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Abstract  

In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs) 

provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic 

population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo 

(Particle MCMC), for parameter estimation in nonlinear SSMs. We use one effective algorithm of Particle 

MCMC, Particle Gibbs sampling algorithm, to estimate the parameters of a state-space model of population 

dynamics. The posterior distributions of parameters are derived given the conjugate prior distribution. 

Numerical simulations showed that the model parameters can be accurately estimated, no matter the 

deterministic model is stable, periodic or chaotic. Moreover, we fit the model to 16 representative time series 

from Global Population Dynamics Database (GPDD). It is verified that the results of parameter and state 

estimation using Particle Gibbs sampling algorithm are satisfactory for a majority of time series. For other time 

series, the quality of parameter estimation can also be improved, if prior knowledge is constrained. In 

conclusion, Particle Gibbs sampling algorithm provides a new Bayesian parameter inference method for 

studying population dynamics. 

 

Keywords Ricker model; state-space model; time series; Bayesian inference; particle Gibbs sampling. 

 

 

1 Introduction  

In the natural world, the variations of population numbers are usually irregular in period and always irregular 

in amplitude (Tilman and Wedin, 1991; Hanski et al., 1993; Costantino et al., 1997; Bjørnstad 2000; Winder 

and Cloern, 2010). The complicated population dynamics is subject to both endogenous dynamic processes 

and extraneous environmental disturbances (Sugihara 1996; Dixon et al., 1999; Pascual et al. 2000; Blasius et 

al., 2007; Nedorezov, 2011a; Elsadany, 2012). Using time series data to infer the factors that regulate natural 

populations is a common approach in population ecology (De Valpine and Hastings, 2002; Nedorezov, 2011b). 

Such inference mainly depends on an accurate estimate of states and parameters of dynamic population models 

(Meyer and Millar, 1998, 1999; Lindley, 2003; Viljugrein et al., 2005; Stafford and Lloyd, 2011). However, 

there exist three factors affecting state and parameter estimation. First, the population dynamic process is 

influenced by density- dependence, which can be reflected as some nonlinearity in the population models 
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(Nedorezova and Nedorezov, 2012). Second, besides environmental stochasticity, population dynamic process 

is also affected by demographic stochasticity (Wang, 2007). Third, field measurements of population 

abundance are usually not free of errors and ignoring these observational errors also results in misleading 

inference (Calder et al., 2003). Incorporating multiple sources of uncertainty into dynamic population models 

is crucial to improve the performance of statistical inference (De Valpine and Hastings, 2002; Calder et al., 

2003; Wang, 2007; Polansky et al., 2008). 

State-space model (SSM), which is also known as a hidden Markov model in statistical literatures, 

provides a standard framework to unify deterministic dynamic process and multiple sources of stochasticity. A 

generic SSM consists of a process model and an observation model, which can be expressed as follows: 

௧ାଵݔ ൌ ݂ሺݔ௧,  ௧ሻ        (1)ݒ

௧ݕ ൌ ݄ሺݔ௧, ݊௧ሻ          (2) 

where ݐ is the time index, ݔ௧ is the state vector, and ݕ௧ is the measurement vector. ݒ௧ and ݊௧ are independent 

and identically distributed noises for the model process and measurement,  espectively. Standard SSMs further 

assume that the error terms are conditionally independent.  

The utility of SSM for statistical inference in noisy dynamic population models have been widely 

recognized by ecologists in the past two decades (Schnute, 1994; De Valpine and Hastings, 2002; Calder et al., 

2003; Wang, 2007; Lele et al., 2007; Lillegard et al., 2008; Zhang and Wei, 2009; Wood, 2010; Zhang, 2010). 

Because SSM derived from dynamic population model are usually nonlinear and non-Gaussian, conventional 

statistical methods for parameter estimation are not applicable (Wood, 2010). Then, many alternative solutions 

have been proposed for parameter estimation in dynamic population models, such as “Markov chain Monte 

Carlo method” (Harmon and Challenor, 1997; Meyer and Miller, 1999; Calder et al., 2003), “numerically 

integrated state-space method” (De Valpine and Hastings, 2002), “Maximum likelihood via iterated filtering” 

(Ionides et al., 2006), “data cloning” (Lele et al., 2007) and “likelihood via Markov chain Monte Carlo” (Wood, 

2010). For general SSMs, many sophisticated algorithms have been proposed to perform parameter estimation 

(Kantas et al., 2009). Most of these methods originated from computational statistics and relied on powerful 

computing. Particle Markov Chain Monte Carlo (Particle MCMC) method is one recently proposed Bayesian 

parameter estimation method in general SSMs (Andrieu et al., 2010). Parameter estimation using Particle 

MCMC methods is a natural extension of state estimation using sequential Monte Carlo (SMC) methods. It has 

been proven that Particle MCMC method is a very effective parameter estimation method (Rasmussen et al., 

2011; Golightly and Wilkinson, 2011).  

