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Abstract 

Current publication is devoted to the construction of modification of well-known May model of parasite – host 

system dynamics and its analysis. In basic model and in modified model there is one and the same assumption 

that under the determined values of sizes of interacting populations number of attacked hosts is determined by 

binomial law. In modified model it was took into account that hosts, which were attacked two or more times 

by parasites, die, and it doesn’t lead to the increase of parasite population size. For modified model population 

dynamic regimes and structure of the space of model parameters are analyzed.  
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1 Introduction 

Big number of publications are devoted to construction of models and analysis of population dynamics of 

predator – prey (or parasite – host) system (see, for example, Brauer, Castillo-Chavez, 2001; Kolmogoroff, 

1936; Kostitzin, 1937; Turchin, 2003; Lotka, 1920, 1925; Volterra, 1931; Nedorezov, 1986; Nedorezov, 

Utyupin, 2003, 2011; Isaev et al., 1984, 2001, 2009; Nedorezov, Sadykov, 2004 and many others). Some 

publications are devoted to methodological problems: to pure theoretical analysis of possible variants of 

population size fluctuations at various types of interaction between populations and influence of self-regulative 

mechanisms etc. (see, for example, Berezovskaya, Karev, Snell, 2005; Logofet, 1993; May, 1974, 1975; May, 

Oster, 1976; Nedorezov, 1995, 1997; Nedorezov, Nazarov, 1996; Nedorezov, Nedorezova, 1995 and others).  

Other part of publications is devoted to the problem of comparison of theoretical (model) results with real 

datasets (Berryman, 1981, 1991, 1992, 1995; Tonnang et al., 2009, 2010; Varley et al., 1978; Golubev, Insarov, 

Strakhov, 1980; Bjornstad et al., 1999; Falck et al., 1995; Fromentin et al., 2001 and others). One more part of 

publications is devoted to the use of discrete time mathematical models as a base for various ecological 

theories (see, for example, Isaev and Khlebopros, 1973, 1977; Isaev et al., 1984, 2001, 2009; Nedorezov and 

Utyupin, 2011). 

Before the comparison of theoretical and empirical datasets (and before the use of one or other model as 

the base of various biological theories) we have to be sure, that selected mathematical model corresponds to 

observed process (on quantitative and qualitative levels). If model doesn’t correspond to observed 

phenomenon a’priori, it can lead to unrealistic results (Gilpin, 1973). Thus, solutions of methodological 

problems in modeling of population processes are of extreme interest and important stage in analysis of every 

biological species. 
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In current publication we analyze one of possible modifications of well-known discrete time mathematical 

model of parasite – host system dynamics by R.M. May (1978). This model is a modification of Nicholson – 

Bailey model (Nicholson, Bailey, 1935). Within the framework of this model it was assumed that for the fixed 

values of hosts and parasitoids the quota of non-attacked hosts (which produce the next generation) is equal to 

the probability P  of the event, that stochastic variable with binomial distribution is equal to zero. 

Respectively, the quota of attacked hosts in population is equal to P1 . It was also assumed that number of 

parasites of new generation is equal to the number of infected hosts multiplied by constant, which is less than 

one. It is obvious assumption: not every attacked host transforms into viable parasite of new generation.  

One more assumption in the model (May, 1978) is following: the quota of attacked hosts depends on 

number of parasites only. Obviously, in general case this quota must depend on the relation of numbers of 

interacting populations. In current publication we follow the first author’s assumption. But we have to note, 

that this assumption correlates with additional limits for the domain of applicability of the model to the 

description of interaction of species: model doesn’t work in the domain of phase space where number of hosts 

is much bigger than number of parasites (multiplied on the number of hosts which can be attacked by one 

parasite). 

