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Abstract 

Principal Component Analysis is the most widely used multivariate technique to summarize information in a 

data collection with many variables. However, for it to be valid and useful the meaningful information must be 

retained and the noisy information must be sorted out. To achieve it an index from the original data set is 

estimated, after which three classes of methodologies may be used: (i) the analytical solution to the distribution 

of the index under the assumption the data has a multivariate normal distribution, (ii) the numerical solution to 

the distribution of the index by means of permutation tests without any assumption about the data distribution 

and (iii) the bootstrap numerical solution to the percentiles of the index and the comparison to its assumed 

value for the null hypothesis without any assumption about the data distribution. New indices are proposed to 

be used with permutation tests and compared with previous ones from application to several data sets. Their 

advantages and draw-backs are discussed together with the adequacy of permutation tests and inadequacy of 

both bootstrap techniques and methods that rely on the assumption of multivariate normal distributions. 

 

Keywords multivariate; permutation tests; principal components analysis; randomization; significance; 

stopping rules. 

 

 

1 Introduction 

Often the ecologist is faced with the problem of having data with many variables on a certain subject. It is his 

wish that information can be summarized into a small number of components. Optimality is achieved when the 

researcher gets the smaller possible number of components with the least loss of relevant information (Gauch 

Jr, 1982; Jackson, 1991; Manly, 1986; Zhang, 2011c). The Principal Components Analysis (PCA) is the 

benchmark in these linear dimension reduction techniques. However, when performing it the ecologist faces 

several problems. Among these, three are most common: 

(i) Is it worth undergoing a PCA? It depends whether the variables are correlated enough so that the p 

variables can be reduced to k <p principal components or otherwise the p variables are badly correlated and an 

analysis on the principal components brings no advantage from a separate analysis on each of the variables 

(Jackson 1991).  

(ii) Which principal components to use? The researcher whishes to know which eigenvectors are 

expressing meaningful correlations among variables and which are must probably just explaining error (Gauch 

Jr, 1982; Zwick and Velicer, 1986; Jackson, 1991; Jolliffe, 2002; Peres-Neto et al., 2005). 
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(iii) What is each principal component’s interpretability? The researcher wishes to understand what is 

the pattern expressed by each principal component and in doing so he needs to know which variables are of 

real interest to that particular principal component (Jackson, 1991, Manly, 1986, Jolliffe, 2002, Peres-Neto et 

al., 2003).  

It is the objective of this work to discuss simple solutions to the questions above in a language accessible to 

the common researcher. The answers are given by permutation tests, a class of randomization tests which 

application to PCA has already proven to give reliable results (ter Braak, 1988; Dijksterhuis and Heiser, 1995; 

Peres-Neto et al., 2005). These were tested on many data sets among which a set of twelve abiotic variables 

and a set of eleven seagrass variables both from Ria Formosa lagoonary system (Cabaço et al., 2008), a set of 

nine variables characterizing employment in Europe in the 1970’s (Manly, 1986), Bumpus’ set of five 

morphometric measurements on female sparrows (Manly, 1986) and an artificially generated set of ten 

uncorrelated variables with twenty sampling units. The full methodology was implemented in Matlab® 

environment with a software package developed in event oriented code. It is available together with its tutorial 

in the supplementary material randPCA.rar. 

 

2 Methods 

Answering the questions above always involved a test to tell how likely was the researcher to be wrong when 

the answer was of a certain kind. These tests always had three features: (i) a statistic taken from the original 

data set, (ii) a null hypothesis that a similar result could be obtained from a PCA upon a data set of 

uncorrelated variables, in which case the result was the product of error variation and (iii) the distribution of 

the statistic when taken from n data sets of uncorrelated variables. It was against this distribution that the 

alternative hypothesis was tested. So, the permutation tests consisted of generating n (usually in the order of 

thousands) new data sets from the original data set, but where all p variables were uncorrelated. This was 

achieved by randomly permuting the m measurements on each variable, independently from the others, which 

did break any correlation between them (Zhang, 2011a, b, c; Zhang and Zheng, 2011). Afterwards, the statistic 

estimated for the original data set was compared with the ones estimated for the n randomly redistributed data 

sets sorting all and checking for its rank (ter Braak, 1988; Dijksterhuis and Heiser, 1995; Peres-Neto et al., 

2005). Suppose a certain statistic is monotonically ascendant in relation to correlation between variables. Then, 

if the value estimated for the original data set is within the upper x% of all the values, it means that there is an 

x% probability of being wrong if the researcher rejects the null hypothesis. 

2.1 When to start a PCA? 

When variables were uncorrelated each principal component (pc) tended to explain as much variation as any of 

the variables and a departure from this expected behavior could only arise from random error. In this advent it 

was useless to apply a PCA to the specified data set as the extracted pc did not synthesize information. On the 

other hand, when groups of variables showed factual correlations the bigger pc tended to describe it. Hence, 

the variation explained by these pc was bigger than the variation of a single variable, which made it 

worthwhile to perform a PCA (Jackson, 1991, Manly, 1986). Seven statistics were used to estimate whether it 

was useful to undergo a PCA to a specified set of variables. These statistics were: 

i) The generalized variance (Jackson, 1991) is the determinant of the covariance matrix and it is 

proportional to the area, volume or hyper-volume generated by a data set. The more uncorrelated the variables 

the bigger the volume generated while the more correlated the variables the more the volume tends to contract 

to k<p dimensions. Hence, the generalized variance is monotonically descendent with increasing covariation 

among variables. Its maximum value (in the advent of absolutely none covariation) is the sum of the main 

diagonal of the covariance matrix. Its minimum value (in the advent of total covariation) is zero. 
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ii) The scatter coefficient (Frisch, 1929) is similar to the generalized variance statistic in all but the fact 

that it is applied to the correlation matrix instead of its covariance matrix. The diagonal line of the correlation 

matrix is all ones and hence the maximum value of the scatter coefficient can not be greater than p. The 

minimum is zero. 

iii) The ψ index is a statistic here proposed which relies on the magnitude of the eigenvalues taken from 

the correlation matrix for the data set. If variables are uncorrelated each of the extracted pc tends to explain as 

much variance as any single variable and thus their associated eigenvalues tend to 1. When these are plotted in 

a ranked order, they follow a curve line which approximates the y=1 line. On the other hand, the more the 

correlation between variables the bigger some eigenvalues while the smaller the remainder and the steeper the 

curve line when these are plotted in a ranked order (Fig.1a). The area between the ranked eigenvalues line and 

the y=1 line is a good estimate of the degree of correlation between variables and, as the number of pc is a 

discrete quantity, one may simply estimate that area as a Riemann’s integral: ∑(λi-1). However, the area 

relative to the eigenvalues smaller than 1 (in the right hand side of Fig.1a) is negative and thus is subtracted to 

the area relative to the eigenvalues bigger than 1 (in the left hand side of Fig.1a). This may render the statistic 

less sensitive. The ψ index solves this question by simply squaring each parcel: ψ =∑(λi-1)2 (Fig.1b). This 

statistic is monotonically ascendant with increasing correlation. Its maximum value is p(p-1) and its minimum 

value is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1  (a) eigenvalues and (b) ISE for three data sets of ten variables each, manipulated to have different degrees of correlation. 