In this study, we use Particle Gibbs (PG) sampling algorithm, belonging to Particle MCMC method, to 

estimate parameters in a dynamic population model. The dynamic population model is the famous Ricker 

model (Ricker, 1954). The rest of this paper is organized as follows. In Section 2, we show how deterministic 

Ricker model is formulated within the framework of standard SSM and how to estimate parameters in SSM 

using PG sampling algorithm. In Section 3, we test the performance of PG sampling algorithm for parameter 

estimation using simulated data and empirical data. Finally, a short discussion is given in Section 4. 

 

2 Model and Method 

2.1 The dynamic population model 

The Ricker model is one classic discrete population model, which gives the expected number (or density) of 

individuals ௧ܰାଵ in generation ݐ  1 as a function of the number of individuals in the previous generation ݐ 

(Ricker, 1954). This model is described by a difference equation, 
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௧ܰ ൌ ௧ܰିଵexp ሼݎሺ1 െ
ே௧ିଵ


ሻሽ      (3) 

where r is the maximum per capita growth rate, ܭ is the environmental carrying capacity. When multiple 

sources of stochasticity are incorporated, a log-transformed theta-Ricker model is frequently used to keep 

consistence with general SSM. The log-transformed Ricker model can be written as (De Valpine and Hastings, 

2002; Calder et al., 2003): 

௧ݔ ൌ ௧ିଵݔ  ܽ െ ௧ିଵሻݔሺݔܾ݁   ௧   (4)ݒ

௧ݕ ൌ ௧ݔ  ݊௧                    (5) 

where ݔ௧ ൌ log ሺ ௧ܰሻ  is the true model state and ݁ݔ ሺݕ௧ሻ  is equivalent to the observed population size. 

Moreover, we have ܽ ൌ ܾ and ݎ ൌ  ௧ an measurement errors ݊௧ are alsoݒ In this study, the process noises .ܭ/ݎ

chosen as Gaussian normal distributions: ݒ௧~ܰሺ0, ଵߪ
ଶሻ, and ݊௧~ܰሺ0, ଶߪ

ଶሻ (De Valpine and Hastings, 2002; 

Calder et al., 2003). 

2.2 Bayesian parameter estimation in SSM 

For Bayesian inference in SSMs, the state variables are denoted as ݔଵ:்  ሼݔଵ, ڮ,ଶݔ , ሽ்ݔ  and the 

measurements as ݕଵ:்  ሼݕଵ, ڮ,ଶݕ ,  .ሽ, where T indicates the length of the period of interest of the SSMs்ݕ

Given the observations ݕଵ:் , simply applying Bayes rule yields the following: 

ଵ:்ሻݕ|்:ଵݔሺ ൌ
ሺ௬భ:|௫భ:ሻሺ௫భ:ሻ

ሺ௬భ:ሻ
ן  ଵ:்ሻ    (6)ݔሺଵ:்ሻݔ|்:ଵݕሺ

If the parameter ߠ is unknown, we ascribe a prior density ሺߠሻ to ߠ; then we have 

,்:ଵݔሺ ଵ:்ሻݕ|ߠ ൌ
ሺఏሻሺ௬భ:|௫భ:ሻሺ௫భ:ሻ

ሺ௬భ:ሻ
ן   ଵ:்ሻ  (7)ݔሺଵ:்ሻݔ|்:ଵݕሺሻߠሺ 

Hereafter, we use two denotations of probability density functions (pdf), ఏሺ·ሻ and ሺߠ,·ሻ, cor-responding to 

cases when parameters are known and unknown. Applying a Markov assumption to ఏሺݔଵ:்ሻ results in 

ଵ:்ሻݔఏሺ ൌ ∏ଵሻݔఏሺ ௧ିଵሻ்ݔ|௧ݔఏሺ
௧ୀଶ    (8) 

where ఏሺݔ௧|ݔ௧ିଵሻ  is the evolution distribution. Another critical assumption is that the observations are 

independent given that the true model states are known. Then, the likelihood function is 

ଵ:்ሻݔ|்:ଵݕఏሺ ൌ ∏ ௧ሻ்ݔ|௧ݕఏሺ
௧ୀଵ        (9) 

Combining eq.(7-9), the posterior pdf of states and parameters becomes 

,்:ଵݔሺ ଵ:்ሻݕ|ߠ ן  ∏ଵሻݔఏሺሻߠሺ  ∏௧ିଵሻݔ|௧ݔఏሺ ఏ்
௧ୀଵ

்
௧ୀଶ ሺݕ௧|ݔ௧ିଵሻ     (10) 

Eqs.(6-10) provide the mathematical basis for Bayesian parameter estimation in SSMs. In this study, we will 

use a new Bayesian parameter estimation method, Particle MCMC method, to estimate the unknown parameter 

 .ߠ
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2.3 Sequential Monte Carlo method 

Prior to parameter estimation in SSM, state estimation is critical. SMC method is the standard method for state 

estimation in non-linear non-Gaussian SSMs. SMC is one kind of approximation method. Since the analytical 

expression of posterior pdf ఏሺݔଵ:்|ݕଵ:்ሻ is not available, instead, we use a discrete weighted approximation 

ଵ:்ሻݕ|்:ଵݔఏሺ̂ ൌ ∑ ்߱
ே

ୀଵ ்:ଵݔሺߜ െ ்:ଵݔ
 ሻ        (11) 

, where ሼݔଵ:்
 , ω்

 ሽୀଵ
ே  are referred to as support particles and associated weights (Arulampalam et al., 2003). 

