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Abstract  

In current publication the statistical method of analysis of population time series in considered. This method is 

based on analysis of dynamics of non-linear ecological model parameter estimations in time, and devoted to 

investigation of influence of change of weather conditions on population dynamics (on the other words, it is 

devoted to analysis of climate change from the standpoint of separated population dynamics). Estimations of 

model parameters were obtained for parts (which contains 12 values each) of initial sample. For the 

approximation of sub-samples the well-known Kostitzin model of population size changing in time was used. 

It was used for the approximation of dataset of pine looper moth (Bupalus piniarius L.) dynamics in Germany 

(total sample size is 58). Estimation of model parameters were obtained with known least squares method. 

Analyses of tendencies of model parameter estimations showed that there are no reasons for rejecting 

hypotheses about the equalities of regression line angles to zero. It gives the base for conclusion about the 

absence of serious change in weather conditions in Germany during analyzing time interval (60 years). 

 

Keywords population dynamics; estimation; model parameters; climate change. 

 

1 Introduction  

Climatic factors have strong influence on insect population fluctuations (Isaev et al., 2009; Vorontsov, 1978; 

Berryman, 1981; Schwerdtfeger, 1957, 1968; Tonnang, 2009, 2010 and others). This influence has a complex 

nature, and can be realized as in direct way as in indirect way (as changing of influence of other components of 

ecosystem – through the changing of influence of parasites, predators, food plants etc.). Taking it into account, 

we can conclude that attempts to find strong direct correlations between population size changing in time and 

dynamics of any weather factor (or group of weather factors) haven’t a good base and perspectives. On the 

other hand such attempts can be very useful for constructing various forecasts (Kondakov, 1974; Isaev et al., 

2009; Tonnang et al., 2010; Nedorezov, 2012 a, b; Nedorezova, Nedorezov, 2012). 

It is naturally to assume that changing of living conditions (including changing of climatic characteristics) 

leads to changing of some population characteristics (productivity, death rates of individuals, intensity of self-

regulative mechanisms, intensity of interaction between various components of ecosystems etc.). Thus, if we 

have a model which gives suitable approximation of existing empirical datasets, then for sufficient big time 

series differences between estimations of models parameters obtained for initial part of the sample and tail of 

the sample, must be confidently different (in a result of changing of weather conditions for a long time 

interval).  
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For any fixed integer values m  and r  (which are less than sample size) it is possible to estimate model 

parameters using sub-sample rx , 1rx ,…, mrx  , where 1r , Nmr  , where N  is sample size. 

Obtained estimations of model parameters are the characteristics of population dynamics on the respective 

time interval. These estimations of model parameters for all possible values of r  form new time series, and for 

these time series we can find tendencies (linear regressions). If hypotheses of the equivalence of coefficients of 

incline of straight regression lines to zero can be rejected, it gives the background for conclusion that weather 

conditions were changed in considering time interval. If these hypotheses cannot be rejected, it means that 

(possible) changing of weather conditions hasn’t confident influence onto population dynamics. In this last 

case all observed fluctuations of model parameters have pure demographic nature or can be explained as 

results of provided measurements. 

If we use for the approximation of datasets the well-known Kostitzin model (Kostitzin, 1937; Nedorezov, 

Utyupin, 2011): 

k

k
k by

ay
y


 11 ,                                                                (1) 

where ky  is population size (or population density) at k -th time moment (year); parameter a  is equal to 

maximum value of coefficient of birth rate (coefficient of birth rate can be determined as relation of values of 

population densities of two nearest generations); parameter b  is a coefficient of self-regulation (Nedorezov, 

Utyupin, 2011; Nedorezov, 2012 a, b). The initial sample contains the values of stochastic variables, thus 

estimations of model (1) parameters (determined as combinations of elements of initial sample) are also the 

values of any stochastic variables (Tamburino, La Morgia, Venturino, 2012; Sharma, Raborn, 2011; Griebeler, 

2011). Finally, it allows applying statistical methods for the analyses of these new samples and for the 

determination of its trends. 

