model 

Let N  be a total population size. We’ll assume that constN   during the time of providing of computer 

experiments (for estimation of population density). And let 2
nmZ  be an integer rectangular lattice on the plane 

2R : 

}1,1:),{(2 mjnijiZ nm  . 

Additionally we’ll assume that local population size is determined in knots ),( ji  of the lattice 2
nmZ . 

Denote it as )(txij  for 2),( nmZji   at time moment t . For all time moments t , ...2,1,0t , the following 

relation is truthful: 

Ntx
n

i

m

j
ij 

 1 1

)( . 

It means that there are no migrations outside the domain 2
nmZ .  
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Definition. We’ll call two knots ),( 11 ji , 2
22 ),( nmZji   as neighboring knots if and only if the following 

relation is truthful:  

12121  jjii . 

Within the framework of model it will be assumed that migration processes from the knot ),( ji  can be 

observed to neighboring knots only. About the behavior of migrants we’ll assume that for all values of local 

population sizes there is the quota  , 0 const , 1 , of individuals which migrate to neighboring 

knots with equal probabilities (in other words, behavior of these individuals doesn’t depend on current 

situations in 2
nmZ ). Let’s also assume that probabilities of migration of all other individuals to neighboring 

knots (the quota of these individuals is equal to 1 ) depend on a distribution of individuals in neighboring 

knots of the lattice 2
nmZ . 

All knots of the lattice 2
nmZ  can be divided with respect to local population size on to three qualitatively 

different types. Denote as 1D  and 2D , 21 DD  , two critical levels which determine the optimal interval of 

population size; respectively, we’ll assume that if in knot ),( ji  the population size )(txij  satisfies to the 

following inequalities 21 )( DtxD ij   from this knot we can observe stochastic migrants only (total number 

of stochastic migrants is about )(txij ). In this situation the number of non-migrated individuals is about 

)()1( txij .  

If the following inequality is truthful 1)( Dtxij  , all individuals try to leave this knot (they migrate to 

neighboring knots). Let 




)(

1
)(

tx
ty

ij
ij .                                                              (4) 

In (4)   is a positive parameter which corresponds to sensitivity of migrants to local population sizes in 

neighboring knots of lattice. Sensitivity decreases with the increase of parameter  . If the value of this 

parameter is big enough all probabilities become equal. Decrease of parameter   leads to increase of 

sensitivity to local population sizes. 

For every knot ),( ji  which doesn’t belong to the boundary of lattice 2
nmZ  we’ll assume that probability 

jip 1  of migration of every individual to knot ),1( ji   is determined by the following formula: 

)()()()(

)(

1111

1
1 tytytyty

ty
p

ijijjiji

ji
ji




 

 .                                             (5) 

The similar formulas can be presented for all other (three) probabilities. It is obvious, for example, if 1i  and 

mj 1  knot ),( ji  belongs to the boundary of lattice 2
nmZ , and the respective probability (5) is equal to 

zero; probability jip 1  is determined by the following formula: 

)()()(

)(

111

1
1 tytyty

ty
p

ijijji

ji
ji




 

 .                                                  (6) 

The use of formulas (5) and (6) means that the probability for individuals to migrate to any knot increases with 

decrease of the local population size in considering knot. If knot ),( ji  is in corner of the lattice (let, for 

example, 1i , 1j ) probability jip 1  (6) will have the following form: 
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 .                                                       (7) 

Presentation of probabilities in the forms (5)-(7) means that in population there is no mechanism for the 

supporting of the optimal population density (within the limits 1D  and 2D ). Thus, all optimal groups will 

disappear in time (in a result of existence of “crazy migrants” )(txij ). But described above model can be 

modified. Let’s assume that we have three various weights: weight 1q  is for knots where local population size 

is less than 21 )( DtxD ij  ; weight 2q  is for optimal zone when 21 )( DtxD ij  ; weight 3q  is for third 

zone where local population size is greater than level 2D . All weights jq are non-negative, 0jq . In 

modified model probabilities were calculated with the formulas like (5)-(7): it was assumed that probability is 

proportional to the weight of the respective knot and inversely proportional to the sum of weights of the 

neighboring knots.  