ݐ ,ଵ:௧ሻݕ|ଵ:௧ݔఏሺ̂ ሺ·ሻ is the Dirac delta function. In SMC method, the approximation ofߜ ൌ 1, ڮ,2 , ܶ, can be 

obtained sequentially (Doucet et al., 2001). At each time step, one has samples of ఏሺݔଵ:௧ିଵ|ݕଵ:௧ିଵሻ and wants 

to approximate ఏሺݔଵ:௧|ݕଵ:௧ሻ with a new set of samples. From eq.(6), it is easy to check that 

ଵ:௧ሻݕ|ଵ:௧ݔఏሺ  ൌ  ଵ:௧ିଵሻݕ|ଵ:௧ିଵݔఏሺ 
௧ሻݔ|௧ݕఏሺ௧ିଵሻݔ|௧ݔఏሺ

ଵ:௧ିଵሻݕ|௧ݕఏሺ
ן     ௧ሻݔ|௧ݕఏሺ௧ିଵሻݔ|௧ݔఏሺଵ:௧ିଵሻݕ|ଵ:௧ିଵݔఏሺ

(12) 

Assuming the approximate samples ሼݔଵ:௧ିଵ
 ሽୀଵ

ே  of ఏሺݔଵ:௧ିଵ|ݕଵ:௧ିଵሻ are available at time t, then we can draw 

samples ሼݔ௧
ሽୀଵ
ே  from the proposal density ݍఏ൫· หݕ௧, ଵ:௧ିଵݔ

 ൯ . The importance weight of ݔ௧
  is defined as 

߱௧
 ൌ

ഇ൫௫
ห௫షభ

 ൯ഇ൫௬ห௫
൯

ഇ൫·ห௬,௫భ:షభ
 ൯

. This sequential updating algorithm is also referred to as a particle filter in literatures 

(Arulampalam et al., 2003). Then the output of the SMC algorithm are filtered particles ሼݔଵ:௧
 , ω௧

 ሽୀଵ
ே ݐ , ൌ

1, ڮ,2 , ܶ. With these particles and weights, sampling a particle ݔଵ:்
  from ̂ఏሺݔଵ:்|ݕଵ:்ሻ is trivial. 

2.4 Particle Gibbs sampling algorithm 

Particle MCMC originates from MCMC methods, which is a class of approaches for computational Bayesian 

statistics (Andrieu et al., 2010). The basic idea of an MCMC is to generate, a Markov Chain with a stationary 

distribution (target distribution) that cannot be sampled directly (Metropolis et al., 1953; Hastings, 1970; Gilks 

et al., 1996). For SSMs, the target distribution of a Bayesian inference is ሺݔଵ:்,  ଵ:்ሻ when the modelݕ|ߠ

parameters are unknown. However, ሺݔଵ:்,  ଵ:்ሻ cannot be sampled directly. The key feature of Particleݕ|ߠ

MCMC is using the approximations of ఏሺݔଵ:்|ݕଵ:்ሻ produced by an SMC to construct the Markov Chain with 

the target distribution (Andrieu et al., 2010). There are two algorithms to implement Particle MCMC. The first 

algorithm of Particle MCMC is the Particle Marginal Metropolis-Hastings (PMMH) sampling algorithm, 

which is derived from classical Metropolis-Hastings algorithm. PMMH is the most commonly used Particle 

MCMC algorithm, but the computational cost is very large (Rasmussen et al., 2011; Golightly and Wilkinson, 

2011). For some simple SSMs, there is an alternative algorithm, Particle Gibbs (PG) sampling algorithm. 

Compared with PMMH, PG is more efficient when the full conditional distributions of the parameters can 

bederived analytically (Andrieu et al., 2010). 

In PG algorithm, parameter ߠ  and model state ݔଵ:்  are not updated jointly in the target distribution 

,்:ଵݔሺ  ଵ:்ሻ. The PG sampler is more complicated than the classical Gibbs sampler, because a conditionalݕ|ߠ

SMC algorithm is used to generate the sample ݔଵ:்  from ఏሺݔଵ:்|ݕଵ:்ሻ. A conditional SMC algorithm is 

similar to standard SMC but is such that a pre-specified particle ݔଵ:்  with ancestral lineage is ensured to 

survive all the resampling steps, while the other N-1 particles are generated in the usual way. Then, the 

particles generated in the next step are conditional on the current particle. In this study, we merely introduce 
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the main procedures of PG sampling algorithm but omit the conditional SMC algorithm. Interested readers 

may refer to Andrieu et al. (2010). The pseudocode of the PG sampling algorithm is as follows: 

(a) initialize the Markov Chain (݅ ൌ 0) by setting ߠሺ݅ሻ, ݔଵ:்ሺ݅ሻ and its ancestral lineage arbitrarily, 