 

 

iv) The φ statistic (Gleason and Staelin, 1975) is much similar in principles and behavior to the ψ index. 

This statistic is also monotonically ascendant with increasing correlation. Its maximum value is 1 and its 

minimum value is zero. Applied to the correlation matrix its formulae is given by 

)1(

2




 

pp

pi                                                      (1) 

v) The index of a matrix (Jackson, 1991) compares the biggest and smallest eigenvalues but neglects the 

distribution of the variation allocated to all the other pc. This statistic is monotonically ascendant with 

increasing correlation. Its maximum value is +∞ and its minimum value is zero. It is given by the equation 
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p
1                                                                          (2) 

vi) The information statistic (Kullback, 1959) to be applied upon the correlation matrix is monotonically 

ascendant with increasing correlation. Its maximum value is +∞ and its minimum value is zero. It is given by 

the equation 

 )ln(
2

1
i                                                            (3) 

vii) The divergence statistic (Kullback, 1959) to be applied upon the correlation matrix is monotonically 

ascendant with increasing correlation. Its maximum value is +∞ and its minimum value is zero. It is given by 

the equation 
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i

i
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

2

1
                                                                   (4) 

2.2 Which principal components to use? 

Even if at least some of the variables were significantly correlated, this did not mean that all of the pc were of 

interest. In fact only the first few should explain a true correlation and if re-sampling was done it should be 

expected to obtain approximately these same pc. As for the remainder pc, these were most probably just 

explaining residual error and if re-sampling was done one should not expect to obtain similar ones (Gauch Jr, 

1982; Jackson, 1991). Four criteria were used to estimate for which pc there was a low probability of being 

wrong if one said they account for concrete correlations and not just residual error.  

(i) The rank of roots (ter Braak, 1988) is very simple as it states that the kth biggest pc is most likely 

explaining meaningful correlations or covariances if it tends to be greater than the pc of the same rank taken 

from the n randomly generated data sets, which are known to only explain error. 

(ii) The equality of roots (Jackson, 1991) relies on that when at least two roots of the characteristic 

equation (the eigenvalues) are nearly equal the orientation of the correspondent eigenvectors is not defined 

with much precision within the plane generated by these same eigenvectors. Hence, attempts to interpret these 

may be unwise. The most common occurrence will be for the larger first few roots accounting for most of the 

variability to be fairly well separated while the remainder would all be small, of the same order of magnitude 

and assumed to represent residual error. With the present randomization method the researcher first calculates 

the difference between all consecutive roots for the original data set. It is then expected for the eigenvectors 

accounting for meaningful correlations to have their differences significantly larger than the differences 

between the same pair of consecutive roots for the n randomly permuted data sets. 

(iii) The ratio of roots (Jackson, 1993) is similar to the test for the equality of roots in every thing but the 

dissimilarities between roots being estimated as a ratio (λa/λb) and not as a difference (λa-λb). This is supposed 

to make the statistic more sensitive and precise for the smaller roots.  

 (iv) The pseudo F ratio of roots (ter Braak, 1990) estimates the ratio between the kth root and the sum of 

all the roots smaller than the kth one. This should be more reliable because when λk is compared with the sum 

of all smaller roots, results may not be misled by odd events in λk+1.  

2.3 Which variables to each principal component? 

Once the pc were chosen they needed to be interpreted as a measure of something which was either a weighted 

average or a weighted contrast between variables that could have rather different contributions to the amount 

of variation explained by the pc (Jackson, 1991, Manly, 1986). Therefore, it was desirable to quantify how 

106



Computational Ecology and Software, 2012, 2(2):103-123 

 IAEES                                                                                                                                                                          www.iaees.org

likely was each variable to be associated with each pc. Yet, the magnitude of the correspondent loadings alone 

was a poor estimator. For this purpose two monotonically ascendant statistics were used: 

i) The correlations of the pc with the variables (Jackson, 1991) is a statistic that estimates the correlation 

of each pc with each variable. 

j

iij
ij s

u
r


                                                                 (5) 

where rij is the correlation coefficient of the ith pc with the jth variable, uij is the loading of the jth variable in the 

ith pc, λi is the eigenvalue of the ith pc and sj is the standard deviation of the jth variable. If one is working with 

the correlation matrix all sj equal 1. Axis reflexion, that is the permutation of signs between loadings (Jackson, 

1995, Mehlman et al., 1995, Peres-Neto et al., 2003 and 2005), may occur. So it was also tested the use of the 

absolute values of this statistic. However, both forms could fail when applied with the permutation tests 

because they over-accounted the loadings relative to the eigenvalues. This could get problematic as each pc 

explaining random error tended to be associated to a particular variable and thus exhibited a high loading but a 

low eigenvalue.  

ii) To solve the problem above it was developed the index of the loadings (IL), which enhanced both the 

loadings and the eigenvalues by squaring them. This way, only high loadings from pcs with high eigenvalues 

had good chances to be considered significant whereas the remainder events only had mild chances of doing so. 

j

iij
ij s

u
IL

22.
                                                              (6) 

Two approaches could be taken in the process of choosing the right variables to each pc according to 

significance: (a) to choose only the variables for which there was a good probability of being right if one said 

they were associated to the specific pc, or (b) to reject only the variables for which there was a good 

probability of being wrong if one said they were associated to the specific pc. Also, it was found that a 0.05 

significance level could be too restrictive. It is up to the researcher to choose the approach supported by his 

objectives and better knowledge of the processes under study. 

2.4 Non orthogonal simplification 

Once the significance of the loadings was estimated each original pc could be changed to a simplified vector 

(sv) by discarding the variables with non-significant loadings. By doing so they could also lose their 

orthogonality. It was then a matter of judging what was more important: to assure orthonormality or to 

simplify the structure of the vectors. If the choice was to simplify the pc, three criteria needed to be fulfilled 

for the sv to be considered adequate approximations: (i) each sv should have a high correlation with the pc it 

was approximating, (ii) each sv should have a low correlation with the other pc and (iii) each sv should have a 

low correlation with the other sv. 

2.5 Vector rotation (Factor Analysis) 

Regarding a Factor Analysis the methodologies above answered the questions about whether it was worthwhile 

trying to reduce the dimensionality, how many factors should be use in the model and what was the structure 

of the provisional factors. Moreover, the identification of the significant loadings was a good estimator of the 

interpretability of the rotated factors.  

