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Abstract  

Ecological ranking and environmental decision making require that a set of “objects” (e.g., competing sites for 

species introduction, or alternative sites for the allocation of man-made features) are listed from the best to the 

worst one. The resulting ranking is then used to choose which actions to implement; worse and intermediate 

solutions are immediately excluded, while optimal and sub-optimal solutions are taken into account, discussed 

and then applied. In this paper, WORTHY is presented as a new model for ecological ranking and evaluation 

of competing alternatives based on a set of weighted criteria. I have developed WORTHY model with the goal 

of employing a TOPSIS-like algorithm for worthy solutions in situations of environmental and ecological 

conflict management. Compared to TOPSIS algorithm, WORTHY allows to: a) decide the type of 

normalization, b) build an user-defined decision function, c) perform what-if analysis and d) sensitivity 

analysis. 

 

Keywords competing alternatives; decision making; sensitivity analysis; TOPSIS-like algorithm; user-defined 

decision function; what-if analysis. 

 

 

1 Introduction  

Ecological ranking and decion making is among the pivotal topics in ecology, both at a local and landscape 

scale (Ferrari et al., 2008). It has been widely applied to a variety of issues, like for instance sustainability at 

municipal level (e.g., Ferrarini et al., 2001; Clerici et al., 2004), optimization of tourist activities within 

protected areas (e.g., Ferrarini et al., 2008; Parolo et al., 2009), individuation of proper actions for habitats of 

conservation interest (e.g., Rossi et al., 2009), assessment of ecological risk at landscape level (e.g., Zurlini et 

al., 2001; Zurlini et al., 2004). 

In environmental decision-making and ecological ranking, the main steps are the following: 

a) setting up evaluation criteria for the topic under study; 

b) generating alternatives to be judged; 

c) evaluating alternatives in terms of criteria; 

d) applying a decision method; 

e) accepting one (or few) alternative(s) as the preferred one(s). 

Numerous decision methods have been developed in the last decades (Ferrarini, 2011; Janssen, 1994, Saaty, 

1980; Voogd, 1983; Zadeh, 1965). In this paper, I introduce a new decision model for ecological ranking and 

evaluation. It borrows some concepts from the TOPSIS algorithm (Hwang and Yoon, 1981), but it introduces 

major modifications, the most important being the chance for the user to build an ad hoc decision function. 
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2 TOPSIS Model 

TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is described in Chen and 

Hwang (1992). It’s based on an aggregating function representing closeness to the a reference point in a 

decision space. The basic principle is that the fittest alternative should have the shortest distance from the ideal 

(zenith) solution, and the farthest distance from the negative-ideal (nadir) solution.  

The rationale for TOPSIS can be expressed in a series of steps. 

a) obtain performance data for n competing alternatives over j criteria; 

b) develop a set of importance weights wj for each criteria; 

c) calculate the normalized decision matrix; 

d) calculate the weighted normalized decision matrix; 

e) identify the vector of the ideal (zenith) performances; 

f) identify the vector of the negative-ideal (nadir) performances; 

g) develop a distance measure of each criterion to both zenith (D+) and nadir (D-).; A number of distance 

metrics can be applied. Traditional TOPSIS applies the Euclidean norm (square root of the sum of squared 

distances) to ideal and nadir solutions. There is a variant where distances are measured in absolute value terms. 

Another commonly used metric is the Tchebychev metric; 

h) for each alternative, calculate a ratio equal to the distance to the nadir divided by the sum of the distance to 

the nadir and the distance to the zenith, as follows: 

D
T

D D



 


                  (1) 

i) rank alternatives by maximizing T. 

 

3 WORTHY Model 

Given n alternatives xi (i=1...n), m weighted criteria cj (j=1…m), m weights wj (j=1…m), the algorithm behind 

WORTHY performs 6 steps on the decision matrix (Fig. 1). 

 

 

Fig. 1 Structure of the decision matrix for a generic decision model. 
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Step 1) data normalization 

WORTHY makes use of a different and simpler normalization phase with respect to TOPSIS. In this step, the 

i-th observation belonging to the j-th column (i.e. xij) is normalized in the [0-1] interval, as follows: 

min

max min
ij j

ij
j j

x
v





           (2) 

where minj and maxj are the minimum and maximum values for the j-th criterion, respectively.  This 

transformation is especially useful when criteria have different scales or units of measure, a very common 

situation in environmental sciences. Alternatively, WORTHY allows for a max-normalization in the form: 

max
ij

ij
j

x
v                                                          (3) 

Both normalizations impose that the maximum value for criteria is equal to 1, but while equation (2) also 

imposes the minimum value to be equal to 0, equation (3) does not. This could seem of little importance, but in 

the former case (i.e. min-max normalization) the maximum possible distance from the zenith or nadir reference 

point is equal to: 

max
1

m

j
i

D w


        (4) 

Hence, in the special case of weights all equal to 1 (i.e., no weighted criteria), Dmax becomes: 

maxD m       (5) 

where m is the number of criteria. When the maximum distance from zenith or nadir vectors are known, one 

can compare the resulting distance of each alternative to the maximum possible one. This is a great advantage 

from an interpretative viewpoint. 

Step 2) building the zenith vector Z


and the nadir vector N


 

In this step, the two vectors of fittest and unfittest performances are built as follows. 