(b) set ݅ ൌ ݅  1 and sample ߠሺ݅ሻ from ሺݔ|ߠଵ:்ሺ݅ െ 1ሻ,  ,ଵ:்ሻݕ

(c) run a conditional SMC algorithm targeting ఏሺሻሺݔଵ:்|ݕଵ:்ሻ  conditional on ݔଵ:்ሺ݅ െ 1ሻ  with its 

ancestral lineage returning an estimate ̂ఏሺሻሺݔଵ:்|ݕଵ:்ሻ, 

(d) sample ݔଵ:்ሺ݅ሻ from ̂ఏሺሻሺݔଵ:்|ݕଵ:்ሻ and return its ancestral lineage, 

(e) iterate steps ሺܾ െ ݀ሻܯ times and record the Markov Chain ߠሺ݅ሻ and ݔଵ:்ሺ݅ሻ ሺ݅ ൌ 0, ڮ,1  .ሻܯ,

Besides the conditional SMC algorithm, another key step in PG sampling algorithm is to derive the full 

conditional distributions of parameters. In this study, there are four parameters to be estimated: ܽ, ܾ, ߪଵ, and 

,ଶ. We specify the prior distribution for the unknown parameters: a~ܷሺܽߪ  ܽଵሻ, b~ܷሺܾ, ܾଵሻ, σଵ
ଶ~ܩܫሺߙଵ,  ,ଵሻߚ

σଶ
ଶ~ܩܫሺߙଶ, ଶሻߚ . ܷሺܿ, ݀ሻ  represents a continuous uniform istribution in interval ሾܿ, ݀ሿ , and ܩܫሺߙ, ሻߚ  is the 

inverse Gamma distribution with shape parameter ߙ  and scale parameter ߚ . Then in the PG sampling 

algorithm, we first initialize ߠሺ0ሻ using the prior distribution, and run SMC to obtain a sample ݔଵ:்ሺ0ሻ from 

the particles ensemble ሼݔଵ:்
ሺሻ ሽୀଵ

ே . Then, we use the full-conditional distributions to obtain samples of unknown 

parameters. The derivations of all full-conditional distributions are shown in the Appendix, and we list only the 

results here: 

,ሺܽ|െܽ ,்:ଵݔ ~ଵ:்ሻݕ ሾܰబ,భሿ ቀ
∑ ሺ௫శభି௫ାೣሻ
షభ
సభ

்ିଵ
,
ఙభ
మ

்ିଵ
ቁ         (13) 

,ሺܾ|െܾ ,்:ଵݔ ~ଵ:்ሻݕ ሾܰబ,భሿ ቀ
∑ ሺି௫శభା௫ሻ
షభ
సభ ೣ

∑ ሺೣሻమషభ
సభ

,
ఙభ
మ

∑ ሺೣሻమషభ
సభ

ቁ    (14) 

ଵߪሺ
ଶ|െߪଵ

ଶ, ,்:ଵݔ ܩܫ~ଵ:்ሻݕ ቀߙଵ 
்ିଵ

ଶ
, ଵߚ  ଵܵቁ              (15) 

ଶߪሺ
ଶ|െߪଶ

ଶ, ,்:ଵݔ ܩܫ~ଵ:்ሻݕ ቀߙଶ 
்

ଶ
, ଶߚ  ܵଶቁ                (16) 

where ሾܰబ,భሿሺ·,·ሻ is a truncated normal distribution within interval ሾܽ, ܽଵሿ and the minus before a parameter 

indicates taking out this parameter from the parameter setߠ. Other terms in eq. (11-14) are 

ଵܵ ൌ  
1
2
ሺݔ௧ାଵ െ ௧ݔ െ ܽ  ܾ݁௫ሻଶ
்ିଵ

௧ୀଵ

 

ܵଶ ൌ  
1
2
ሺݕ௧ െ ௧ሻଶݔ
்

௧ୀଵ

 

The PG algorithm can be implemented using these full-conditional distributions, and samples of the 

posterior distribution of model state and parameters can be generated. The reason we ascribe Inverse Gamma 

distributions to parameters ߪଵ
ଶ  and ߪଶ

ଶ  is that Inverse Gamma distribution is the conjugate prior to the 
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likelihood in eq.(A3). If there is no prior knowledge, it is usual to choose a Uniform distribution as the prior 

distribution. The more reliable prior information we have, the more accurate the parameter estimation is. 

In practical applications, the convergence of the Markov Chain should be checked to ensure that the 

samples drawn from the Markov Chain are truly representative of the target distribution. In general, a “burn-in” 

period is required and the samples in this period are discarded. Although there are many methods that can be 

used for convergence monitoring, one of the simplest to understand and implement is the autocorrelation 

function (ACF). The faster the ACF drops, the better the algorithm is.  

3 Results 

3.1 Simulation test 

To illustrate the utility of PG sampling algorithm for parameter estimation, we first simulate the SSM(4-5) 

with known parameters and then examine how well the algorithm estimates parameter values. Because 

parameter K has no impact on the dynamics of the deterministic Ricker model, we set K = 10 for simplicity. 