Finally, in the situation when we have very high local population size, 2)( Dtxij  , the considering 

system is out of the optimal zone, and in this situation we’ll also assume that individuals try to leave this knot. 

But for this situation we’ll have one more probability – the probability for staying in this knot. This probability 

will be calculated by the following formula:  

)()()()()(

)(

1111 tytytytyty

ty
p

ijijjijiij

ij
ij

 
 .                             (8) 

Remark. Probabilities which are determined by the formulas (4)-(8) have strong dependence on the value of 

parameter  . For example, if in one neighboring knot local population size is equal to zero, and in all other 

neighboring knots we observe one or more individuals, then the probability of individual’s migration to empty 

knot becomes close to one even for 310 .  

 

3 Results of Modeling 

For the computer modeling of migration processes it was assumed that total population size N  is constant; 

thus, theoretical population density   was known and equal to nmN / . Below we present results of 

modeling for the quadratic lattice 2
nmZ  with 100 nm . Initial population state was modeled in the 

following manner: every individual with equal probabilities could appear in every knot of the lattice. After 

determination of initial situation the process of individual’s migrations was started (with respect to formulas 

(5)-(8)). During the time T  (number of time steps, for providing calculations it was assumed that 200T ) 

was run free. It is important moment because we have to have on the lattice the situation which is determined 

by the population migration process only, and doesn’t depend on the initial state of population.  

After that the process of data collection was started: in four stochastic points of the lattice the local 

population size was fixed (it looks like four times of casts of the frame). After that model run free during the 

next T  time steps; after that we had the process of data collection again and so on. This procedure was 

repeated 1000 times. For obtained values of local population sizes standard deviations from the real population 

density were calculated: 
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In these formulas *
,kjx  is element number k  from the sample number j , 4,3,2,1j . It is important to note 

that weights }{ kw  in the expression (3) must be inversely proportional to js ; in such a situation every bracket 

in expression (3) will be normalized stochastic variable with zero average and variance which is equal to one. 

Some results of modeling with parameters 101 D , 302 D , 1.0 , 1.0  and low value of 

population density ( nmN 5.2 ) are presented on Fig. 1. 

As we can see on Fig. 1, if population density   is small enough the standard deviation of observations 

near real density corresponds to linear function: coefficient 2R  is close to one (it is observed for all four 

considering cases; in this situation there are no influence of boundary conditions or existence of knots with 

qualitatively different types of migration processes onto the character of existing migration processes – really 

we have a homogeneous stochastic population process). It is obvious that linear function must intersect the 

origin because for 0  all standard deviation js  must be equal to zero too. But if we use for the 

approximation a linear function without free element of equation we have bad results (Fig. 1): a big number of 

values (for example, on the interval ]25.1,0[ ) belong to one part of straight line (points have bigger 

values of ordinates). Thus, we have to take it into account at the selection process of finding weights for the 

equation (3). 

Presented results of modeling (Fig. 1) allow us to conclude that increase of the number of trials leads to the 

decrease of amount of free element of linear function (it is obvious, that asymptotically amount of this 

coefficient must converge to zero under the increasing of number of trials); at the same time we can observe 

the decrease of the coefficient of incline of straight line at the increase of number of trials (but asymptotically 

this coefficient doesn’t converge to zero). Decrease of the coefficient of incline of straight line means that 

differences of the weight coefficients jw  in (3) will decrease at the increase of number of trials. 

On the bigger intervals of changing of the density   the qualitatively different picture can be observed 

(Fig. 2), and there are no possibilities to give a good approximation for the datasets by straight lines. After the 

monotonic increasing (up to the value 10 ) we can observe the decrease of dispersion; it means that on the 

corresponding interval of changing of population density practically we have no changing in estimations of 

dispersion. It is interesting to note that decreasing of dispersion is observed for all considering four variants 

(Fig. 2). 
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Fig. 1 Changing of amount of standard deviation js  with respect to increase of real population density  :  a – one measurement (red 
curve) and two measurements (pink curve), b – three measurements (dark blue curve) and four measurements (green curve). 
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Fig. 2 Changing of amount of standard deviation js  with respect to increase of real population density  :  a – one measurement (red 
curve) and three measurements (dark blue curve) (pink curve), b – two measurements (pink curve) and four measurements (green curve).