 1 2(max | ), (min | )ij ijZ v j J v j J  


    (6) 

where J1 is the set of  benefit (the higher the better) criteria, while J2 is the set of cost (the higher the worse) 

criteria.  Instead, the nadir vector is built in the form: 

 1 2(min | ), (max | )ij ijN v j J v j J  


   (7) 

In other words, Z


is the vector which collects the highest values for columns of the decision matrix which 
represent benefit criteria, and the lowest ones for columns of cost criteria. Since matrix values have been 

normalized in the previous step, Z


 is made of m binary values equal to 1 for benefit criteria and to 0 for cost 

ones. N


is the opposite vector. 

Step 3) calculating the WORTHY score for each alternative 

In this step, for the i-th alternative a weighted Euclidean distance from Z


 is calculated as follows: 

2( )j ij Zj
j

D w v v                                     (8) 
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where vzj  is the j-th value of the zenith vector.   

At the same time, distance from N


is calculated as: 

2( )j ij Nj
j

D w v v        (9) 

where vNj  is the j-th value of the nadir vector.   

At this point, TOPSIS makes use of equation (1) to calculate final scores for alternatives. It’s clear that 

equation (1) is a 3D decision surface (Fig. 2) in the form: 

x
Z

x y



       (10) 

 

 

 
Fig. 2 The decision curve employed by TOPSIS. D+ is the distance from zenith vector, while D- is the distance from nadir one. Z-
values represent the TOPSIS scores as a function of D+ and D-. 

 

 

When both D+ and D- are close to 0, the TOPSIS scores increase rapidly. WORTHY allows for better 3D 

decision surfaces. For instance the user may choose a 3D decision function like this: 

1

1

D
Z

D









                  (11) 

that fixes the previous problem (Fig. 3).  
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With respect to equation (10), the latter decision surface grows slower as D- increases, and WORTHY 

scores are lower when both D+ and D- are high (Fig. 3). 

 

 

Fig. 3 A possible decision surface employed by WORTHY. D+ is the distance from the zenith vector, while D- is the distance 
from the nadir one. Z-values represent the WORTHY scores as a function of D+ and D-. 

 

 

Another suitable decision surface could be: 

2( )

1

D
Z

D






              (12) 

that produces the 3D decision surface of Figure 4. 

With respect to equation (11), the latter decision surface grows slower as D- increases, and Z scores are 

higher when both D+ and D- are high (Fig. 4). 

The choices represented by equations 11 and 12 are just a subset of WORTHY possible options. In fact, 

WORTHY allows the user to choose any possible decision function based on D+ and D-. This induces 

WORTHY to be very flexible and supervised by the user. This makes the user an active actor of the decisional 

flow, not only during the choice of alternatives, criteria and weights, but also throughout the computational 

phase. 

Step 4) rank order for each alternative 

In this step, alternatives are ranked from 1 to n beginning with the highest WORTHY score (the most desirable 

alternative), and ending with the lowest (unfittest alternative). WORTHY also accepts cut-off values from the 

user in order to group WORTHY scores into 3 categories: a) optimal, b) intermediate, c) insufficient. 
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Fig. 4 A further example of decision surface employed by WORTHY. D+ is the distance from the zenith vector, while D- is the 
distance from the nadir one. Z-values represent the WORTHY scores as a function of D+ and D-. 

 

 

Step 5) what-if analysis on WORTHY scores 

In this step, WORTHY assesses what happens to the rank order if one criterion is excluded. Criteria are 

dropped one at a time (leave-one-out analysis), and steps from 1) to 4) are repeated in order to assess the 

contribution of each criterion to the rank order.  

Given j criteria, this step is repeated j times, hence giving j different rank orders. The importance of each 

criterion is measured by WORTHY through Spearman’s rho correlation coefficient between each partial rank 

order and the overall one. Spearman’s rho correlation coefficient ranges from +1 to -1: a criterion is scarcely 

important if, after its exclusion, rho is close or equal to 1. On the contrary, a criterion gives a substantial 

contribute to the overall ranking when, after its exclusion, the rho value becomes negative. 

Step 6) sensitivity analysis on WORTHY scores 

A major concern in ecological evaluation is the need of justification for matrix data and weights. In this view, 

sensitivity analysis has the purpose to estimate the degree of uncertainty on WORTHY scores based on 

uncertainty on criteria weights wj and on xij values. 

WORTHY allows for sensitivity analysis in two ways: a) by randomly varying t-times (with t defined by 

the user) the criteria weights by an user-defined percentage (UDP; usually 1% or 5%), and then calculating the 

average WORTHY score for each alternative;  b) by randomly varying t-times xij values using UDP, and 

giving back the average score for each alternative. 
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4 Conclusions 

Ecological ranking and evaluation are at the core of environmental decision making and conflict management. 

Proper models are required to do them in a rigorous way.   

WORTHY has been proposed here as a new model for ecological ranking and decision making. It borrows 

some aspects from the TOPSIS decision model, but it presents four main differences: 1) a different and simpler 

normalization phase, 2) an user-defined 3D decision function, 3) what-if analysis, 4) sensitivity analysis. A 

software has been developed in order to implement WORTHY into OpenOffice Calc.  

The main contribution of WORTHY is the use of an ad-hoc decision surface that requires the user to be a 

more involved actor of the decisional flow. 
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