2.6 The z scores  

The variables found not significantly contributing to a certain pc were not accounted for its z scores. 

Theoretically there were two distinct ways to do it which nonetheless yielded the same practical results: (i) The 

z-scores were estimated upon the sv, for which the non significant loadings were set to zero. (ii) Alternatively, 
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the z scores were estimated upon the orthonormal pc, for which case the sample residuals for each badly 

correlated variable were taken out. Hence only the variables’ means were used. As the means were also 

standardized to be zero, either ways resulted in parcels of the z-scores which equaled zero when they 

corresponded to a non-significant association between a variable and a pc. Throughout this work it was 

focused on the most common approach of a PCA over the correlation matrix, for which the z scores have zero 

mean. It is equivalent to a PCA over the covariance matrix of variables standardized to zero mean and unit 

variance. It is also possible to perform a PCA and estimate the z scores under different options. These are well 

explained by Jackson (1991). The following methods are valid but require slight adaptations for those cases. 

2.7 Variance partition 

The eigenvalues are estimates of the variances explained by the pc. Therefore, if the variances of their 

associated z scores are estimated these will equal the eigenvalues (Manly, 1986; Jackson, 1991). However, the 

PCA numerical method estimates the structure of the pc (the eigenvectors) given the constrain that: 

22
2

2
1  ... 1 juuu                                                                 (7) 

And so: 
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2
2,

2
1,  ... .)var( jiiiii uuupc                                        (8) 

which leads to the variance of variable xj explained by pci being given by λi.ui,j
2. Consequently, the total 

amount of variation of variable xj explained by the PCA model is given by: 

  wjvjujj wvux  222  ... var                                        (9) 

Notice the u1,j, u2,j, … , ui,j were replaced by uj, vj, … , wj in order to simplify the presentation. Each package of 

variation was classified according to the significance of its correspondent pc (u, v, … , w) and loading (the j 

index). A non-significant package meant that amount of variation corresponded to error and was attributed to 

that pc by a random process. Equation (9) could equally be achieved starting from the z scores. When the kth 

sample was defined by the column vector of x (X, where the xjk were in standardized units) the sample z scores 

(Z) for the pc (u, v, … , w) could be estimated with the aid of the square matrix of the loadings (U’) by Z=U’X: 
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Because U is orthonormal and hence U-1=U’, the column vector of x could be recalculated back from 

UZ=UU’X=UU-1X=IX=X, where I is the identity matrix: 
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This could equally be written as a system of linear equations. Furthermore, it was straight forward to develop 

this system into a system of non-linear equations where each reported to the variance contained in each 

variable: 
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Each of the equations of the system could be further developed to: 
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Knowing that  
k

jkx
n

21
 was the variation of variable xj, that 

  
k

k

n

z


2
  was the eigenvalue of the 

respective pc and that  
k

vkuk zz ,  
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wkuk zz , … and  
k

wkvk zz  all equal zero as a consequence of 

the orthogonality of the pc; each of the equations of the system could be rewritten in the form already 

presented in equation (9). An alternative method enabled to decompose the variance contained in each pc into 

parcels relating to variances and covariances of the variables (equation 14). 

 

109



Computational Ecology and Software, 2012, 2(2):103-123 

 IAEES                                                                                                                                                                          www.iaees.org

 





     

..),cov(2...),cov(2...

...),cov(2var...varvar

...2...2...

2...

...2...2...

...2...
1

...
....

1

1

2211

2121
2

2
2
21

2
1

,,2
2

1
1

,2,1
21

2
,2

2
,22

2

2
,12

1

,,22,,11

,2,121
2
,

22
,2

2
2

2
,1

2
1

2

2

1

21

2



































































jjjj

jj

n

k

kjk
j

n

k

jkk
j

n

k

kk
n

k

kj
j

n

k

k
n

k

k

kjkjkjkj

k
kkkjjkk

n

k

kj

j

n

k
k

xxuuxxuu

xxuuxuxuxu

n

xx
uu

n

xx
uu

n

xx
uu

n

x
u

n

x
u

n

x
u

xxuuxxuu

xxuuxuxuxu
n

x

x

x

uuu
n

z
n



          (14) 

 

 

3 Results 

3.1 When to start a PCA? 

The results from the application of all the seven statistics agreed that it was worthwhile to under go a PCA to 

the four factual data sets while it was not worthwhile to do it for the random data set (Table 1). When 

comparing the values and critical thresholds (for p=0.05), attention to the fact that the first two statistics are 

monotonically descendent while the other five are monotonically ascendant. 

3.2 Which principal components to use? 

The results have shown only the test for the rank of the roots was consistent and in accordance with what was 

previously known about the data sets (Table 2 to Table 6). The test for the equality of the roots could be 

misleading when the biggest pc was close to the second biggest but was reliable as a stopping rule for 

identifying the last non-trivial pc. Both the tests for the ratio of the roots and the pseudo F ratio of the roots 

often gave false results about the probability of Type I error in trivial components. The test for the ratio of the 

roots also showed it could easily give Type II error in the non-trivial components. The results from the 

permutation tests were compared with other methodologies. The broken stick model was a reliable stopping 

rule for the present data sets and for other data sets of few variables. It always agreed with the tests for the rank 

of the roots and the equality of the roots (Fig. 2). However, it was not trust-worthy when applied to very large 
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data sets (not shown). Hence, for both data sets about Ria Formosa should only be used the first three pc; in the 

case of employment in Europe in the 1970’s, only the first two pc; in the case of Bumpus’ sparrows, only the 

first pc and in the case of the 10 uncorrelated variables, none. It was also demonstrated that accepting every 

component with a root bigger than one was a bad criterion. In three of the five data sets were obtained pc with 

roots bigger than 1 which still only related to error. Also bad criterion would be to retain all the pc until a 

pre-established cumulative proportion of variation. In the particular case of the randomly generated data set 

100% of its variation is related to error, all the pc are trivial and still four had roots bigger than 1. 

 

 
Table 1 “Whether to start a PCA” for five different data sets and according to seven different statistics and  
randomization tests with 10000 simulations 

  
Gen. 
variance 

Scatter 
coeff. 

