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Abstract 

Constructing accurate computational global distribution models is an important first step towards the 

understanding of bacterial crop diseases and can lead to insights into the biology of disease-causing bacteria 

species. We constructed artificial neural network models of the geographic distribution of six bacterial diseases 

of crop plants. These ANN modelled the distribution of these species from regional climatic factors and from 

regional assemblages of host crop plants. Multiple ANN were combined into ensembles using statistical 

methods. Tandem ANN, where an ANN combined the outputs of individual ANN, were also investigated. We 

found that for all but one species, superior accuracies were attained by methods that combined biotic and 

abiotic factors. These combinations were produced by both ensemble and cascaded ANN. This shows that 

firstly, ANN are able to model the geographic distribution of bacterial crop diseases, and secondly, that 

combining abiotic and biotic factors is necessary to achieve high modelling accuracies. The work reported in 

this paper therefore provides a basis for constructing models of the distribution of bacterial crop diseases.  

 

Keywords artificial neural network; biotic and abiotic factors; bacterial crop disease; prediction. 

 

 

1 Introduction 

The rising rate of global trade is rapidly increasing the threat to the agricultural and horticultural production of 

many countries by unintended introductions of exotic crop diseases, including bacterial diseases. There is 

therefore a pressing need to develop methods that have a higher level of prediction accuracy to assist the risk 

assessment process. 

A large amount of data exists that describes many features of the climate in numerous geographical 

locations, as well as the presence or absence of numerous crop plants and species of bacterial crop diseases. It 

is desirable to be able to accurately predict their distribution, so that the threat they pose to the agriculture and 

biodiversity of various regions can be more accurately assessed. 

The factors affecting the establishment within a geographical region of a particular bacterial species can be 

divided into two general groups: firstly, biotic factors, which include the presence of potential host species; 

and abiotic factors, which is essentially the climate of the region in question. A number of models and 



Computational Ecology and Software, 2012, 2(1):70-79 

 IAEES                                                                                                                                                                        www.iaees.org 

approaches have been designed to predict the establishment of bacterial crop diseases in regions where they are 

not normally found.  

Artificial neural networks (ANN) have previously been used for many applications in ecology (Lek et al, 

1996; Gevrey and Worner, 2006; Zhang and Wei, 2009; Zhang, 2010, 2011), including modelling the 

relationship between cities and the levels of contaminants in grasses (Dimopulos et al, 1999) and the presence 

of certain species of freshwater fish (Joy and Death, 2004).  However, no work has yet come to light that 

predicted the distribution of bacterial crop diseases from both biotic and abiotic factors. The goal of the 

research reported here was to investigate the use of ANN, specifically multi-layer perceptrons (MLP), to 

model the distribution of several bacterial crop diseases by predicting their presence and absence in world-

wide geographical regions. These predictions were made in three ways: Firstly, from climate (abiotic) factors; 

Secondly, from biotic factors, in the form of regional host plant assemblages; Thirdly, by using ensembles of 

MLP and a cascaded or tandem MLP architecture that combined predictions made from both climate and host 

plant assemblages.  

 

2 Method 

2.1 Data 

The data set used in this study consisted of data describing the climate for each of 459 worldwide geographic 

regions , the presence or absence in each of these regions of 114 host crop plants, and the presence or absence 

in each of those regions of 130 crop disease-causing bacteria species. The species presence data were sourced 

from the CABI Crop Protection Compendium (CABI, 2003). The climate data were compiled from Internet 

sites maintained by recognised meteorological organisations. None of this data contained any explicit 

information about the links between climate in a region and the presence or absence of any particular disease. 