For the process noises and observation errors, we use the large standard deviations ߪଵ
ଶ ൌ ଶߪ 

ଶ ൌ 0.04 (De 

Valpine and Hastings, 2002). For parameter ܽ ൌ ݎ , we consider four choices with different deterministic 

dynamics: r= 0.5, 1, 2.6 and 3. The length of time series is chosen as T = 20, which approximately equals to 

the length of empirical time series data. With these model parameters, we can generate the true model state and 

observations with errors. 

Next, we use the PG sampling algorithm to generate a Markov Chain targeting the posterior distribution 

,ߠሺ ሺୀሻߠ ଵ:்ሻ. The first guess of parameter set isݕ|்:ଵݔ ൌ ሺܽ, ܾ, ,ଵߪ ଶሻߪ ൌ ሺ2, 0.2, 0.1, 0.1ሻ) that is used as the 

initialization of the Markov Chain. In each conditional SMC, the number of particles is chosen as N = 500, 

which is large enough for a short time series. Uniform and Inverse Gamma distributions are chosen as prior 

distributions. The ranges of the parameters are restricted within ሺܽ, ܽଵሻ ൌ ሺ0, 3.5ሻ , ሺܾ, ܾଵሻ ൌ ሺ0, 1ሻ , 

ሺߙଵ, ଵሻߚ ൌ ሺ3, 0.2ሻ and ሺߙଶ, ଶሻߚ ൌ ሺ2, 0.2ሻ. The length of Markov Chain is 104, and the first 5000 steps are 

chosen as “Burn-in” period. Convergence diagnosis based on ACFs indicates that these two lengths are long 

enough. The posterior mean and 95% credible interval for the four parameters are reported in Table 1. For the 

purpose of comparison, we show the results of original parameters rather than the transformed parameters. It is 

clear that the PG sampling algorithm gives a good estimation, irrespective of the deterministic Ricker model is 

stable, periodic or chaotic. Replicated simulations with shorter or longer time series (T= 15, 50, 100) give 

similar estimation. To explicitly illustrate Bayesian inference based on particle MCMC, we show the 

trajectories of Markov Chain of parameters and their associated ACFs in Fig.1 based on one simulation 

experiment when r = 3. ACFs indicate that the convergence of Markov Chains is very good. The last 5000 

samples that are used to compute the posterior mean and posterior distributions are shown in Fig.2. In addition, 

we find that the estimated state ݔොଵ:் and true model state ݔଵ:் are almost identical, but we do not show these 

results as figures here. This result again verifies the accuracy of PG sampling algorithm for state and parameter 

estimation in SSMs. 

 
Table 1 The results of parameter estimation using simulated data. The posterior means and 95% credible intervals  
are both reported. 

 
 

 ොଶሺ0.2ሻߪ ොଵሺ0.2ሻߪ ሺ10ሻܭ ݎ̂
Mean interval Mean interval Mean interval Mean interval 

ܽ ൌ 0.5 0.49 (0.09,0.81) 9.67 (7.26,11.75) 0.23 (0.16,0.31) 0.23 (0.17,0.31)
ܽ ൌ 1 1.10 (0.79,1.56) 10.06 (9.25,11.03) 0.19 (0.15,0.26) 0.21 (0.17,0.29)
a ൌ 2.6 2.55 (2.39,2.70) 9.52 (9.27,10.10) 0.21 (0.17,0.31) 0.20 (0.15,0.26)
ܽ ൌ 3 2.96 (2.81,3.10) 9.68 (8.97,10.46) 0.22 (0.16,0.31) 0.23 (0.17,0.31)
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3.2 Empirical test 

In this section, we fit the log-transformed Ricker model to empirical time series from Global Population 

Dynamics Database (GPDD) to test the performance of PG sampling algorithm for parameter estimation. The 

GPDD is a collection of time series of population counts or indices of more than 1400 species ranging from 

insects to mammals (GPDD 2010). Because there are a variety of long time series in GPDD, biological and 

ecological scientists have fitted many dynamic population models to these time series to infer the key 

parameters; however, different choices of population model or estimation methods usually leaded to divergent 

results (Polansky et al., 2009). It is nearly impossible to evaluate the PG sampling algorithm by directly 

comparing parameter estimates from different parameter estimation methods. In this study, although 

observation errors are incorporated in the SSM, we assume that these observational errors are not significant to 

affect the basic characteristics of true time series (such as trends or periodicity). In other words, the difference 

between “true” state ݔଵ:் and observations ݕଵ:் cannot be too large. Based on this assumption, we use state 

estimates as the reference to evaluate the accuracy of parameter estimation. 

Although there are thousands of time series in GPDD, we do not intend to use all of them in this paper. 

According to the trends and periodicity of time series, we classify these time series into five categories: 1) 

increasing time series; 2) decreasing time series; 3) quasi-periodic time series with small or moderate 

variations; 4) quasi-periodic time series with large variations or strong fluctuations; 5) irregular time series 

with outbreaks.  