Ψ index Φ statistic
Index of a 
matrix 

Inf. 
statistic 

Div. 
statistic 

value 2.7*1014 4.4*10-8 20.9 0.4 26.1 8.47 133 

critical 
(0.05) 

3.6*1017 6*10-5 8.8 0.26 14.1 4.16 45 

12 abiotic 
variables 
from Ria 
Formosa 

sig. <0.0001 <0.0001 <0.0001 <0.0001 0.0222 <0.0001 0.0209 

value 7.3*1014 5.8*10-7 17 0.39 27.6 7.18 155 

critical 
(0.05) 

3.5*1018 0.0028 7.5 0.26 6.19 2.58 11.52 

11 seagrass 
variables 
from Ria 
Formosa 

Sig <0.0001 <0.0001 <0.0001 <0.0001 0.001 <0.0001 <0.0011 

value 152 2.3*10-6 10.4 0.38 276 6.47 10964 

critical 
(0.05) 

5.5*106 0.087 3.5 0.22 3 0.99 3 
Emp. in 
Europe 

sig <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

value 2.5 0.04 8.63 0.66 4.69 1.65 4.57 

critical 
(0.05) 

45.3 0.67 0.63 0.18 1.68 0.16 0.33 
Bumpus’ 
female 
sparrows 

sig <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

value 5.9*109 4.3*10-19 8.18 0.3 1.5*108 20.98 3.8*1015 

critical 
(0.05) 

0 0 9.34 0.32 4.2*108 21.45 4.7*1015 
Random 
generated 

sig 0.78 0.78 0.43 0.43 0.96 0.78 0.89 

 

 

3.3 Which variables to each principal component? 

The index for the loadings gave more reliable results when applied to the five data sets here presented (Tables 

7 to Table 10). The correlations of the pc with the variables (Jackson 1991) showed a tendency to overlook 

high loadings (type I error) in non-trivial pc while accepting high loadings (type II error) from trivial pc. 

However, posterior application of both statistics to a much larger data set (with many more variables and 

sampling units) showed the index for the loadings to accept variables that were not so well correlated (Guerra, 

2010). On the contrary, the correlations of the pc with the  variables by being more strict yielded more striking 

patterns. 
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Table 2 Choosing the principal components for the “Bumpus' sparrows” data sets. Type I error probability: 0.05 (in  
black bold) and 0.1 (in grey bold). Both the test for the equality of roots and the ratio of roots were done using λi and λi+1.  

eigenvalue 
percentage of  
variation 

broken 
stick 

comulative 
percentage of 
variation 

rank of  
roots 

equality 
of roots 

ratio of  
roots 

pseudo F 
ratio of  
roots 

3.62 72.32 45.7 72.3 0.001 0.001 0.001 0.001 

0.53 10.63 25.7 82.9 1 0.600 0.077 0.011 

0.39 7.73 15.7 90.7 1 0.806 0.267 0.059 

0.30 6.03 9 96.7 1 0.640 0.027 0.027 

0.16 3.29 4 100 1    

 

 

 
Table 3 Choosing the principal components for the “employment in Europe in the 1970’s” data set. Type I error  
probability: 0.05 (in black bold) and 0.1 (in grey bold). Both the test for the equality of roots and the ratio of roots  
were done using λi and λi+1.  

eigenvalue 
percentage of  
variation 

broken 
stick 

comulative  
percentage of 
variation 

rank of  
roots 

equality  
of roots 

ratio of  
roots 

pseudo F 
ratio of  
roots 

3.49 38.75 31.43 38.75 1E-04 6.E-04 0.017 1E-04 

2.13 23.67 20.32 62.41 6.E-04 4.E-04 4.E-04 1E-04 

1.10 12.21 14.77 74.63 0.9951 0.843 0.793 0.004 

0.99 11.05 11.06 85.68 0.9108 0.025 0.002 1E-04 

0.54 6.04 8.28 91.71 1 0.545 0.160 0.002 

0.38 4.26 6.06 95.97 1 0.493 0.051 6.E-04 

0.23 2.51 4.21 98.48 1 0.766 0.162 0.002 

0.14 1.52 2.62 1E+02 1 0.506 1E-04 1E-04 

5E-05 5E-04 1.23 100 1    

 

 

 
Table 4 Choosing the principal components for the “12 abiotic variables from Ria Formosa” data set. Type I  
error probability: 0.05 (in black bold) and 0.1 (in grey bold). Both the test for the equality of roots and the ratio  
of roots were done using λi and λi+1.  

eigenvalue 
percentage of  
variation 

broken 
stick 

comulative  
percentage of 
variation 

rank of  
roots 

equality  
of roots 

ratio of  
roots 

pseudo F 
ratio of  
roots 

4.21 35.07 25.86 35.07 3.E-04 0.051 0.211 3.E-04 

2.99 24.94 17.53 60.01 2.E-04 0.021 0.079 1E-04 

2.01 16.77 13.36 76.78 0.056 0.009 0.008 1E-04 

1.17 9.71 10.58 86.49 0.979 0.270 0.111 1E-04 

0.80 6.63 8.50 93.11 0.998 0.157 0.009 1E-04 

0.41 3.44 6.83 96.56 1 0.418 0.003 2.E-04 

0.18 1.54 5.44 98.10 1 0.912 0.310 0.065 

0.12 1.02 4.25 99.12 1 0.827 0.018 0.040 

0.05 0.38 3.21 99.50 1 0.986 0.591 0.801 

0.03 0.25 2.29 99.75 1.000 0.996 0.884 0.825 

0.02 0.19 1.45 99.95 0.995 0.933 0.359 0.359 

0.01 0.05 0.69 100 0.960    
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Table 5 Choosing the principal components for the “11 seagrass variables from Ria Formosa” data set. Type I error  
probability: 0.05 (in black bold) and 0.1 (in grey bold). Both the test for the equality of roots and the ratio of roots  
were done using λi and λi+1.  

eigenvalue 
percentage of  
variation 

broken  
stick 

comulative  
percentage of 
variation 

rank of  
roots 

equality  
of roots 

ratio of  
roots 

pseudo F 
ratio of  
roots 

3.46 31.43 27.45 31.43 0.008 0.867 0.933 0.008 

3.22 29.25 18.36 60.69 10-4 0.005 0.061 10-4 

2.10 19.05 13.82 79.74 0.002 0.0002 0.000 10-4 

0.92 8.34 10.79 88.08 1 0.340 0.073 0.0004 

0.59 5.35 8.51 93.43 1 0.239 0.002 0.001 

0.26 2.35 6.70 95.78 1 0.960 0.689 0.438 

0.21 1.91 5.18 97.69 1 0.904 0.472 0.172 

0.15 1.33 3.88 99.02 1 0.878 0.391 0.066 

0.09 0.81 2.75 99.83 0.999 0.707 0.004 0.003 

0.01 0.13 1.74 99.96 1 0.987 0.351 0.351 

0.00 0.04 0.83 100 0.998    

 
Table 6 Choosing the principal components for the “ten random variables” data set. Type I error probability: 0.05 (in  
black bold) and 0.1 (in grey bold). Both the test for the equality of roots and the ratio of roots were done using λi and λi+1.  

eigenvalue 
percentage of  
variation 

broken  
stick 

comulative  
percentage of 
variation 

rank of  
roots 

equality  
of roots 

ratio of  
roots 

pseudo F 
ratio of  
roots 

2.22 22.17 29.29 22.17 0.652 0.951 0.956 0.652 

2.10 20.99 19.29 43.16 0.056 0.237 0.314 0.101 

1.63 16.28 14.29 59.44 0.136 0.053 0.051 0.108 

1.08 10.79 10.96 70.24 0.893 0.279 0.178 0.674 

0.77 7.75 8.46 77.98 0.977 0.792 0.716 0.969 

0.66 6.63 6.46 84.61 0.847 0.895 0.882 0.941 

0.59 5.93 4.79 90.54 0.411 0.280 0.283 0.704 

0.38 3.83 3.36 94.37 0.622 0.775 0.789 0.968 

0.30 3.03 2.11 97.40 0.296 0.905 0.951 0.951 

0.26 2.60 1 100 0.028       

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 SCREE plot for the five different data sets and their broken stick model predictions 
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Table 7 Interpreting the principal components for the data set of 5 morphometric variables from Bumpus’ female  
sparrows: significant loadings in black bold (0.05 significance level) and in grey bold (0.1 significance level).  