Forty-five climate variables were available and are listed in Table S1. Although data was available 

describing the climate on a monthly basis for each region, only seasonal data was included. This is because 

organisms follow a seasonal cycle, rather than a calendar cycle, and seasons are reversed between the Northern 

and Southern hemispheres. Any generalisations made about species establishment drawn from Southern 

hemisphere monthly data would not be applicable to the Northern hemisphere, and vice versa, even for the 

same species. To represent the range of each variable within a region the minimum, mean and maximum of 

each variable was calculated. There was therefore a total of one hundred and thirty five input variables 

describing the climate in each region. The data for each variable was linearly normalised to the range of zero to 

unity and comprised the input to the MLP models. 

The second set of data was the presence and absence of 114 host plants in the same geographic regions as 

above. Only those hosts that were recorded as being present in more than 5% of the regions were retained in 

the data set. 

To verify that the species assemblages were non-random, both the bacterial crop disease and host plant 

assemblages were subjected to a null model analysis (Gotelli, 2000). The software used for this analysis was 

EcoSim version 7 (Gotelli and Entsminger, 2006). Ten thousand iterations were performed and the C-score, V-

ratio, number of checker boards and number of species combinations were all evaluated. The default setting of 

retaining degenerate matrices was retained. The results of each run showed that both assemblages were 

significantly non-random (p=0.001). 

Six target species were selected, all of which were ranked as significant threats according to the method 

described in (Worner and Gevrey, 2006; Watts and Worner, 2009; Watts, 2011). Although this technique was 
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originally developed to estimate the risk of invasion of insect pest species, there appears to be no reason why it 

should not be applicable to other threatening organisms. The six species identified are presented in Table S2. 

The data was randomly split into two major sets. The first, containing 80% of the data, was the training and 

test set, from which samples were randomly drawn to form training and test data sets for each trial. The second 

comprised the independent validation set, which was used to perform an independent evaluation of the 

prediction accuracy for each target species.  

The division was done on the basis of regions, that is, the 459 regions were randomly assigned into two 

groups in an 80%/20% ratio, and the corresponding climate data and host assemblages found. Thus, the 

validation set contained data corresponding to the same regions for both the climate and host assemblages.  

2.2 Training and evaluation of MLP 

Standard three neuron-layer multi-layer perceptrons (MLP) were used in these experiments, and the learning 

algorithm used was unmodified back-propagation with momentum (Rumelhart et al, 1986). The parameters of 

the MLP and learning algorithm were three hidden neurons, a learning rate and momentum of 0.03 and either 

500 or 750 training epochs. Table S3 lists the epochs selected for each MLP used to model each species, for 

each data set. These parameters were found via experimentation to yield the best balance of training and 

generalisation errors: more than three hidden neurons consistently caused over-training, while less meant the 

MLP were unable to learn. Similar parameters were previously found to be effective for modelling the 

establishment of insect pest species (Watts and Worner, 2008). While the target data in this work was different 

(presence and absence of bacterial diseases, rather than insect pests) the basic problem was the same: 

predicting the presence or absence of a species from the same set of regional environmental factors. 

The method of training and evaluating the MLP (and also selecting the parameters) was similar to that 

suggested in Flexer (1996) and Prechelt (1996). A total of one thousand trials were performed over each 

species. For each trial, the training and test data set (consisting of 80% of the total data available) was 

randomly divided into a training set and a testing set in a two-thirds/one-third ratio. A MLP was then created 

with randomly initialised connection weights and trained over the training division. The accuracy of the MLP 

over the training division was then evaluated to determine how well the network had learned, and again over 

the testing division to determine how well the network generalised. Accuracy was measured using Cohen’s 

Kappa statistic (Cohen, 1960), where a kappa of less than 0.2 is considered poor accuracy, 0.2 to 0.4 fair, 0.4 

to 0.6 moderate, 0.6 to 0.8 good and over 0.8 very good, with 1 being perfect accuracy. Kappa was used 

because it is a simple and well-known statistic (Manel et al., 2001) that is not biased by different proportions 

of presences or absences, and gives results that are qualitatively similar to more complex measures such as 

area under the curve (Elith et al., 2006; Graham et al., 2008). At the completion of the one thousand trials, the 

MLP with the highest kappa over the test data (that is, the MLP with the best generalisation performance) was 

selected as the winner for that species. The accuracy of this winning network was then evaluated over the 

validation data set, so that an unbiased estimate of the generalisation capability of the MLP could be obtained.  