 

 

Further increasing of population density (up to the values when boundary conditions have strong influence 

onto dynamics of migration processes; Fig. 2) leads to the situation when standard deviations have strong 

increasing (after the value 7.21 ). In this situation we can observe big fluctuations of estimations. It 

means, in particular, that in such situations we have problems as with finding of confidence domains for 

population density as for finding weight coefficients for expression (3). Nevertheless, we cannot exclude the 

possibility that for finding good estimations for standard deviations we have to have more than 1000 

observations. 
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Fig. 3 Changing of amount of standard deviation js  with respect to increase of real population density   (within the framework of 
modified model):  a – one measurement (red curve) and three measurements (dark blue curve) (pink curve), b – two measurements (pink 
curve) and four measurements (green curve).  

 

 

On the Fig. 3, there are the results of modeling and estimation of standard deviation for the cases when 

migration processes are organized in other manner then in the previous considered case. It is assumed that 
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coefficients of the migrations (probabilities of transmissions of individuals from one knot of the lattice to 

neighboring knots) depend on the weights jq  which describe the attractiveness of various knots for migrants.  

For realization of stochastic process on the computer it was assumed that weight 11 q  if the local 

population size is less than 1D ; weight 102 q  if the local population size belong to optimal zone ],[ 21 DD ; 

weight 2.03 q  if local population size is greater than 2D . It is important to note that in considering variant 

the mechanism for supporting of optimal population density is observed.  

As we can see from the presented results of computer modeling (Fig. 3), up to the amount 5.1  

(approximately) the linear increase of standard deviation with respect to increase of population density is 

observed. Like in the previous case, we cannot exclude the following explanation for observed behavior of 

standard deviation: existing situation is homogenous, and there are no influence of optimal zones onto 

migration processes or influence of zones with local population density over the level 2D . In other words, 

initial linear growth of standard deviation corresponds to migrations of “crazy” individuals only. 

Increase of local population size leads to the situation when laws of migration become more complicated, 

and it has strong influence onto amounts of standard deviations. In particular, it leads to more intensive 

increase of estimations and increase of dispersion of estimates itself. Note, that in considering situation like in 

the previous one, it is possible to point out intervals where increase of population density leads to decrease of 

standard deviation (Fig. 3).  

 

4 About Errors of Estimations for Small Values of Population Density 

On the considering lattice 2
100,100Z  transect with eight points )1,1( , )10,10( , )20,20( , )30,30( , )40,40( , 

)50,50( , )60,60( , )70,70(  was chosen. It was assumed that local population size could fixed 

simultaneously in all points of transect. Between two times of measurements of local population sizes in 

transect’s points model was run free during 500 time steps (in other words, every individual of considering 

population could intersect domain 2
100,100Z  from one boundary to another 5 times with positive probability). It 

was also assumed that total population size N  is constant, and quota   of density-independent migrants is 

high enough, 4.0 .  

For every point of transect local population size was fixed 1000 times, and for every time moment (of 

population size fixation) for all transect’s points average was calculated. After that the hypothesis 0H : 

10000/N  was checked with alternative hypothesis :1H  10000/N . For checking of the 

hypothesis the standard Student’ t-criterion was used with confidence level 0.05. Finally, quota of cases when 

hypothesis 0H  must be rejected was calculated. Results of modeling and calculations are presented on Fig. 4 

for 1000N , 2000 , 3000 , 4000 , 5000 .  

On Fig. 4 there are the averages of quotas of mistakes (hypothesis 0H  is truthful and cannot be rejected) 

for 1000 trials plus-minus standard errors for respective values of real population density  . As we can see, if 

population density is small enough the probability of event that value of real population density doesn’t belong 

to 95% confidence interval, is greater than 0.5. Note, that close results was obtained with significance level 

0.01. 

Thus, we have the following conclusion. Even in a case when migration processes are very simple 

organized (which we have in considering model) estimations of population density along the transect which 

includes eight points, correspond to nothing in 50% cases (Fig. 4). Increasing of population density in to two 

times leads to strong decreasing (more than in two times) of number of mistaken results – in 21.8% cases only 
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the value of real population density is out of the respective confidence interval. If we increase the value of 

density in three times there is 11.9% of mistaken results only (i.e. we have the decreasing of number of 

mistaken results more than in three times). 