Variables         
total lenght alar extent length of beak and 

head length of humerus 
length of keel of  
sternum 

     

significance based on the correlation of the pcs with the variables 

0.001 0.0002 0.001 0 0.07 

0.53 0.35 0.34 0.41 0.93 
0.85 0.66 0.28 0.29 0.46 
0.39 0.71 0.26 0.64 0.55 
0.42 0.65 0.59 0.33 0.53 
     

significance based on the index of the loadings 

0 0 0 0 0 

0.97 0.82 0.80 0.88 0.47 
0.57 0.77 0.70 0.73 0.87 
0.80 0.74 0.71 0.81 0.97 
0.90 0.85 0.91 0.82 0.95 
     

choosen loadings based on the correlation of the pcs with the variables 

0.45 0.46 0.45 0.47 0.40 
     

choosen loadings based on the index of the loadings 

0.45 0.46 0.45 0.47 0.40 

 

 

The biggest pc extracted from the data set of five morphometric variables on Bumpus’ female sparrows 

(Table 7) was a weighted average of those variables. This pc was a measure of size as already stated by Manly 

(1986). 

The two pc taken from the data set of the nine variables about employment in Europe in the 1970’s (Table 

8) matched their interpretation by Manly (1986). The first pc was a contrast between occupation on the 

primary sector (agriculture) and occupation on the secondary (manufacturing and construction) and tertiary 

(services, social and personal services, and transports and communications) sectors. The second pc was a 

contrast between occupation on the secondary sector (mining) and tertiary sector (finance). 

The three pc taken from the data set of the twelve abiotic variables from Ria Formosa (Table 9) were 

describing three common processes in lagoonary systems. The first pc was a measure of the stream inputs to 

the system, namely fresh water and nutrient loadings. The second pc was a contrast between phosphate in the 

sediments, ammonia in the sediments and temperature in the low tide on one hand and the redox potential in 

the sediments in the other. This second pc could be said to be a measure of the anoxia induced by temperature. 

According to the Boudin diffusive model the oxygen concentration in the sediment is largely dependent on 

oxygen diffusion from the water column immediately above. So, when a major increase in temperature in the 

water column decreases its oxygen solubility, it also decreases its diffusion to the sediment because although 

diffusivity increases with temperature, the oxygen gradient is much smaller and thus there is less oxygen being 

“pumped” to the sediments. With increasing anoxia conditions in the sediment, ammonia tends to be the 

dominant inorganic nitrogen form and the phosphate adsorbed to the sediment particles is released to the 

interstitial water. The third pc was a contrast between temperature and organic matter content. It was a 

114



Computational Ecology and Software, 2012, 2(2):103-123 

 IAEES                                                                                                                                                                          www.iaees.org

measure of the effect of temperature on remineralization as most of the remineralization taking place was done 

by bacteriological activity which was temperature dependent. 

 

 
Table 8 Interpreting the principal components for the data set of 9 variables about the employment in Europe in the  
1970’s: significant loadings in black bold (0.05 significance level) and in grey bold (0.1 significance level). agr:  
agriculture; min: mining; man: manufacturing; ps: power supplies; con: construction; ser: service industries; fin: finance;  
sps: social and personal services; tc: transport and communications. 

Variables                 

agr min man ps con ser fin sps tc 

         

significance based on the correlation of the pcs with the variables 

1.00 0.4964 0.09 0.22 0.12 0.06 0.42 0.048 0.12 

0.45 0 0.13 0.23 0.44 0.85 0.94 0.73 0.47 

0.46 0.68 0.63 0.93 0.36 0.61 0.94 0.22 0.28 

0.53 0.56 0.18 0.85 0.03 0.45 0.44 0.87 0.74 

0.35 0.64 0.80 0.26 0.15 0.73 0.27 0.69 0.16 

0.42 0.57 0.72 0.24 0.40 0.10 0.85 0.70 0.56 

… … … … … … … … … 

         

significance based on the index of the loadings 

0 1.00 0 0.23 0.04 0.001 0.80 0.0007 0.004 

0.87 0 0.19 0.39 0.88 0.20 0.045 0.47 0.51 

0.92 0.67 0.75 0.18 0.75 0.80 0.17 0.49 0.41 

0.94 0.88 0.38 0.32 0.07 0.90 0.89 0.29 0.43 

… … … … … … … … … 

         

choosen loadings based on the correlation of the pcs with the variables 

-0.52 0.00 0.35 0.26 0.33 0.38 0.07 0.39 0.37 

0.05 0.62 0.36 0.26 0.05 -0.35 -0.45 -0.22 0.20 

         

choosen loadings based on the index of the loadings 

-0.52 0.00 0.35 0.26 0.33 0.38 0.07 0.39 0.37 

0.05 0.62 0.36 0.26 0.05 -0.35 -0.45 -0.22 0.20 

 

 

The three pc taken from the data set of the eleven seagrass variables from Ria Formosa (Table 10) were 

describing three processes in seagrass meadows. The first pc was a measure of shape. It evaluated the contrast 

between seagrasses with relatively short roots and big leafs and seagrasses with relatively long roots and small 

leafs. Later, this contrast was determined not to be between individuals but rather within each individual on a 

seasonal basis. The second pc was a measure of plant overall size (leafs and roots) which was found to vary 

over a spatial gradient. The third pc was a measure of population size (biomass and density) which varied 

seasonally and spatially. 