2.3 Ensembles of artificial neural networks 

Ensembles of ANN are a way of combining the predictions made by several ANN into a single prediction that 

incorporates the “knowledge” of all of the members of the ensemble (Battiti and Colla, 1994; Costa et al, 1996; 

Filippi et al., 1994; Hansen and Salamon, 1990; Maqsood, Khan and Abraham, 2004; Perone and Cooper, 

1993; Sharkey, 1996; Sharkey and Sharkey, 1997). Ensemble methods statistically or algorithmically combine 

the outputs of several ANN and can yield improved performance. ANN ensembles can perform better than 
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single ANN because each member of the ensemble was trained on a different part of the problem space. 

Combining the predictions of several ANN means that a larger part of the problem space can be modelled. 

Several ensemble methods were used in this work. First the final prediction of the ensemble was calculated 

as the minimum, maximum, mean and median, respectively, of all of the individual predictions within the 

ensemble. The majority vote method was also used. In this technique, the final prediction is taken to be 

positive if the majority of predictions within the ensemble are above 0.5 (which is taken here to be a positive 

prediction), and negative if vice versa. 

Ensembles were constructed using the top ten networks for each species, that is, networks in the top 1% 

with respect to generalisation accuracy. The number 1% is fairly arbitrary, as any value up to 100% could have 

been selected. However, as the number of networks in the ensemble increases, the ensemble obviously 

becomes less efficient, as more networks require more computational power to combine and some of the 

networks would perform so poorly that they could jeopardise the performance of the entire ensemble. 

Accuracy of the ensemble was assessed by resampling the data set. Only test sets were evaluated, as no 

additional training of the ensemble members was carried out, nor was it possible to train the ensembles. One 

thousand resamplings were carried out, and the accuracies used to select the optimal ensemble method for each 

species. The methods selected for each species are listed in Table S4. 

Ensembles were constructed for climate and host assemblage networks. Ensembles were also constructed 

that combined climate and host predictions. These ensembles thus combined biotic and abiotic factors to 

predict establishment. The top ten most accurate ANN for climate and host assemblages were included in these 

ensembles and therefore there were twenty ANN in these “combination” ensembles. 

2.4 Cascading neural networks 

To produce the training data for the cascaded networks, the winning climate networks and the winning host 

assemblage networks for each species were selected. The relevant data for all regions were then propagated 

through each network. The outputs from these networks were used as the inputs for the cascaded networks, 

which were then trained to predict the presence or absence of the target disease species. The cascaded 

networks therefore combined predictions made from climate and host assemblages into one final prediction. 

The training and testing procedure for the cascaded networks was the same as the climate and host 

networks above. A wider range of hidden-layer sizes were found to be useful for these networks, as shown in 

Table S3, while 500 training epochs and learning rate and momentum of 0.03 were found to be optimal. 

For each trial of the cascaded networks the contributions of each input neuron to the output of the network 

was determined. While many methods have been proposed for determining the importance of each of the input 

neurons of an MLP, the work of Olden, Joy and Death (2004) has shown that the method of Olden and Jackson 

(2002) is the least biased, and it has also been previously used in ecological modelling applications (Joy and 

Death, 2004; Watts and Worner, 2008a, b). 

A sensitivity analysis was also performed over each input variable of the winning cascaded network. This 

was carried out to illustrate the response of the network to variations of each variable so that the influence of 

strongly contributing inputs (as determined above) could be visualised. The sensitivity analysis was performed 

by setting each input, except the one being investigated, at its mean value for the data set. The values for the 

input being investigated were then varied across the range of zero to unity and the network recalled for each 

step.  
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3 Results 

The accuracies for each species over each data set, as measured by Cohen’s Kappa statistic (Cohen, 1960), are 

presented in Table 1. These results show that there was a wide range of mean accuracies over the testing sets, 

ranging from a low of 0.09 for Spiroplasma kunkelii to a high of 0.41 for Rhizobium radiobacter. Climate 

networks, however, had an even larger range of variation over the testing data set, ranging from a low of 34% 

of the mean for R. radiobacter to a high of 140% of the mean for Xanthomonas campestris pv. campestris. 