Program described above for analyses of trends of model parameters may have several difficulties. First of 

all, the practice of the use of non-linear mathematical models for the approximation of empirical datasets 

shows (Nedorezov, Sadykova, 2005, 2008, 2010; Nedorezov, Lohr, Sadykova, 2008; Tonnang et al., 2009, 

2010; Nedorezov, 2011 a, b, 2012 a, b) that even for short time series (10-15 values) models of the type (1) can 

give bad approximation. It determines by the behavior of the sequence of deviations between theoretical 

(model) trajectory and empirical trajectory (Draper, Smith, 1986, 1987). 

The second, sometimes approximation of short time series with models of the type (1) leads to long-term 

calculations (in particular, in a result of bad selection of initial values of parameters for iteration process). The 

third, if model gives sufficient approximation for some parts of initial sample and gives insufficient 

approximation for other parts of the sample there appears a question – can we use all obtained estimations of 

model parameters (for the determination of the trends) or we have to use part of them which correspond to 

sufficient approximations only? 

In current publication we use model (1) for fitting the sub-samples of time series of pine looper (Bupalus 

piniarius L.) population dynamics. For every sub-sample sequences of deviations between model trajectory 

and real data were analyzed. Sets of deviations were tested for Normality (Kolmogorov – Smirnov test, 

Lilliefors test, Shapiro – Wilk test; Bolshev, Smirnov, 1983; Lilliefors, 1967; Shapiro, Wilk, Chen, 1968), for 

equivalence of averages to zero, and for absence/existence of serial correlation (test of series, Durbin – Watson 

test; Draper, Smith, 1986, 1987). For sequences of estimated values of model parameters linear regressions 

were built, and hypotheses of the equivalence of angles of linear regression lines to zero were tested with Theil 

criteria (Theil, 1950; Hollander, Wolfe, 1973). As it was shown for various combinations of sub-samples of 
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time series of model coefficients there are no reasons to reject Null hypotheses about the equivalence of angles 

to zero. It allows conclusion about the absence of confident influence of climate changing on population 

dynamics (Germany, 1881-1940; Schwerdtfeger, 1957, 1968).  

 

2 Methods of Time Series Analysis 

Let 1x , 2x ,…, Nx  be an initial time series, N  is number of years (sample size), and kx  is a population 

density at k -th year. For every sub-sample of the type rx , 1rx ,…, mrx  , 1, mr , Nmr   (we put 

11m  for every analyzed sub-sample) the values of Kostitzin model (1) parameters )(** raa  , 

)(** rbb  , and )(*
1

*
1 ryy   were estimated with the following condition: 







mr

rj
j

yba

ybajfxybamrQ 2
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,,

*
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** )),,,((),,,,( min
1

,                                     (2) 

where 1y  is initial value for the population density in model (1), ),,,( 1ybajf  is the respective value 

obtained with model (1) for concrete values of parameters a , b , and initial value 1y : 11 ),,,( yybarf  , 

21 ),,,1( yybarf   and so on. In (2) *a , *b , and *
1y  are the estimations of parameters (initial value of 

population density is unknown parameter which must be estimated with existing sample) which give us a 

minimum. Use of formula (2) means that in the set of all trajectories of model (1) we have to find the best one 

which is closest to our sample.  

After the approximation of all subsets of existing time series, we obtain mN   values of parameters a  

and b : we obtain two new time series: 1a ,…, mNa   and 1b ,…, mNb  . But as we pointed out above, we 

cannot exclude the situation when we have no reasons to use all elements of these new samples for obtaining 

confidence results about the tendencies of population parameters. It depends on the properties of the sequences 

of the residuals between theoretical (model) results (which were obtained with estimated model parameters) 

and empirical results. 

First of all, deviations must have Normal distribution with zero average (more precisely, the respective 

hypotheses couldn’t be rejected for selected significance level). For this reason Kolmogorov – Smirnov test, 

Lilliefors test, and Shapiro – Wilk test were used (Bolshev, Smirnov, 1983; Lilliefors, 1967; Shapiro, Wilk, 

Chen, 1968). Additionally, in the sequence of residuals the serial correlation cannot be observed (Draper, 

Smith, 1986, 1987). If use of one or other statistical criteria allowed rejecting the respective hypothesis 

(hypothesis about equivalence of average to zero, hypothesis about absence of serial correlation etc.), then we 

had reasons to conclude that model isn’t suitable for fitting of the respective subset. And we concluded that 

model (1) is suitable for fitting of any sub-sample if all used criterions didn’t allow rejecting respective 

hypotheses. 