3.4 Vector simplification 

The estimation of the correlations involving the pc and their sv is illustrated with an example from the data set 

with twelve abiotic variables from Ria Formosa. The significant loadings were chosen according to the index 

of the loadings with a 0.1 significance level. To estimate the correlation of sv1 with pc1 a matrix T was 

constructed: 
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Table 9 Interpreting the principal components for the data set of 12 abiotic variables from Ria Formosa: significant 
 loadings in black bold (0.05 significance level) and in grey bold (0.1 significance level). OM: organic matter; EH:  
redox potential; sed: measured on the sediment; lt: measured on the water column during the low tide. 
NH4 
sed 

NO3 
sed 

PO4 

sed 
NH4 
lt 

NO3 
lt 

PO4 
lt OM sed

EH 
sed pH sed

Temp 
sed 

Sal 
lt Temp lt

            

significance based on the correlation of the pcs with the variables 

0.59 0.92 0.50 1.00 0.99 0.99 0.62 0.52 0.39 0.20 10-4 0.48 

0.05 0.57 10-3 0.46 0.35 0.41 0.22 1.00 0.87 0.18 0.45 0.17 

0.90 0.43 0.36 0.30 0.28 0.28 0.99 0.27 0.52 0.04 0.66 0.09 

0.81 0.08 0.72 0.70 0.28 0.78 0.53 0.67 0.98 0.59 0.27 0.14 

0.23 0.07 0.20 0.73 0.17 0.83 0.49 0.20 0.12 0.48 0.38 0.72 

… … … … … … … … … … … … 

            

significance based on the index of the loadings 

0.74 0.04 0.98 0 10-4 10-4 0.69 0.95 0.74 0.24 10-4 0.35 

0.04 0.84 0 0.88 0.65 0.79 0.36 10-4 0.17 0.26 0.89 0.09 

0.15 0.83 0.71 0.57 0.53 0.54 0.02 0.50 0.95 0.06 0.64 0.07 

0.42 0.22 0.59 0.63 0.59 0.47 0.95 0.70 0.07 0.82 0.58 0.96 

… … … … … … … … … … … … 

            

choosen loadings based on the correlation of the pcs with the variables 

-0.09 -0.33 -0.01 -0.45 -0.42 -0.42 -0.11 -0.02 0.09 0.25 0.45 0.21 

0.39 -0.05 0.50 0.04 0.12 0.07 0.23 -0.50 -0.30 0.26 0.04 0.35 

-0.38 0.06 0.10 0.16 0.18 0.17 -0.54 0.19 -0.02 0.46 -0.13 0.45 

            

choosen loadings based on the index of the loadings 

-0.09 -0.33 -0.01 -0.45 -0.42 -0.42 -0.11 -0.02 0.09 0.25 0.45 0.21 

0.39 -0.05 0.50 0.04 0.12 0.07 0.23 -0.50 -0.30 0.26 0.04 0.35 

-0.38 0.06 0.10 0.16 0.18 0.17 -0.54 0.19 -0.02 0.46 -0.13 0.45 

 

 























045.0000042.042.045.0033.00

21.045.025.009.002.011.042.042.045.001033.009.0

1

1

sv

pc
T  

 

With S being the covariance matrix of the original variables, the product TST’ yielded the covariance matrix 

of pc1 with sv1: 











97519850

98509969
TST'  

which tells us that their correlation was: 

999.097519969/9850r   

The correlations between the sv and the pc were performed with the sv edited according to the index of the 

loadings (Table 11.a) or according to the correlations of the pc with the variables (Table 11.b). This particular 

example is interesting because though the vectors were simplified they were still orthogonal, even if they do 

not look so when projected in a plane which was not their own (Fig.3). This happens whenever the sv do not 

share variables but even if they do they may still keep orthogonality. The easiest way to verify it is to calculate 

116



Computational Ecology and Software, 2012, 2(2):103-123 

 IAEES                                                                                                                                                                          www.iaees.org

the inner product of the sv. If it equals zero they are orthogonal. In this example as well as with all other tested 

data sets, editing the sv based on the index of the loadings was the best option as these sv were better 

correlated with their respective pc and lesser correlated with the other pc and sv. It was a direct consequence of 

the index of the loadings accepting more loadings as significant: the closer a sv was to its original pc the better 

correlated they were and the worst correlated with all the others. Both the orthogonal varimax rotation and the 

non-orthogonal promax rotation, gave results identical to the vectors simplified according to the index of the 

loadings and did not add any relevant information (Table 12). 

 
Table 10 Interpreting the principal components for the data set of 11 seagrass variables from Ria Formosa:  
significant loadings in black bold (0.05 significance level) and in grey bold (0.1 significance level). Biom: biomass,  
Dens: density, Inter: internode and diam: diameter. 
Above  
Biom 

Below  
Biom 

Algae  
biom 

Dens. 
Leaf  
length 

Leaf  
width 

Leaf nº 
Sheat 
length 

Inter.  
length 

Inter.  
Diam. 

Root  
lenght 

           

significance based on the correlation of the pcs with the variables 

0.996 0.989 0.367 0.636 0.105 0.827 0.209 0.190 0.257 0.100 0.033 

0.267 0.624 0.284 0.529 0.216 0.001 0.812 0.103 0.168 0.248 0.480 

0.015 0.042 0.439 0.029 0.771 0.506 0.422 0.890 0.890 0.928 0.891 

… … … … … … … … … … … 

           
significance based on the index of the loadings 

0.996 0.987 0.266 0.574 0.027 0.802 0.103 0.087 0.149 0.027 0.003 

0.127 0.532 0.148 0.421 0.081 0.000 0.763 0.012 0.046 0.105 0.358 

0.002 0.014 0.379 0.007 0.742 0.451 0.360 0.875 0.878 0.919 0.877 

… … … … … … … … … … … 

           

choosen loadings based on the correlation of the pcs with the variables 

0.00 -0.01 0.29 0.18 -0.40 0.08 0.35 -0.36 0.33 0.40 0.44 

-0.30 0.15 -0.29 0.18 -0.32 -0.51 -0.07 -0.38 -0.35 -0.31 0.21 

0.55 0.51 -0.23 0.52 -0.09 0.20 -0.24 0.04 0.04 -0.03 0.04 

           

choosen loadings based on the index of the loadings 

0.00 -0.01 0.29 0.18 -0.40 0.08 0.35 -0.36 0.33 0.40 0.44 

-0.30 0.15 -0.29 0.18 -0.32 -0.51 -0.07 -0.38 -0.35 -0.31 0.21 

0.55 0.51 -0.23 0.52 -0.09 0.20 -0.24 0.04 0.04 -0.03 0.04 

 

3.5 The z scores 

The graphical representation of the z scores elucidates about the error that was filtered out with this 

methodology. For the data set of twelve abiotic variables from Ria Formosa the evolution of the processes in 

space and time was equally evident as only the less influential variables were kept out of each pc (Fig.4). 