Remark. It seems that in considering case we have a paradox situation: with the probability 512.0p  

value of real population density is out of the interval where it must be with the probability 0.95 (for 1.0 ; 

Fig. 4). But answer is obvious: for small value of population density in initial samples we have a big number of 

zero values. Thus, there are no reasons to talk about Normality of elements of samples. And, consequently, 

standard (parametric) methods of the estimation of boundaries of confidence intervals and checking of 

hypotheses don’t work in this occasion. 

 

 

Fig. 4 Estimations of quotas of errors (averages were calculated for 1000 measurements for transects with 8 points of observations) 
plus – minus standard errors for every value of real population density  . 

 

 

5 Conclusion 

Considered in paper stochastic model of the processes of data collection looks like well-known method of 

“casting of the frame” or some methods of estimation of forest insect population densities in boreal zone. 

Within the framework of basic model (when migration processes are determined by the local population sizes) 

the existence of optimal zone for individuals was postulated. At the same time mechanisms of supporting of 

optimal population density were absent. Existence of optimal zone had strong influence onto intensities of 

migration processes from the respective knot to neighboring knots. The pure stochastic migrants could be 

observed from the knots with optimal local population size. 

Within the framework of modified model it was assumed that migration processes depends on the 

conditions of knots. Condition of the knot had been determined with respect to interval of population size. 

Knot had a highest weight if population size was in optimal interval. Knot had smaller weight if population 

size was less than in optimal zone. Finally, knot had smallest weight if population size was bigger than in 

optimal zone. Thus, in modified model we have the mechanism supporting optimal local population size. 
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The basic question we tried to solve with the help of computer experiments was following: what is the 

character of the dependence of standard deviation of estimation of population density (average of local 

population size in a knot) on real population density? It is obvious that for all computer experiments we knew 

real population density. It is also obvious that amount of standard deviation will increase monotonously with 

respect to population density. But what’s the law of this increasing? 

This is very actual problem for the solution of other important problem – for estimation of ecological 

model parameters. Least square method is frequently used technique for the estimation of model parameters. 

The use of this method requires finding of global minimum for the squared deviations between theoretical 

(model) results and empirical datasets (2) and (3). If global minimum is found deviations have to be analyzed, 

and basic properties of the set of deviations must be determined. 

It is well-known problem: if we use least square method without the respective weights in the expression of 

minimized functional form (2), we have a situation when small values in initial sample have no influence on 

parameter’s estimations. In other hand, up to current moment there are no real recommendations for the 

process of selection of the weights. Moreover, it is well-known too, that set of deviations is a set of stochastic 

values with different distributions. In spite of it we can check some important properties of this set – for 

example, we can check the equivalence of average to zero or symmetry of a sample. But analysis of some 

other properties (like existence/absence of serial correlation with Durbin – Watson criteria) meets with 

insuperable difficulties. 

Provided calculations showed that in some cases (see Fig. 1) standard deviation changes practically linear 

(with 98.02 R ) at increase of population density (but it is observed for strong rarefied populations only). 

Let baxy  , where y  is a standard deviation, x  is a population density, ba,  are the coefficients of 

straight line which are determined (in particular) by the number of trials for the estimation of population 

density. When we use mathematical model (for example, of the type (1)) for the approximation of biological 

datasets, we can assume that for every fixed set of parameters model gives us real value of population density 

(of course, this assumption isn’t truthful – this is a substitution of unknown value of real density on known 

value obtained with the help of model). If so, criterion (3) can be presented in other form when all elements of 

the sum have one and the same characteristics: they have zero average and unit dispersion: 
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In this expression value of coefficient C  can be determined from the condition that total sum of all weights 

must be equal to one. Taking into account that we have to find a global minimum of this functional form, 

without changing of the final results we can put 1 bC . In more general case (see Fig. 2 and 3) one can try 

to use piece-linear function or linear function in a combination with fractional-linear function (in a term of 

fraction). In cases when interval of changing of population density includes values corresponding to over-

concentrated populations, even in simplest situations considered in current publication it is very difficult to 

give a good recommendation. 
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