 

2 Description of Model 

Let kx  be the number of hosts, ky  be the number of parasites at time moment k . Let’s assume that host 

population dynamics is described by the Moran – Ricker model (Moran, 1950; Ricker, 1954) when number of 

parasites is equal to zero: 

                                                     kx
kk eAxx 

 1 .                                                              (1) 

Coefficient A  is maximum birth rate of population,   is a coefficient of self-regulation. It is possible to point 

out a huge number of publications which are devoted to analysis of model (1) and its application to various 

species (see, for example, May, 1974, 1975; May and Oster, 1974; Tonnang et al., 2009, 2010; Nedorezov et 

al.,  2008; Nedorezov and Sadykova, 2008, 2010).  

Influence of parasites on host population dynamics can be taken into account by various ways. For 

example, for fixed values kx  and ky  the quota q  of uninfected hosts (and these hosts can only produce 

individuals of the next generation) increases with decrease of number of parasites. If number of parasites is 

equal to zero the quota q  is equal to one. With unlimited growth of parasites q  converges to zero 

asymptotically. In particular case q  can be presented in the following form: 

r

ay
q 











1

1
.                                                           (2) 

In expression (2) y  is the number of parasites; a , 0 consta , is a coefficient of efficiency of parasitism. 

Parameter 0r  corresponds to efficiency of parasitism too: for every fixed values of a  and y  increase of 

value of parameter r  leads to decrease of quota q , and it means that efficiency of parasites decreases. 

Amounts of these coefficients depend on various factors and conditions, and in particular, it depends on the 

type of parasite’s strategy in finding hosts.  

Expression (2) can be explained in other way. Namely, it is assumed a’priori that probability of every 

separated host to be infected by parasites is determined by binomial law. Thus, expression (2) is the probability 
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of event that one host will not be infected. In such a situation parameter r  must be integer, and real biological 

sense of this parameter is following: r  is equal to maximum number of attacks (by parasites) for every host. 

Taking into account expression (2) the equation (1) can be transformed into the form: 

r

k

x
kk ay
eAxx k


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
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 1

1
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 .                                                   (3) 

Respectively, we have that expression q1  is the probability of event that every host will be attacked by one 

parasite or several parasites (note, that this number of parasites is unlimited with positive probability). If we 

additionally assume that every attacked host can potentially produce one viable parasite, we have the following 

equation for changing of number of parasites in time: 
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Non-negative coefficient c , 1 constc , allows to take into account in the model the event that not every 

attacked host transforms into viable parasite. Part of individuals can die in a result of impacts of various 

stochastic factors, part of individuals can die in a result of effect of over-infection etc. Thus, combination of 

equations (3) and (4) gives us the May’ model of parasite – host system dynamics (May, 1978).  

It is important to note that for various natural populations (for example, for insects; Isaev et al., 1984, 2001, 

2009; Nedorezov, 1986) model (3)-(4) gives unrealistic description of interaction between two species. Hosts 

which were attacked two or more times die – and it doesn’t lead to increase of number of parasites (over-

infection effect; victim’s body doesn’t contain enough volume of nutrient matter for normal development of 

two or more parasite’s larvae).  

Let’s consider the following modification of model (3)-(4) when successive development of parasite’s 

larva is possible if and only if host was attacked one time only. Within the limits of assumptions, which were 

used for the construction of May’ model, the probability 1q  that host was attacked by one parasite only is 

determined by the expression: 
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Taking it into account, we have the following equation for parasites dynamics: 
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Combination of equations (3) and (5) gives us modified the May’ model with over-infection effect. We have to 

note that similar idea was used in our previous publication (Ivanchikov and Nedorezov, 2011) for constructing 

of the modification of well-known Beddington – Free – Lawton model of parasite – host system dynamics.  

Below we’ll assume that coefficient of self-regulation in host population   is greater than zero, and 

coefficient of parasite’s efficiency a  is positive too. Thus, without loosing the generality of analysis we can 

put 1a  and 1 . Finally, the modified May model has the following form: 
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Parameter 0 AcrB . 