Nevertheless, differences between sampling units turned more accurate. These processes showed the annual 

cycle more conspicuous closest to the waste water treatment plant. For the data set of the nine variables about 

employment in Europe in the 1970’s the main patterns were equally evident (Fig.5). Four groups of countries 

could be identified: (1) eastern block countries, (2) western block, peripheral, underdeveloped countries, (3) 

western block, central, developed countries, and (4) Yugoslavia and Turkey outliers. Nevertheless, the relative 

positions of the countries became more accurate. For the data set of five morphometric measures on Bumpus’ 

female sparrows all variables were found to be significantly contributing to the chosen pc. Hence, both ways of 

estimating the z scores led to the exact same results as also did any graphical interpretation or statistical 

inference from these. 
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Fig. 3 Projection in principal component generated planes of the 16 observations from Ria Formosa and the simplified vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 z scores for the three main principal components taken from the data set of 12 abiotic variables from Ria Formosa. 
Distance from a waste water treatment plant: Site 1 (closest) to Site 4 (furthest). sum: summer, aut: autumn, win: winter and spr: 
spring. 

 

 
Table 11 correlations between the simplified vectors (sv) and the principal components (pc) for the data set of 12  
abiotic variables from Ria Formosa when the simplified vectors are edited according to the significance of the  
loadings estimated by (a) the ‘index of the loadings’ and (b) the ‘correlations of the loadings with the pcs’, with  
a 0.05 significance.  

(a) sv1 sv2 sv3   (b) sv1 sv2 sv3 

pc1 0.93 0.12 0.37  pc1 0.56 0.05 0.48 

pc2 0.06 0.87 0.15  pc2 -0.06 0.58 0.34 

pc3 -0.27 -0.10 0.84  pc3 -0.21 -0.26 0.63 

sv1  0.10 0.05  sv1  -0.13 -0.13 

sv2   0.19   sv2   -0.20 
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Fig. 5 Relative position of each country according to the two principal components about employment in Europe in the 1970’s. 

 

 
Table 12 Factor Analysis on the data set of 12 abiotic variables from Ria Formosa. Non-orthogonal promax rotation. 

  factor loadings communality specificity 

  f1 f2 f3 f1 f2 f3 e 

NH4 sed -0.03 -0.17 0.96 0.00 0.03 0.92 0.05 

NO3 sed 0.44 -0.16 -0.06 0.19 0.03 0.00 0.78 

PO4 sed 0.10 0.50 0.61 0.01 0.25 0.37 0.36 

NH4 lt 1.00 0.00 -0.02 1.00 0.00 0.00 0.00 

NO3 lt 0.74 0.05 0.08 0.54 0.00 0.01 0.45 

PO4 lt 0.99 0.06 -0.01 0.99 0.00 0.00 0.01 

OM sed -0.07 -0.41 0.72 0.00 0.17 0.52 0.31 

EH sed 0.04 -0.22 -0.68 0.00 0.05 0.47 0.49 

pH sed -0.14 -0.19 -0.17 0.02 0.03 0.03 0.92 

Temp sed -0.04 0.96 -0.15 0.00 0.92 0.02 0.06 

Sal lt -0.92 0.13 0.05 0.85 0.02 0.00 0.13 

Temp lt -0.01 1.00 -0.04 0.00 1.00 0.00 0.00 

 

 

3.6 Variance partition 

The variance partition is shown for the data set of twelve abiotic variables from Ria Formosa (Table 13). As an 

example, for the temperature in the low tide 0.4 of its variance was allocated to the third pc and 0.36 to the 

second pc. Together they made up to the 0.76 found significantly correlated with the PCA model. The 

remainder was error composed by the 0.19 randomly correlated to the first pc and the 0.05 randomly correlated 

to the smaller pc which only described error. Adding up all meaningful packages of variance the first pc 

accounted for 3.64 standardized variables instead of the 4.21 estimated by the eigenvalue, the second pc 

accounted for 2.29 instead of the 2.99 and the third pc accounted for 1.41 instead of the 2.01. It was also 

evident the variables and associations significantly contributing to the same pc could still do it in rather 

different measures. 
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Table 13 Partition of the variation among variables and principal components for the data  
set of 12 abiotic variables from Ria Formosa. PCA upon the correlation matrix. “Packages”  
of variation categorized according to the 0.1 significance level 

pc: 
NH4 
sed 

NO3 
sed 

PO4 
sed 

NH4 
lt 

NO3 
lt 

PO4 
lt 

OM 
sed 

1st 0.03 0.47 0.00 0.85 0.73 0.73 0.05 

2nd 0.46 0.01 0.74 0.00 0.04 0.01 0.15 

3rd 0.29 0.01 0.02 0.05 0.06 0.06 0.58 

4th 0.10 0.24 0.05 0.04 0.05 0.08 0.00 

5th 0.05 0.22 0.07 0.04 0.09 0.09 0.00 

6th 0.01 0.02 0.08 0.01 0.00 0.01 0.17 

7th 0.01 0.02 0.03 0.01 0.00 0.00 0.03 

8th 0.05 0.00 0.01 0.00 0.00 0.00 0.01 

9th 0.00 0.01 0.00 0.00 0.02 0.00 0.00 

10th 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

11th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

total: 1 1 1 1 1 1 1 

sig: 0.46 0.47 0.74 0.85 0.73 0.73 0.58 
        

 
EH 
sed 

pH 
sed 

Temp 
sed 

Sal 
lt Temp lt total: sig: 

1st 0.00 0.03 0.26 0.86 0.19 4.21 3.64 

2nd 0.74 0.26 0.21 0.00 0.36 2.99 2.29 

3rd 0.07 0.00 0.43 0.04 0.40 2.01 1.41 

4th 0.02 0.51 0.01 0.05 0.00 1.17 0 

5th 0.07 0.14 0.00 0.01 0.00 0.80 0 

6th 0.00 0.01 0.07 0.01 0.02 0.41 0 

7th 0.06 0.02 0.00 0.01 0.00 0.18 0 

8th 0.02 0.02 0.01 0.00 0.00 0.12 0 

9th 0.00 0.00 0.00 0.01 0.00 0.05 0 

10th 0.00 0.00 0.00 0.00 0.01 0.03 0 

11th 0.00 0.00 0.01 0.01 0.00 0.02 0 

12th 0.00 0.00 0.00 0.00 0.00 0.01 0 

total: 1 1 1 1 1 12 0 

sig: 0.74 0 0.43 0.86 0.76 0 7.35 

 

 

4 Discussion 

The statistics taken from a PCA used to be tested against their estimated normal or normal-derived 

distributions. It required manipulation of the statistic and the assumption of multivariate normal distribution of 

the data (Jackson, 1991; Dijksterhuis and Heiser, 1995; Peres-Neto et al., 2005). Alternatively, n data sets with 

the same size of the original data set could be generated where variables were randomly and normally 

distributed. The statistics taken from the original data set were compared with their distributions from the n 

randomly generated data sets but constrain of normality was still present (Zwick and Velicer, 1986; Grossman 

et al., 1991; Peres-Neto et al., 2005). Multivariate normal distribution of the data seldom is true and the 

researcher is forced to trust the robustness of the method to departure from the assumption of normality 

(Jackson, 1991; Peres-Neto et al., 2005). The application of randomization tests unties the data from the 

restriction of multivariate normal distribution (Dijksterhuis and Heiser, 1995; Peres-Neto et al., 2005). 