It is important for the analysis of influence of weather conditions onto population dynamics to give 

analyses of tendencies of estimations of parameters a  and b  in time. It is obvious that values 1a ,…, mNa   

and 1b ,…, mNb   are stochastic numbers. But it is very difficult to announce any truthful hypothesis about the 

distribution of deviations between elements of these time series and respective real values of population 

parameters. Thus, for checking tendencies of these time series non-parametric Theil’ criteria was used (Theil, 

1950; Hollander, Wolfe, 1973). If this criterion allows rejecting the hypothesis about equivalence of 

coefficient of incline of regression line to zero, then we have background for the conclusion that there is no 

confidence influence of external factors onto population dynamics. If we have no reasons for rejecting of this 
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hypothesis it means that selected conditions of analysis (selected model, selected size of subsets etc.) don’t 

allow proving that population dynamics had serious changing in time.   

 

3 Used Datasets 

In publication we use well-known datasets by F. Schwerdtfeger (1957, 1968) on fluctuations of pine looper 

moth (Bupalus piniarius L.) densities in Germany. These time series can be free downloaded in Internet 

(NERC Centre for Population Biology, Imperial College (1999) The Global Population Dynamics Database, N 

3759). Datasets are presented in units «number of larvae per squared meter of forest floor in December” (Fig. 

1). The total number of elements in the sample is 58 ( 58N ); values of density for 1911 and 1912 are 

absent. 
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Fig. 1 Changing of pine looper moth density from 1881 to 1940 (red points; Schwerdtfeger, 1957, 1968). Regression line is 
determined by the equation (3). 

 

 

Before the use of non-linear mathematical models for fitting of empirical time series we have to solve the 

following question: can we observe a tendency in population density? For initial sample we have the following 

regression line (Fig. 1): 

7392.17009648.0  tx , 

(with 045.02 R ; estimations of values of regression coefficients were obtained with least square method) 

where x  is population density, t  is time (years). Average of deviations between regression line and empirical 

datasets is equal to zero; standard error is equal to 0.1037. Kolmogorov – Smirnov criteria shows that 

21476.0d , and even with 1% significance level we have to reject the hypothesis about Normality of the 

set of deviations. The same result was obtained with Lilliefors’ test (Lilliefors, 1967). Shapiro – Wilk test 

(Shapiro, Wilk, Chen, 1968) gives 73642.0W , and probability that set of deviations corresponds to 

Normal distribution is less than 10-5. 
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Thus, there are no reasons for the use of parametric statistical methods (Draper, Smith, 1986, 1987; Lakin, 

1990) for checking various hypotheses about values of coefficients of linear regression lines. Let g  be a 

coefficient of incline of regression line. In considering situation checking of the hypothesis 0:0 gH  (vs. 

alternative hypothesis 0:1 gH ) we have to provide with non-parametric methods of statistics. Non-

parametric Theil criterion (Theil, 1950; Hollander, Wolfe, 1973) gives the following result: 

250)(  


N

ji
ij xxcC , 

where )(zc  is determined by the next formula: 


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For big samples the following statistics 

5.0
*

)18/)52)(1(( 


NNN

C
C  

(when hypothesis 0H  is truthful) has Normal distribution with parameters )1,0(  asymptotically, 677.1* C . 

Critical value for 5% significance level is equal to 1.96 approximately. Thus, we have the inequality 

96.1* C  and no reasons for rejecting Null hypothesis 0g .  

Considering sample can be (naturally) divided into two groups: before 1910 (30 values) and after 1913 (up 

to 1940; 28 values). For first subset the equation of linear regression is following:  

959.230124.0  tx , 

( 0366.02 R ) with 82C . For sample size 30 critical value of statistics C  is equal to -111 (for 5% 

level of significance).  

For the second subset the equation of linear regression is following:  

847.320175.0  tx , 

( 0217.02 R ) with 65C . For sample size 28 critical value of statistics C  is equal to 100 (for 5% level 

of significance also). Consequently, in both considering cases there are no reasons for rejecting Null 

hypotheses about equivalence of coefficient of incline of regression lines to zero, 0g . Note, that in both 

cases hypotheses 0H  cannot be rejected even with 10% significance level.  