 

3 Properties of Model 

Initial values of population sizes must be non-negative, 0, 00 yx . Model (6) has the following properties: 

1. If 00 x  and 00 y  then 0kx , 0ky  for all 0k . If 00 x  and 00 y  then 0ky  for all 

0k ; in this case host dynamics describes by the Moran – Ricker model (Moran, 1950; Ricker, 1954).   

2. Stable invariant compact   exists in 2
R : 

}0,0:),{(2   yxyxR . 

If ),( 00 yx  then for all 0k  ),( kk yx . If ),( 00 yx  then trajectory of model (6) converges to 

  asymptotically (for 1r ): 
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3. Coordinates of stationary states of system (6) can be found with the following system of algebraic equations: 
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Stationary states have the following coordinates: 
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Thus, within the framework of model (6) regimes of population mass outbreaks cannot be realized (Isaev et al., 

1984, 2001, 2009). 

4. Stationary state )0,0(  is complex equilibrium. If 1A  this point is global stable equilibrium. In this case 

we have a regime of non-conditional extinction of both interacting populations. Intersection of bifurcation line 

1A  at 1A  equilibrium )0,0(  becomes a saddle type point with characteristic values A1  and 

02   (axis y  is incoming trajectory, and axis x  is out-coming trajectory). This intersection leads also to 

appearance of stationary state )0,(ln A .  

5. Jacoby matrix determined in point )0,(ln A  is following: 
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Thus, characteristic numbers are following: 
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Consequently, if the following inequalities are truthful the stationary state )0,(ln A  is global stable 

equilibrium: 

                                                             21 eA  , 
A

A
B

ln
 ,                                                (7) 

If first inequality in (7) isn’t truthful, 2eA  , and the second inequality in (7) is truthful, then stationary state 

)0,(ln A  becomes unstable, and there appears global stable (in 2
R ) attractor (cycle) on x  axis.  

6. The bifurcation curve which corresponds to appearance of third non-trivial stationary state in the phase 

space of system is determined by the equation: 

1
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7. Dividing second equation of the system (6) onto the first equation we obtain the following relation: 
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This relation is unrealistic equation from the standpoint of ecology: from this relation we have that fraction of 

two population sizes of the next generation is determined by current parasite population size. This formula (8) 

is direct result of unrealistic assumption in May model that number of attacked hosts is determined by size of 

parasite population only. Equation (8) can be presented in the form: 
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On figure 1 bifurcation diagrams are presented. Parameter ]18,0[A , 2r , 3.0c . The first 

bifurcation diagram describes the changing of stable dynamic regimes for host population fluctuations without 

parasites (in this situation bifurcation diagram of Moran – Ricker model is presented on fig. 1a; presentation of 

this diagram is important for comparison with diagram on fig. 1b and estimation of real role of parasites in 

population dynamics). On fig. 1c there is the diagram which describes the changing of stable dynamic regimes 

for parasite population. For obtaining all diagrams we used 400 initial points in   (these points belong to 

plane lattice with constant step and cover domain  ), and for every initial point (initial values of population 

sizes) we made 5000 “empty steps” (for stabilization of population fluctuations).  

As we can see on these diagrams, parasites can play the role of stabilizer of ecological system: intersection 

of bifurcation value 2945.5A  (it is denoted as critical point 1L  on fig. 1b and 1c) leads to the situation 

when increase of population birth rate (it can be a result of increase of productivity of individuals or increase 

of surviving) doesn’t lead to increase of stationary level of population. Note that such a zone (it was called as 

zone of strong control of population by parasites; Isaev et al., 1984, 2001, 2009) is observed in natural 

conditions. For example, it was observed in interaction of Ips subelongatus Motsch. with its parasites in 

Siberian forests (Isaev et al., 1984). 
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Fig. 1 Bifurcation diagrams for model (6) for 2r , 3.0c . a – diagram for Moran – Ricker model. b –  changing of 
coordinates of stable attractors for host population size; c – changing of stable attractors for parasite population size. Coordinates 
of stable attractors are of the red color.  
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Further increasing of birth rate leads to loosing of the control role of parasites: after the intersection of 

critical point 2L  (Fig. 1b and 1c) we can observe the cyclic regime for interacting populations (with the length 