At first, we assume the four parameters are all unknown and infer them using PG sampling algorithm. The 

prior distributions are the same to that in simulation test. The initial value of parameter set ߠሺୀሻ ൌ

ሺܽ, ܾ, ,ଵߪ ଶሻߪ ൌ ሺ2, ,ܭ/2 0.1, 0.1ሻ, where K0 is chosen as the average of the whole observed time series. The 

length of Markov Chain is chosen as ܯ ൌ 2 כ 10ସ, and the “Burn in” period is 104. To fully evaluate the 

performance of parameter estimation, ACFs are firstly used to judge the convergence of Markov chains. Then, 

we compare the state estimates with the observations. As the basic characteristics of different time series differ 

greatly, it is not easily to define a variable to evaluate state estimation. Here, state estimation is evaluated 

simply be inspecting the estimated and observed time series in figures. In this paper, we illustrate the results of 

parameter estimation for 16 randomly selected time series. Parameter estimates for all the 16 time series are 

listed in Table 2, and state estimates for 10 of them are shown in Fig.3. For time series belonging to categories 

(1-3), we found that the basic characteristics of estimated and observed time series are almost equal. However, 

for time series in categories (4), parameter estimation using PG sampling algorithm is not always satisfactory. 

For longer time series (such as 243 and 11061), Particle Gibbs sampling algorithm performed well; while for 

shorter time series (such as 6910, 6929 and 9922) PG sampling algorithm does not perform well. For time 

series that belong to categories (5), parameter estimation using PG sampling algorithm is not good either. 
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Fig. 1 The traceplots and ACFs for the four parameters (ߪ ,ܭ ,ݎଵ, ߪଶ). The true values of parameters that are used to simulate the 

log-transformed Ricker model are r = 3, K = 10, ߪଵ ൌ ଶߪ ,0.2 ൌ 0.2. 
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Fig. 2 Histogram approximations of the posterior densities (diagonal plots) and samples (scatter plots) of model parameters. In 
the diagonal plots, the solid lines are the prior densities ሺߠሻ, and the dash-dotted lines indicate the true value of parameters. In 
the scatter plots, the red crosses indicate the true values. The parameters are the same to that in Fig.1. 

 

 
Table 2 Parameter estimates of the log-transformed Ricker model fit to 16 time series from GPDD (ID  
number is shown in parentheses). All four parameters are assumed to be unknown, and only the  
posterior means are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Categories Species 
Posterior Mean 

 ොଶߪ ොଵߪ ܭ ݎ̂

1 
Acrocephalus scirpaceus (9871) 0.3985 7482 0.2252 0.2327 
Rissa tridactyla (6633) 0.3630 165.13 0.1436 0.1432 
Turdus merula(1238) 1.0336 9.87 0.1630 0.1956 

2 
Ennomos autumnaria (6878) 0.0669 9.62 0.2527 0.4908 
Tetrao urogallus (9281) 0.2659 7.04 0.1983 0.2217 
Anas americana (9899) 0.0583 13.33 0.2461 0.2894 

3 
Accipiter nisus (6575) 1.1345 34.99 0.1381 0.1484 
Spiza americana (9446) 0.9040 65.21 0.1946 0.2477 
Anas discors (9902) 0.2872 92.80 0.4116 0.3398 

4 

Canis latrans (243) 0.1676 22966 0.3691 0.2463 
Lagopus lagopus scoticus (11061) 0.3051 922.92 0.5164 0.3807 
Agrochola litura (6910) 0.8588 74.10 0.2143 0.3806 
Caradrina morpheus (6929) 0.9903 585.68 0.1971 0.2516 
Aegolius funereus (9922) 2.4960 10.21 0.1908 0.2631 

5 
Accipiter gentilis (9506) 0.9008 84.14 0.3006 0.8619 
Operophtera brumata (9949) 0.3929 2.066 1.1117 0.6210 
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Table 3 Parameter estimates of the log-transformed Ricker model fit to 5 time series from GPDD (ID  
number is shown in parentheses). Parameters r, K and ߪଵ are assumed to be unknown, but a prior  
estimate ߪොଶ is given in advance. 

Categories Species 
Posterior Mean Priori 

 ොଶߪ ොଵߪ ܭ ݎ̂

4 
Agrochola litura (6910) 0.8640 77.59 0.4439 0.2162 
Caradrina morpheus (6929) 1.0333 604.06 0.3746 0.2516 
Aegolius funereus (9922) 2.5296 11.75 0.7930 0.2631 

5 
Accipiter gentilis (9506) 0.2436 186.01 0.7122 0.4000 
Operophtera brumata (9949) 0.3770 3.3832 1.1850 0.4000 

 

 

For shorter time series belonging to category (4) and time series belonging to category (5), there are many 

extreme values that deviate far from the average value. As we know, parameter estimation using Particle 

MCMC method mainly relies on SMC. In the process of parameter estimation, state estimation in SMC will be 

prone to generate particles that are closer to the average of time series. The extreme values in the observed 

time series are wrongly considered to be attributed to large observational errors. Therefore, the observational 

errors are exaggerated, and the influence of nonlinearity and environmental noise on population variations is 

covered. We speculate that this is the reason why PG sampling algorithm does not perform well for these time 

series. To reduce the influence of observational errors on state estimation, we assume that ߪଶ is known and 

assign a smaller and constant value to ߪଶ in advance. Prior distributions and constraining conditions for other 

parameters are not changed. Results of parameter estimation for the last five species in Table 1 are shown in 

