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Abstract 

In this paper, a discrete-time food chain characterized by three species is modeled by a system of three 

nonlinear difference equations. The existence and local stability of the equilibrium points of the discrete 

dynamical system are analyzed. It is shown that for some parameter values the interior equilibrium point loses 

its stability through a discrete Hopf bifurcation. Basic properties of the discrete system are analyzed by means 

of phase portraits, bifurcation diagrams and Lyapunov exponents. We have varied the result through numerical 

calculation. 
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1 Introduction 

Lotka-Volterra model describes interactions between two species in an ecosystem, a predator and a prey. The 

model was developed independently by Lotka (1925) and Volterra (1962). After them, more realistic prey-

predator models were introduced by Holling suggesting three kinds of functional responses for different 

species to model the phenomena of predation (Holling, 1965). After that, the dynamics of a Lotka-Volterra 

model was studied by many authors (May, 1974; Kasarinoff and van der Deiesch, 1978; Kuang, 1988; Danca 

et al., 1997; Zhu et al., 2002; Jing and Yang, 2006; Elabbasy et al., 2009). The research dealing with 

interspecific interactions has mainly focused on continuous prey-predator models of two variables, where 

dynamics include only stable equilibrium or limit cycles (Kasarinoff and van der Deiesch, 1978; Kuang, 1988; 

Zhu et al., 2002). 

     Ecological food webs or food chains typically, contain several layers, where the consumers which eat from 

the bottom resource layer are the prey of another predator. The prey-predator models mentioned above can 

easily be extended with a "top predator" that lives on the predator population. Doing so, one obtains a food 

chain of three species (Freedman and Waltman, 1977; Freedman and So, 1985). It was reported that the three 

species continuous time models have more complicated patterns. These models form dissipative dynamical 

systems which can posses three distinct dynamical possibilities like stable focus, limit cycle and chaos. The 

last two decades of research demonstrated very complex dynamics which can arise in continuous time food 

chain of three or more species (Hastings and Powell, 1991; Klebanoff and Hastings, 1994; McCann and 

Yodzis, 1994; Kuznetsov and Rinaldi, 1996; Deng, 2001; El-Owaidy et al., 2001; Letellier and Aziz-Alaoui, 

2002; Aziz-Alsoui, 2002; Chauvet, 2002). 
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For example, Hastings and Powell (1991), Klebanoff and Hastings (1994), demonstrated the occurrence of 

chaotic dynamics in a simple continuous three species food chain model in which both consumer species have 

Holling type II functional response. 

     Many authors have studied food chain models concentrate on continuous case. On the other side, 

sometimes, it could be desirable to replace the set of continuous-time differential equations by a set of 

difference equations for which the time is a discrete variable. Also, discrete time models governed by 

difference equations are more appropriate than continuous ones when the interactions of species are non-

overlapping generations (Ivanchikov and Nedorezov, 2011, 2012). Discrete time systems can also provide 

efficient computational models of continuous ones of numerical simulations (Liu and Xu, 2003). 

 

2 Discrete-time Food Chain 

Discrete-time dynamical systems are appropriate for expressing dynamics of population densities of species 

whose generations do not overlap (Kon, 2001). Such species are found in temperate regions, because of their 

seasonal environments. Most of univoltine insects have non-overlapping generations see Kon (2001) and 

Murray (1998).  

     The discrete-time three species food chain model is studied analytically as well as numerically. We now 

consider a food chain of three interacting species, each with non-overlapping generations, which affect each 

other’s population dynamics. This food chain is describes the insects group of three fully different insects. 

These insects are a lowest-level prey x  is preyed upon by a mid-level species y , which, in turn, is preyed by a 

top-level predator .z  The proposed model to study such ecosystems can be described by the following system 

of nonlinear difference equations in non-dimensional form, 

 

 

 

 

 

 

In the absence of predation, prey grow logistically )(x , a Holling type I for predator )( y , and Holling type I 

for top predator )(z . The parameter a is the intrinsic rate of growth of the prey x ;  b is the per capita 

searching efficiency of the predator y ; c is the per-prey x  clutch of the predator y ; d is the per capita 

searching efficiency of the predator z  and r is the per-prey y  clutch of the predator z . For all these 

parameters, we are assuming only positive values. The map given by system (1) is a noninvertable one of the 

space. The study of the dynamical properties of the above map allows us to get information of the long-run 

behavior of food chain populations. Starting from given initial condition ),,( 000 zyx , the iteration of system 

(1) is uniquely determined a trajectory of the states of population output in the following form  
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3 Equilibrium Points and Local Stability 

In order to study the qualitative behavior of the solutions of the nonlinear difference equations (1), we define 

the equilibrium points of the dynamic system as a nonnegative fixed point of the map (1), i.e. the solutions of 
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The system (2) has four equilibria: 

(i) )0,0,0(0 E is the origin, all species are extinct. 