 

4 Results  

As it was pointed out above estimations of model (1) parameters were obtained for sub-samples, and every 

sub-sample contains 12 real values ( 11m ). If we hadn’t gaps in sub-sample (i.e. sub-sample didn’t contain 

gaps corresponding to 1911 and 1912), estimations of model parameters characterize population dynamics on 

the respective 12-years time interval. If the gaps (1911 and 1912) were inside the sub-sample, estimations of 

model parameters characterize population dynamics on the respective 14-years time interval. Results of 

approximation of all sub-samples and results of analyses of sets of residuals are presented in tables 1 and 2.  
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Table 1 Estimations of model (1) parameters for all subsets 

N 
0x  a  b  

minQ  x  2)1( xsN   

1 0.54 1.016 0 5.749 0.59 5.767 
2 0.542 1.0043 0 5.863 0.555 5.864 
3 0.575 1.0086 0 5.905 0.603 5.91 
4 0.69 0.99 0 5.686 0.652 5.694 
5 0.934 0.933 0 5.356 0.651 5.707 
6 1.298 0.863 0 4.386 0.653 5.69 
7 1.941 0.917 0.202 2.831 0.639 5.766 
8 2.45 0.191 0 2.523 0.577 4.771 
9 9.826·10-6 1.259 1.764·10-16 1.305 0.509 2.32 
10 0.145 1.226 0 1.262 0.577 2.761 
11 0.232 1.244 0.147 1.734 0.615 2.562 
12 0.279 1.463 0.578 2.404 0.599 2.725 
13 0.437 1.582 0.889 2.685 0.597 2.74 
14 0.909 7.359 11.087 2.583 0.604 2.686 
15 0.636 0.975 2.368·10-16 2.62 0.554 2.658 
16 1.35·10-2 11.66 17.793 2.393 0.508 2.735 
17 0.775 0.923 6.563·10-16 2.372 0.51 2.716 
18 1.013 0.866 5.275·10-17 1.835 0.5 2.797 
19 1.372 0.778 3.909 0.931 0.477 2.966 
20 1.701 0.756 0.177 0.241 0.413 2.85 
21 1.228 1.203 1.711 0.123 0.294 1.189 
22 0.268 0.979 0 0.354 0.238 0.356 
23 0.0577 1.193 0 0.256 0.249 0.472 
24 2.035·10-4 2.01 1.252·10-16 0.319 0.393 2.677 
25 3.409·10-2 1.335 4.344·10-17 0.949 0.471 3.059 
26 1.387·10-7 5.897 4.5 1.134 0.485 3.039 
27 1.939·10-7 7.538 7.627 1.786 0.468 3.149 
28 5.455·10-7 9.282 11.514 2.267 0.458 3.227 
29 2.367 11.129 15.68 2.478 0.464 3.188 
30 1.361 13.54 21.452 2.702 0.469 3.144 
33 3.158·10-2 13.961 22.531 2.706 0.506 2.953 
34 0.774 0.934 0 2.579 0.545 2.807 
35 0.166 1.19 0 2.569 0.61 2.859 
36 0.569 1.044 0 4.596 0.732 4.647 
37 1.958·10-3 2.017 2.663·10-16 4.891 1.044 17.54 
38 1.957·10-6 5.413 1.23 4.109 1.119 19.671 
39 1.323·10-6 7.822 2.734 8.882 1.068 20.026 
40 3.885·10-5 6.851 2.880 11.697 1.068 20.026 
41 6.281·10-4 6.277 3.05 13.949 1.09 19.574 
42 6.669·10-3 5.963 3.275 15.755 1.107 19.193 
43 4.445·10-2 5.976 3.484 16.141 1.159 18.424 
44 0.245 6.186 3.875 16.735 1.198 17.664 
45 0.539 11.019 6.996 17.306 1.342 17.978 
46 2.222 0.909 0 15.182 1.393 17.42 
47 3.032 0.932 6.31·10-2 12.021 1.341 18.284 
48 4.541 1.39 0.563 4.941 1.214 18.351 
49 1.265 0.932 0 6.362 0.891 6.793 

N  is the number of subsets; 0x  is estimation of initial point for the respective subset; ba,  are the estimations of model (1) 

parameters; minQ  is value of functional form (2) for estimated parameters; x  is average for respective subset; 
2)1( xsN   is 

sum of squared deviations for the same sample. 
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Table 2 Results of analyses of sets of deviations 