Table 2. Here, ߪොଶ is set to be smaller or equal to that in Table 1. ACFs indicate that the convergence of Markov 

Chains is good. Furthermore, state estimates inspection shows that the estimated and observed time series are 

consistent (Fig. 4). By comparing Table 1 and Table 2, we can see that the parameter ߪොଵ  representing 

environmental noises become larger. Accordingly, the values of parameter ܭ representing environmental 

carrying capacity also increase. When the prior value of ߪොଶ is further reduced (e.g., reduced by half), the results 

are not qualitatively changed. 
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Fig. 3 The observed and estimated time series of 10 species from GPDD (ID number is shown in parentheses). From top to down, 
the five rows correspond to the five categories in Table 1. Circles represent the observed time series and dots are the estimated 
time series. 
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Fig. 4 The observed and estimated time series of 10 species from GPDD (ID number is shown in parentheses). From top to down, 
the two rows correspond to the two categories in Table 2. Circles represent the observed time series and dots are the estimated 
time series. 

 

 

4 Discussion and Conclusion 

SSMs have provided a framework for incorporating observational error into dynamic population models 

(Calder et al., 2003). Statistical inference on the empirical population dynamics is based on accurately 

estimating model parameters. Parameter estimation in SSMs is the natural extension of state estimation, and 

the prerequisite of successful parameter estimation is a reliable state estimation (Kantas et al., 2009; Gao and 

Zhang, 2012). SMC methods, which are a set of simulation-based techniques that can provide suboptimal 

estimation of model states, have become the standard state estimation method in SSMs (Doucet et al., 2001). 

Starting from state estimation, a straightforward way for parameter estimation is by introducing artificial 

dynamics for the unknown parameters, which is referred to as state augmentation method in literatures 

(Kitagawa, 1998; Liu and West, 2001; Ionides et al., 2006; Dowd, 2011). This method has been proven to be 

efficient for parameter estimation, especially for discretized SSMs derived from continuous-time system 

(Dowd, 2011). However, for the log-transformed Ricker model in this study, state augmentation method is not 

the best choice. First, there are only one state variable but four unknown parameters in the log-transformed 

Ricker model. It means that there are totally five state variables and only one of them can be measured in the 

augmented system. Then the accuracy of state estimation using SMC will be affected. Second, the lengths of 

simulated and empirical time series are too short for state augmentation method. In state augmentation method, 

the static parameter is transformed to a slowly time-varying one by adding an artificial dynamic noise (Liu and 
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West, 2001). To eliminate such artificial influence in SMC, a relative long time series in needed. State 

augmentation method usually works well for these long time series. 

Another choice for parameter estimation in SSMs is SMC-based Maximum likelihood (ML) estimation. 

ML point estimation based on SMC used to be an open problem (Poyadjis et al., 2005). Like general ML 

estimation, ML point estimate of parameters in SSM is also the maximizing argument of the marginal 

likelihood of the observed data (Dowd, 2011). Then either gradient approach or Expectation-Maximization 

method can be used to find the optimal estimates (Kantas et al., 2009, Gao and Zhang, 2012). However, due to 

Monte Carlo variation, the computed likelihood surfaces are found to be rough, and searching the maximizing 

argument might be trapped in a local maximum (Polansky et al., 2009; Dowd, 2011). De Valpine and Hastings 

(2002) suggested profiling the likelihood surfaces in detail to avoid the problem of local trapping. Moreover, in 

order to reduce the Monte Carlo variation in computing the marginal likelihood function, statisticians proposed 

using MCMC method instead of SMC method to compute the likelihood function, such as Lele et al. (2007) 

and Wood (2010). Although Bayesian techniques are used, these methods are still being recognized as 

frequentist inference. 

Actually, Bayesian statistics provides an appropriate framework for state and parameter estimation in 

SSMs (Wikle and Berliner, 2007; Andrieu et al., 2010). In the Bayesian inference, one commonly applied 

approach to approximate the joint probability density ሺݔଵ:௧,  .ଵ:௧ሻ is to use MCMC methods. Calder et alݕ|ߠ

(2003) used the Gibbs sampling algorithm to estimate the parameters in the log-transformed Ricker model. 

Theoretically, using MCMC method to estimate model parameters is substantial and feasible. However, the 

procedure to implement MCMC is a little troublesome. For instance, if we use Metropolis-Hastings algorithm, 

it is difficult to choose a good proposal distributions to construct the Markov Chain; if we use Gibbs sampling 

algorithm, it is not easily to derive the full-conditional distributions analytically that are used to generate 

marginal samples. These problems were successfully solved when Particle MCMC method was proposed 

(Andrieu et al., 2010). In parallel to general MCMC, there are two algorithms of Particle MCMC method: 

PMMH sampling algorithm and PG sampling algorithm (Andrieu et al., 2010). The advantage of PMMH 

sampling algorithm is its universality; however, slow convergence rate is its disadvantage. The convergence 

rate of PG sampling algorithm is much faster, but this algorithm is only applicable for SSMs with analytical 

full conditional distributions. In this study, the SSM is the log-transformed Ricker model. The full conditional 

distributions can be derived analytically. So we chose the efficient PG sampling algorithm to estimate the 

model parameters. 