However, it then emerges the question about the proper class of randomization tests. Bootstrap methodologies 
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have been used to propose significances for metrics taken from PCA by comparing their confidence intervals 

with thresholds as the roots greater than unity, the broken stick model, loadings that overlap zero, among 

others (Stauffer et al., 1985; Jackson, 1993; Peres-Neto et al., 2003; Peres-Neto et al., 2005). However, 

bootstrap techniques simply randomly resample with reposition each sampling unit (Manly, 1991; Jackson, 

1993; Yu et al., 1998; Peres-Neto et al., 2005; Lebart, 2006; Ferrarini, 2011; Zhang, 2011a, b. c; Zhang and 

Zheng, 2011) which does not break the correlations between variables latent within the sampling units 

(Dijksterhuis and Heiser, 1995). Therefore, there is never the statement of a null hypothesis against which to 

test the alternative hypothesis but only a twisted and computationally complicated way to try to go around a 

problem without truly addressing it. Yet, bootstrap was not developed to do this but only to estimate the error 

and confidence intervals around a metric taken from a sample (Efron and Tibshirani, 1986; Manly, 1991; 

Lebart, 2006). On the contrary, permutation tests do break any correlation in the original data set by randomly 

and independently permuting each variable so that the alternative hypothesis of meaningful correlations can be 

truly tested against the null hypothesis of no correlations (Dijksterhuis and Heiser, 1995; Peres-Neto et al., 

2005). Furthermore, bootstrap methods have to account for axis reflection and reordering whereas the 

permutation tests gave simple solutions to these problems. Axis reflection, that is the permutation of signs 

between loadings (Jackson, 1995; Mehlman et al., 1995; Peres-Neto et al., 2003, 2005), was solved by the 

index for the loadings as both eigenvalues and loadings are squared. Axis reordering, i.e: permutations on the 

rank of the pc (Jackson, 1995; Peres-Neto et al., 2003, 2005), is specific to bootstrap. It does not occur with the 

permutation tests as the new generated axis relate only to error. Mixed techniques have been tested that 

compare the average or confidence interval of a statistic taken from n randomly permuted data set with the 

average of the statistic taken from m bootstrapped data sets (see Peres-Neto et al., 2005). Comparison with the 

bootstrapped average seems odd as its expected value is that of the statistic taken from the original data set if 

bootstrap resampling is honest and any departure from this may only come from error. Maybe a comparison 

with a bootstrapped statistic other than the average would seem more natural. 

Permutation tests proved to be an efficient tool whether it was to decide if it was worthwhile to submit the 

data set to a multivariate analysis, to decide about how many dimensions the data set should be reduced to or 

to interpret the new extracted dimensions. Besides the data sets presented in the examples, others were tested 

which comprehended both real data and manipulated data to simulate different degrees and patterns of 

correlations. The results were always coherent with what was expected. Generally, when submitted to a data 

set, most statistics tended to yield the same results. In particular, when a data set had been optimized (in the 

sense that correlated variables were kept while uncorrelated ones were sorted out) these statistics tended to 

converge. On the contrary, when a data set contained much noisy information, like many uncorrelated 

variables or variables which tended to be linear combinations of others, the results given by different statistics 

tended to diverge. This was a “rule of thumb” to find the optimized data set. As an example, both the data sets 

about employment in Europe and the twelve abiotic variables from Ria Formosa had originally more variables 

than the presented and were reduced with the aid of this criterion. 

About whether to start a PCA, all statistics including the ψ index were coherent among each other despite 

their different equations. However, when submitted to other data sets where the number of variables exceeded 

the number of samples, only the ψ index and the φ statistics remained valid and coherent. 

About the number of dimensions to retain, Peres-Neto et al. (2005) had already proven the permutation 

tests to give better results than bootstrap techniques, comparisons to predefined models as the broken stick, or 

tests under the assumption of multivariate normal distributions. The present results showed the permutation 

tests agree with the SCREE plot and the broken stick model when applied to data sets with a relatively small 

number of variables, whereas they perform better with data sets with a large number of variables. The results 
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confirmed the proportion of variance explained is not an acceptable rule to use (see Peres-Neto et al., 2005) as 

there is nothing to ascertain that all data sets always contain the same predetermined fraction of meaningful 

variation. Neither it is wise to retain a pc just because it justifies more variation than one standardized variable. 

The present results confirmed that in data sets of many variables may be obtained many pc with eigenvalues 

higher than 1 which still relate only to error (Jackson, 1991; Dijksterhuis and Heiser, 1995; Peres-Neto et al., 

2005). From the four statistics applied to the permutation tests only the rank of the roots proved to be a reliable 

stopping rule. The assumptions that sustain the test for the equality of the roots, the ratio of the roots and the 

pseudo F ratio of the roots were proven to be false: the results showed two consecutive pc can justify variation 

of approximate magnitude and still be non-trivial. Therefore, these statistics promoted type II error when 

applied to larger non-trivial pc whereas they promoted type I error when applied to smaller, trivial pc. Another 

methodology to choose non-trivial pc is to retain all which have at least two loadings found significant (Zwick 

and Velicer, 1986; Jackson, 1993; Peres-Neto et al., 2005). This was set aside as with data sets with many 

variables and relatively few sampling units it is very likely to happen by chance alone. 

The interpretation of the new dimensions was given by the association between the original variables and 

the extracted eigenvectors. When applied to relatively small data sets the correlations of the pc with the 

variables promoted Type II error in the non-trivial pc and Type I error in the trivial pc resulting from the 

weakness of this metric against strong correlations within error. In this case the index for the loadings 

performed better. On the other hand, for data sets with many variables the correlations of the pc with the 

variables is probably a better option as it showed more power of synthesis whereas the index for the loadings 

had a tendency to promote Type I error in the non-trivial pc. Overall, there is no definite rule or best index to 

use. It is always advisable to use both indexes and compare their results with each other, with the correlation 

matrix and with the previous knowledge about the data set and research subject. 

Estimating the z scores from the sv allowed sorting out error and thus enhanced any graphical 

representation or statistical inference from these scores. It also permitted recalculating the original variables 

from the z-scores differentiating the predicted residuals of each original variable in each sample as a function 

of both the processes represented by each pc and by error. It further enabled to divide the total variation into 

packages of variation distributed among variables and pc. Comparing with the terminology from Factor 

Analysis, the significant packages could be thought as the communality of the respective variable whiles the 

non-significant packages as the specificity of the variable. 
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