2). It is interesting to note that increasing of the range of host population fluctuations leads to decreasing of 

both coordinates of the cycle 2 for parasites. After the intersection of critical level 3L  the cycle of the length 4 

appears in phase space (Fig. 1b and 1c). After this intersection we can observe increasing of maximum of 

parasite population size in ecosystem. Further increasing of the value of parameter A  leads to strong 

increasing of the range of parasite population fluctuations. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Bifurcation diagrams for model (6) under the same conditions (changing of stable attractors for parasite population size). 
Coordinates of stable attractors are of the red color. 

 

 

On Fig. 2 there is the same diagram like on Fig. 1c but the interval of changing of parameter A  is bigger. 

As we can see on this figure, further increasing of the value of parameter A  leads to the realization of a 

situation when parasites eliminate for every positive initial values of their size. Such (rather strange) effect was 

also observed in a modification of Beddington – Free – Lawton model of parasite – host system dynamics 

(Ivanchikov, Nedorezov, 2011). We cannot exclude the hypothesis that this effect appears in a result of 

incorrect assumptions in the base of May model and Beddington – Free – Lawton model pointed out above. On 

the other hand, it can be pure dynamic effect – elimination of parasites is determined by the cyclic fluctuations 

of hosts with sufficient big number of values with low population size. 
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Fig. 3 Bifurcation diagrams for model (6) for 2r . a – 35.0c , b – 6.0c . 

 

 

Further increasing of value of parameter c  (Fig. 3) leads to the increase of the domain where parasites play 

the role of strong stabilizer of ecosystem, interval ],[ 21 LL . For some values of model parameters we can see 

interesting dynamic regimes (Fig. 3a) when we have three stable attractors in the phase space: non-trivial 

stationary state, origin, and stable cycle with the length 4. Existing in positive part of phase plane of two stable 

attractors allows us to assume that within the limits of discrete models we may have analogs of fixed outbreaks. 

And these analogs have one non-trivial stationary state in the phase space. Note that analogs of various types 

of outbreaks with one stationary state we may also have in models with continuous time when hosts or 

parasites are the fast variables with respect to another one (Nedorezov, 1986; Nedorezov and Khlebopros, 

1985). 

On Fig. 3b we can also observe the realization of trigger dynamic regimes with two stable stationary states 

in phase space. Such kind of regimes can be identified as fixed outbreak, and can be realized in natural 

conditions for Xylotrechus altaicus Gebl. In Siberian forests (Isaev et al., 1984, 2001, 2009). 
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4 Conclusion 

Analysis of modified May model of parasite – host system dynamics shows that in model can be realized 

complicated dynamical regimes, and, in particular, cycles of various length (Fig. 1 and 2). Numerical analysis 

of model allows us to conclude that in most cases parasites play the role of stabilizer of the system: without the 

parasites we can observe cyclic fluctuations of hosts (with increase of its unstable stationary state; Fig. 1a), and 

stable behavior of hosts when parasites appear in the system (Fig. 1b). 

Increase of surviving of parasites can lead to the transformation of initially complicated dynamical regime 

to much simpler regime. Sometimes it can lead to the regime with one global stable equilibrium in positive 

part of phase space, sometimes we can observe trigger regimes with two stable attractors (see Fig. 3b). Such 

kind of regimes can be identified as direct analogs of fixed outbreak regime, which can be observed for some 

species of forest insects.  

It is also important to point out very interesting dynamical regime which can be observed in model at 

increase of productivity of hosts. Increase of the value of the respective parameter at fixed value of other 

parameters of the model leads to asymptotic extinction of parasites for all positive initial values of interacting 

populations (Fig. 2 and 3a).  
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