The performance of PG sampling algorithm for parameter estimation was tested using both simulated and 

empirical time data. In simulation test, the posterior means of parameters were very close to the true values 

that were used to generate the simulated data. Extensive simulations verified that PG sampling algorithm was 

both robust and efficient. The empirical time series in this study were chosen from GPDD. We found that PG 

sampling algorithm performed well for increasing, decreasing, moderately fluctuated and long time series. For 

intensively fluctuated time series, PG sampling algorithm also gave a good estimation, if observational errors 

were constrained. In addition, we found that PG sampling algorithm still performed well for empirical time 

series with missing data. As we know, one purpose of parameter estimation in dynamic population models is to 

infer the relative contributions of endogenous and extraneous factors on population dynamics. In this study, the 

estimated ̂ݎ for most time series were smaller than 2 indicting that the variations of population dynamics were 

not induced by nonlinearity but by environmental noises. The only exception was time series 9922 (̂ݎ  2). 

The estimated ߪଵ  of time series 9922 was still very large, then the combining effect of nonlinearity and 

environmental noises resulted in a time series with regular period but irregular amplitude. Parameter 

estimation using Particle MCMC methods is based on recovering the true states behind the observations 
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(Andrieu et al., 2010). The estimated parameters using Particle MCMC methods are “virtual” parameters that 

are most prone to simulate the so called “true” states. In this study, we have assumed that the observational 

errors were not large enough and the basic characteristics of “true” time series and observed time series were 

consistent. So, state estimates were used to evaluate parameter estimates. This criterion might result in the 

problem of over-fitting for empirical time series. Therefore, on the one hand, we should fit dynamic population 

model to more empirical data to reveal the population regulation mechanism; on the other hand, we should use 

other prior distributions or dynamic population models to obtain more reliable parameter estimates in future 

work. 

 

Acknowledgements 

This work was supported by National Natural Science Foundation of China (No.31000197) to GM, as well as 

Knowledge Innovation Project of Chinese Academy of Sciences (No. KZCX2-EW-QN209). 

 

Appendix 

The posterior distribution of parameter ܽሺݎሻ can be simply derived as  

,ሺܽ|െܽ ,்:ଵݔ ଵ:்ሻݕ ן  ,்:ଵݔఏሺሺܽሻ  ଵ:்ሻݕ  ൌ  pሺaሻpሺݔଵሻෑఏሺݔ௧ାଵ|ݔ௧ሻෑఏ

்

௧ୀଵ

்ିଵ

௧ୀଵ

ሺݕ௧|ݔ௧ሻ
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்ିଵ

௧ୀଵ

ן ݔሺܽሻ݁ ൝െ
1

ଵߪ2
ଶ/ሺܶ െ 1ሻ

ቆܽ െ
∑ ሺݔ௧ାଵ െ ௧ݔ  ܾ݁௫ሻ்ିଵ
௧ୀଵ

ܶ െ 1
ቇ
ଶ

ൡ 

(A1) 

The minus before parameter a indicates taking a out off ߠ  resulting in a subset ሺ ܾ, ,ଵߪ  ଶሻ. As the priorߪ

distribution of a is a continuous uniform distribution ܷሺܽ, ܽଵሻ, then we have 

,ሺܽ|െܽ ,்:ଵݔ ~ଵ:்ሻݕ ሾܰబ,భሿ ቆ
∑ ሺݔ௧ାଵ െ ௧ݔ  ܾ݁௫ሻ்ିଵ
௧ୀଵ

ܶ െ 1
,
ଵߪ
ଶ

ܶ െ 1
ቇ 

where ሾܰబ,భሿሺ·,·ሻ  is a truncated normal distribution. The posterior distribution of parameter b can be 

analogously derived. 

The prior distribution assigned to ߪ
ଶሺ݅ ൌ 1, 2ሻ is inverse gamma distribution ܩܫሺߙ,  ሻ, then we haveߚ

ߪ൫
ଶ൯ ן ൫ߪ

ଶ൯
ିఈିଵexp  ൬െ

ఉ
ఙ
మ൰       (A2) 

We first show how the posterior distribution of ߪଵ
ଶ is derived, 

ଵߪሺ
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where ଵܵ ൌ  
ଵ

ଶ
∑ ሺݔ௧ାଵ െ ௧ݔ െ ܽ  ܾ݁௫ሻଶ்ିଵ
௧ୀଵ  . From eq.(A3), we find that the posterior distribution of ߪଵ

ଶ is an 

inverse gamma distribution, 

ଵߪሺ
ଶ|െߪଵ

ଶ, ,்:ଵݔ ܩܫ~ଵ:்ሻݕ ቀߙଵ 
்ିଵ

ଶ
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Similarly, we can derive the posterior distribution of ߪଶ
ଶ, 
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