(ii) )0,0,
1

(1 a

a
E


 is the axial fixed point in the absence of mid-level species 0y and top-level 

predator 0z  exists for 1a . 
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(iv) The interior (positive) fixed point ),,( ***
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all species coexist. 

It is obvious that 210 ,, EEE are boundary equilibrium points and 3E is the interior equilibrium. The 

dynamical behavior of the fixed points of the three-dimensional system (1) can be studied by computation of 

the eigenvalues of Jacobian matrix of (1). The Jacobian matrix J  at the state variables ),,( zyx  has the form 
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The determinant of the Jacobian is  

.2)),,(( 2 yacrxacrxyzyxJDet   

The system (1) is said to be dissipative (Wiggins, 1990) if  

.
1
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In order to study the stability of the fixed points of the model, we first give the following Theorem. 

Theorem (Elaydi, 1996).  Let  

                               0)( 32
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be the characteristic equation for a matrix defined by Eq. (4). 

The following statements are true: 

(a) If every root of Eq. (5) has absolute value less than one, then the fixed point of system (1) is locally 

asymptotically stable and fixed point is called a sink. 

(b) If at least one of the roots of Eq. (5) has absolute value grater than one, then the fixed point of system 

(1) is unstable and fixed point is called a saddle.  

(c) If every root of Eq. (5) has absolute value grater than one, then the fixed point of system (1) is a 

source. 

(d) The fixed point of system (1) is called hyperbolic if no root of Eq. (5) has absolute value equal one. If 

there exists a root of Eq. (5) with absolute value equal to one, then the fixed point is called non-

hyperbolic.   

Lemma 1 The boundary equilibrium point 0E  of the system (1) is a stable fixed point when 1a  and 

unstable otherwise. 

Proof. By linearizing system (1) at 0E , one obtains the Jacobian  
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results 1 and1 13,2   whenever 1a . Hence the equilibrium point 0E  is a stable. Also the 

equilibrium point 0E unstable if 1a . Moreover 0E  is called non-hyperbolic point when .1a  
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c
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whose eigenvalues are .0,2 321 
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Proof. The Jacobian matrix  )( 2EJ  at the equilibrium point   
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So, the equilibrium point 2E  is asymptotically stable when Eq. (6) is satisfied while it is unstable otherwise. 

      Also one can see that the eigenvalues 3,2 are complex when a
c

a
 2)1

2
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Here we discuss the stability of the equilibrium point 3E . 
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       We consider the stability properties of 3E . If we linearized the system (1) about 3E , then the Jacobian 
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The necessary and sufficient conditions for 3E  to be asymptotically stable is that all roots of characteristic 

equation (5) have magnitudes less than one. We have 
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Following the Jury's criterion (see for instance [26]), the roots of (5) satisfy 3,2,1,1  ii  if and only if 
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If the stability conditions (10) are satisfied it implies that the equilibrium point 3E  is stable. Obviously, the 

interior equilibrium point 3E  is stable in the regions defined by Eqs. (10), otherwise unstable. 

 

4 Numerical Simulations 

As we are dealing with a nonlinear 3-dimensional map, and since the theoretical tools to prove the existence of 

chaotic behavior in 3-dimensions are still very poor, so we present some numerical simulation results to verify 

the existence and bifurcations of periodic solutions emerging from discrete Hopf bifurcation and to show the 

interesting and complexity of some dynamical behaviors in discrete time food chain. 

     Without loss of generality, we fix the parameters and assume that 8.3,5.3,3,7.3  rdcb  and 

assume that a  vary. We consider the following initial conditions ),,( 000 zyx = )1.0,2.0,3.0(  situated in the 

basin of attraction of the fixed point 3E  and we start to study the dynamic behavior of the system (1) when the 

parameter a  is varied in the interval [2.8, 4.3]. 

The phase portraits are considered in the following cases: 

Fig. 1 shows that the fixed point 3E  is a stable attractor at a=2.95.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Stable fixed point for system (1) at a  = 2.95. 

     

  

The behavior of the system (1) at a=2.98 before a discrete Hopf bifurcation is shown in Fig. 2. On the 

other side, Fig. 3 demonstrates the behavior of the system (1) after a discrete Hopf bifurcation when a=3.01. 

From Figs 2 and 3, we deduce that the fixed point 3E  loses its stability through a discrete Hopf bifurcation, 

when the parameter a varies from 2.98 to 3.01.  
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Fig. 2  Stable fixed point for system (1) before a discrete Hopf bifurcation at a  = 2.98. 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Fig. 3 The fixed point for system (1) after a discrete Hopf bifurcation at a  = 3.01. 

 

 

Increasing the control parameter a forward ( a =3.1) leads to make the fixed point 3E  unstable and the 

creation of an invariant closed curve around the fixed point, see Fig. 4.  
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Fig. 4 The first attracting invariant cycle for system (1) around the fixed point at a  = 3.1. 