Accuracy over the independent validation data set, however, was generally higher, with a minimum validation 

accuracy of 0.32 for R. radiobacter and S. kunkelii and a maximum validation accuracy of 0.68 for 

Xanthomonas axonopodis pv. dieffenbachiae. 

 

 
Table 1 Mean and standard deviation of accuracies (as Cohen’s Kappa). “Train” is the accuracy over the training data sets. 
“Test” is the accuracy over the testing data sets. “Validate” is the accuracy over the validation data set. Rows labelled “Climate” 
present the results for the networks trained over the climate data set. “Hosts” present the accuracies of the networks trained over 
the host assemblage data set. “Climate+Host” presents the results of ensembles combining predictions made from climate and 
host assemblages. “Cascade” presents the accuracies of cascaded networks that combine predictions made from climate and host 
assemblages. “Original” rows are the accuracies over single networks. “Ensemble” rows present the accuracies over the ensemble 
of networks. The best validation accuracies for each species are shown in bold and underlined. 

  R. radiobacter X. campestris pv. aberrans 

  Train Test Validate Train Test Validate 

Climate Original 0.57/0.16 0.41/0.14 0.32 0.38/0.23 0.19/0.13 0.34 

 Ensemble  0.62/0.08 0.34 0.45/0.08 0.30 

Hosts Original 0.64/0.33 0.32/0.17 0.42 0.71/0.14 0.24/0.11 0.44 

 Ensemble  0.77/0.06 0.47 0.70/0.06 0.49 

Climate+Host   0.71/0.07 0.61 0.62/0.07 0.43 

Cascade  0.70/0.03 0.71/0.07 0.49 0.60/0.05 0.59/0.07 0.49 

  E. carotovora subsp. X. campestris pv. campestris 

  Train Test Validate Train Test Validate 

Climate Original 0.53/0.22 0.37/0.13 0.35 0.18/0.25 0.15/0.21 0.48 

 Ensemble  0.53/0.08 0.27 0.69/0.15 0.48 

Hosts Original 0.66/0.37 0.24/0.17 0.52 0.0/0.04 0.0/0.05 0.56 

 Ensemble  0.87/0.04 0.55 0.74/0.13 0.74 

Climate+Host   0.72/0.07 0.47 0.65/0.13 0.79 

Cascade  0.85/0.03 0.84/0.05 0.45 0.82/0.13 0.76/0.18 0.56 

  S. kunkelii X. axonopodis pv. dieffenbachiae 

  Train Test Validate Train Test Validate 

Climate Original 0.12/0.16 0.09/0.10 0.32 0.42/0.26 0.28/0.18 0.68 

 Ensemble  0.47/0.1 0.17 0.59/0.07 0.67 

Hosts Original 0.10/0.27 0.05/0.12 0.29 0.71/0.05 0.36/0.08 0.60 

 Ensemble  0.91/0.05 0.46 0.68/0.06 0.55 

Climate+Host   0.73/0.09 0.39 0.68/0.06 0.65 

Cascade  0.80/0.04 0.78/0.07 0.47 0.71/0.03 0.70/0.06 0.72 
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Climate ensembles improved test accuracy for all species over climate. Climate ensemble variation ranged 

from 11.9% of the mean for X. axonopodis pv. dieffenbachiae to 21.7% of the mean for X. campestris pv. 

campestris, which is much less than the original networks, although this is to be expected since the ensembles 

used only the top ten networks. However, validation accuracy was only improved for R. radiobacter. 