 

 

In Fig. 5 the equilibrium point 3E  becomes stable again at a =3.6.  

The second invariant cycle for system (1) which exists for a =3.89, is shown in Fig. 6. 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

  

Fig. 5  System (1) back to stable fixed point at a  = 3.6. 
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Fig. 7 showed the breakdown of the second invariant cycle which exists for a =3.904.  

Fig. 8 represents a set of 17 closed curves brought about by a discrete Hopf bifurcation of the th17 iterate of  

the system (1), obtained for a =3.973.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  The second invariant cycle for system (1) at a  = 3.89. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                 

Fig. 7  The breakdown of the second invariant cycle for system (1) at a  = 3.904. 
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Fig. 8  The existence of multiple invariant cycle for system (1) at a  = 3.973. 

 

 

Further increase in a value gives a sequence of discrete Hopf bifurcations and then a chaotic attractor arises. 

The strange attractor is produced by the breaking of the invariant circles and the appearance of the  

seventeen chaotic regions changes as they are linked into a single attractor at a =3.985 see Fig. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  Strange attractor for the system (1) at a  =3.985. 
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      The breakdown and disappears of a strange attractor for three successive values of control parameter a 

control parameter a which belongs to [3.99, 3.995] is illustrated in Fig. 10.  

      Figs 11 and 12 represent strange attractors for the system (1) with a =3.997 and a =4.1, respectively. 

These attractors exhibit fractal structure. 

 

 

                      (10.1)                                                        (10.2)                                                (10.3) 

 

Fig. 10 The breakdown and disappears of a strange attractor for three successive values of control parameter a; (10.1) for a = 

3.99, (10.2) for a  = 3.994 and (10.3) for a  = 3.995. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11  Strange attractor for the system (1) at a  = 3.997. 
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Fig. 12  Strange attractor for the system (1) at a  = 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

  

Fig. 13  Full developed chaos for the system (1) at a  = 4.26.    

 

 

In addition, the system (1) occurs a full developed chaos when a =4.26, Fig. 13. For a >4.26 the 

broadening chaotic attractor disappears and this means that the phase trajectories of the system become infinite. 

Lyapunov exponents measure the exponential rates of convergence or divergence, in time, of adjacent 

trajectories in phase space. So, the Lyapunov exponents are one of the most important tools for understanding 

chaotic behavior. A positive Lyapunov exponent is characteristic of chaos while zero and negative values of 

the exponent signify a marginally stable or quasiperiodic orbit and periodic orbit, respectively. For our system 

(1), to analyze the parameter sets for which aperiodic behavior occurs, one can compute the maximal 
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Lyapunov exponent depend on parameter a . For example, if the maximal Lyapunov exponent is positive, one 

has evidence for chaos. Moreover, by comparing the standard bifurcation diagram in parameter a , one obtains 

a better understanding of the particular properties of our system. In order to study the relations between the 

local stability of the interior fixed point 3E  compute the maximal Lyapunov exponents for intrinsic rate of 

growth of the prey x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Fig. 14  Bifurcation diagram for the system (1) versus a  and corresponding maximal Lyapunov exponent. 

 

 

In Fig. 14, the bifurcation diagram for system (1) is plotted as a function of the control parameter a  for 

1.1≤ a≤4.5 and the maximal Lyapunov exponent is plotted.  From this figure it is clear that the fixed point 

is stable for a <3.01, and loses its stability through the discrete Hopf bifurcation. As parameter a  increases 

the behavior of this model is becomes complicated, including many a discrete Hopf bifurcations and crises. 

System (1) goes back to stable fixed point when a =3.6. Again the fixed point loses its stability through a 

discrete Hopf bifurcations at a =3.87. For a >3.87 a second invariant cycle appears enclosing the fixed 

point 3E , and its radius becomes larger with respect to the growth of a . As a  increases the periodic orbits 

become irregular and reach chaotic state at last, as one can see form Fig. 14. In addition, there are many 

complex dynamics including the chaotic bands and from maximal Lyapunov exponent one can see that as a  

increases chaotic dynamics appear. 

 

5 Conclusions 

In this paper, the behavior of the food chain as a discrete dynamical system in 3R  is investigated. Basic 
properties of the system have been analyzed by means of phase portraits, Bifurcation diagrams and maximal 

Lyapunov exponent. Under certain parametric conditions, the interior fixed point enters a discrete Hopf 

bifurcation phenomenon. This paper may be useful to ecologist who works in the biological control for insects. 
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Although, we focused our attention, only, on the varying control parameter a  and as a result the studied 

system exhibited many complex dynamics, the system is sensitive to more than one parameter. So, a more 

detailed analysis for this system focus on the bifurcation analysis by using Normal form theorem and center 

manifold theory will be provided in the near future (Elsadany, in preparation). 
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