The accuracy of the host networks ranged from 0.0 for X. campestris pv. campestris to 0.36 for X. 

axonopodis pv. dieffenbachiae. The variation of accuracy of the host networks was also very large, ranging 

from a low of 22.2% for X. axonopodis pv. dieffenbachiae to a high of 240% for S. kunkelii. With the 

exception of X. axonopodis pv. dieffenbachiae, the mean testing accuracy of the host networks was less than 

that of the climate networks. The validation accuracy over the host networks ranged from 0.29 for S. 

kunkelii to 0.60 for X. axonopodis pv. dieffenbachiae. Host networks, however, had a higher validation 

accuracy than climate networks, with the exception of S. kunkelii. Again, this was not surprising, given the 

large degree of variation in accuracy for the host networks. 

The testing accuracies over the host data sets were improved by the use of ensembles for all species, most 

notably for X. campestris pv. campestris, which improved from a mean of zero to 0.74, and for S. kunkelii, 

which improved from 0.05 to 0.91. Host ensemble variation ranged from 4.6% for Erwinia carotovora subsp. 

atroseptica to 17.6% for X. campestris pv. campestris. The validation accuracies for all species were improved 

by the use of ensembles, and the best validation accuracy of 0.55 for E. carotovora subsp. atroseptica was 

provided by host ensembles. 

Ensembles that combined both climate and host predictions had disappointing performance, as for each 

species the accuracy was less than that of the host ensembles for all species but X. axonopodis pv. 

dieffenbachiae. Also, the validation accuracies were inferior for Xanthomonas campestris pv. aberrans, E. 

carotovora subsp. atroseptica and S. kunkelii, although it did yield the best validation accuracy for R. 

radiobacter  of 0.61. It appears that the performance of these climate networks was simply too low, and this 

dragged down the performance of the combined ensembles. 

There was little sign of over-training for the cascaded networks, with the most severe gap between training 

and testing accuracies being 0.06 for X. campestris pv. campestris. Variation over the testing accuracies ranged 

from 8.6% of the mean for X. axonopodis pv. dieffenbachiae to 23.7% for X. campestris pv. campestris. The 

testing accuracies were greater than those of either the single climate and host networks as well as the climate 

network ensembles, but less than those of the host network ensembles for R. radiobacter, X. campestris pv. 

aberrans and S. kunkelii. There were significant differences between the accuracies of the Climate+Host 

ensembles and cascaded networks for all species except R. radiobacter, but not between host ensemble and 

cascaded networks for X. campestris pv. campestris (two-tailed t-test, p=0.001). The validation accuracies of 

the cascaded networks were superior for S. kunkelii and X. axonopodis pv. dieffenbachiae, and best-equal for X. 

campestris pv. aberrans, which tied with host ensembles. The validation accuracies for R. radiobacter, E. 

carotovora subsp. atroseptica and X. campestris pv. campestris  were all inferior to other methods.  

The results of the contribution analysis of the cascaded networks are presented in Table 2. It can be seen in 

this table that the contribution of the host networks was greater than that of the climate networks for all species 

except X. axonopodis pv. dieffenbachiae. The differences between these contributions were quite small with 

the exception of E. carotovora subsp. atroseptica and S. kunkelii, where the contributions of the climate 

networks were much smaller than those of host networks. The results of the sensitivity analysis are presented 

in Fig. 1. This figure supports the interpretation of the contribution analysis results, as the curves for climate 

for E. carotovora subsp. atroseptica and S. kunkelii are much lower than the curves for hosts. The curve for 
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climate is higher than that of host only for X. axonopodis pv. dieffenbachiae, which was the only species where 

the contribution of climate was higher. Overall it is clear that the host network contributed more to the outputs 

of the cascaded networks than the climate networks did, although for most species the difference between the 

two was not large.  

 

Table 2 Input contributions for cascaded networks 

Species Climate Host 

R. radiobacter 20.82/3.43 29.82/3.57 

E. carotovora subsp. atroseptica 6.43/4.49 44.91/4.37 

X. campestris pv. aberrans 20.93/3.77 28.55/3.48 

X. campestris pv. campestris 25.43/5.04 32.03/7.35 

S. kunkelii 16.25/4.45 44.49/4.01 

X. axonopodis pv. dieffenbachiae 31.743/3.97 26.84/2.84 

 

 

Fig. 1 Results of sensitivity analysis of cascaded network combining climate and host predictions. 

 

 

4 Discussion 

The results presented in this paper show that MLP were able to predict the presence or absence of bacterial 

crop diseases from regional climate variables and host plant assemblages. Combining predictions made by 
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several MLP using ensemble methods significantly improved the accuracy of predictions made from either 

climate or host assemblages. This was however not as effective as methods that combined predictions made 

from both abiotic (climate) and biotic (host assemblages) as these methods yielded superior performance. The 

most effective method of combining abiotic and biotic variables was a cascaded MLP architecture, whereby 

the outputs of the single most accurate climate and host networks were combined by a following network. 

Other methods that combined multiple climate and host networks together yielded slightly less accurate 

predictions, although such predictions were still more accurate than the original, single data set, models and 

varied by species. 

Although species that are more prevalent tend to be easier to model with ANN, which as a data-driven 

model can be sensitive to the proportions of different classes within the data, this effect was not strongly 

apparent in these results, as species with relatively low prevalences such as X. campestris pv. campestris had 

validation accuracies as high or higher than more prevalent species such as X. axonopodis pv. dieffenbachiae. 

The amount of variation over the accuracies of the climate and host MLP indicates that the learning process 

was fragile, that is, while some networks learned very well, others learned very poorly, even with the same 

training parameters. This indicates that the learning process was very sensitive to the quality of the data given 

to it, which is not surprising given the status of ANN as data-driven models. Ensembles had much less 

variation, but this was because only the best, that is, most accurate, MLP were used to create them. 

Input contribution of the cascaded networks showed that the host variables contributed the most strongly to 

the output of the network for the majority of species. However sensitivity analysis of these networks showed 

that the effects of the host networks were in general not much greater than those of the climate networks. This 

reinforces the need to perform a sensitivity analysis on significant variables so that their effects can be 

visualised. 

No published work has yet come to light on predicting the global distribution of bacterial species. The 

results presented in this paper are thus significant as they point towards the use of ANN as a useful predictive 

tool. 

As is the case with many ecological data sets, the data used in this study is likely to be very noisy. For 

example, while the environment in a particular region may be conducive to the establishment of a species, the 

species may never have gained access and therefore not established in the region. Alternatively, while a 

species may be listed as being absent from a particular geographic region, this may be because it has never 

been officially recorded in that region, as opposed to being truly absent. Alternatively, the disease may have 

once been established, but since been eradicated. 

While use of the maximum, minimum and mean of the climate variables provides useful information, in 

terms of providing the range of the variables for a region, there is a high degree of correlation between the 

mean and the other two statistics. There is also likely to be correlation between the climate variables 

themselves. This could be reduced by performing a principal components analysis (PCA) over the data and 

using only the top few principal components. However, it is desirable, for future work, to be able to identify 

which of the input variables to the climate and host plant assemblage MLP are the most significant (Olden and 

Jackson, 2002; Olden, Joy and Death, 2004). A PCA transformation of the input data would remove the 

correlations, but may complicate the task of identifying the contribution of the original variables during the 

analysis of the MLP.  
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5 Conclusion 

The results presented in this paper show that artificial neural networks are a useful tool for predicting the 

global distribution of bacterial crop diseases. Moderate to good accuracies, as measured by Cohen’s Kappa, 

were achieved over the independent testing data sets for each species. Overall, predictions from abiotic 

variables were less accurate than those from biotic variables, while combining these predictions using either an 

ensemble method or a cascaded neural network method yielded accuracies that were superior to both for the 

majority of species. 
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