N e ±SE KS SW DW ST 
1 0.00037±0.209 0.299/p<0.2 (p<0.01) 0.6872/p=0.0006 1.225 3,9,4,0.200 
2 -0.00003±0.211 0.363/p<0.1 (p<0.01) 0.622/p=0.00016 0.935 2,10,3,0.182 
3 0.0001±0.212 0.301/p<0.2 (p<0.01) 0.688/p=0.0006 1.131 3,9,4,0.200 
4 0.00009±0.208 0.265/p>0.2 (p<0.05)  0.768/p=0.0041 0.655 4,8,4,0.109 
5 0.0036±0.201 0.325/p<0.15 (p<0.01) 0.8187/p=0.01541 1.37 4,8,5,0.289 
6 0.0026±0.182 0.212/ p>0.2 (p<0.2) 0.8967/p=0.14379 1.682 4,8,5,0.289 
7 -0.0062±0.146 0.199/p>0.2 (p<0.2) 0.8904/p=0.1191 2.16 4,8,6,0.533 
8 -0.324±0.098 0.24/p>0.2 (p<0.1) 0.848/p=0.035 0.505 1,11,3,1.0 
9 -0.0398±0.099 0.141/p>0.2 0.942/p=0.5305 1.109 6,6,5,0.175 
10 -0.015±0.098 0.179/p>0.2 0.9185/p=0.2739 1.592 5,7,6,0.424 
11 -0.003±0.115 0.166/p>0.2 0.9303/p=0.3837 1.36 6,6,6,0.392 
12 -0.0003±0.135 0.166/p>0.2 0.963/p=0.8196 1.063 5,7,5,0.197 
13 0.00004±0.143 0.15/p>0.2 0.9196/p=0.2826 0.95 5,7,5,0.197 
14 0.00009±0.14 0.1902/p>0.2 0.8807/p=0.0895 0.8296 5,7,5,0.197 
15 0.0007±0.141 0.211/p>0.2 (p<0.2) 0.8789/p=0.08475 0.663 5,7,4,0.076 
16 -0.01±0.135 0.176/p>0.2 0.9025/p=0.171 0.68 6,6,4,0.067 
17 0.0081±0.134 0.224/p>0.2 (p<0.1) 0.895/p=0.1365 0.791 4,8,3,0.024 
18 0.0169±0.118 0.281/p>0.2 (p<0.01) 0.898/p=0.1494 1.018 4,8,3,0.024 
19 0.013±0.084 0.229/p>0.2 (p<0.1) 0.9125/p=0.2297 1.669 4,8,5,0.289 
20 -0.015±0.042 0.157/p>0.2 0.9357/p=0.4442 1.154 4,8,4,0.109 
21 0.0009±0.031 0.149/p>0.2 0.9322/p=0.4044 0.965 6,6,6,0.392 
22 -0.00038±0.052 0.213/p>0.2 (p<0.15) 0.8341/p=0.0235 0.793 5,7,5,0.197 
23 -0.0222±0.0435 0.137/p>0.2 0.9473/p=0.5983 0.424 5,7,3,0.015 
24 -0.1042±0.038 0.139/p>0.2 0.9612/p=0.8016 0.179 1,11,3,1.0 
25 -0.0314±0.084 0.172/p>0.2 0.9204/p=0.2897 1.062 5,7,4,0.076 
26 -0.0723±0.09 0.216/p>0.2 (p<0.15) 0.8942/p=0.1335 1.348 3,9,4, 0.200 
27 -0.0451±0.116 0.222/p>0.2 (p<0.15) 0.8818/p=0.0923 1.18 4,8,4,0.109 
28 -0.0286±0.131 0.24/p>0.2 (p<0.1) 0.8814/p=0.0912 1.059 5,7,4,0.076 
29 -0.0171±0.137 0.261/p>0.2 (p<0.05) 0.8788/p=0.0846 1.018 6,6,4,0.067 
30 -0.011±0.143 0.215/p>0.2 (p<0.15) 0.8663/p=0.0586 0.976 6,6,4, 0.067 
33 -0.0069±0.143 0.205/p>0.2 (p<0.2) 0.8586/p=0.047 0.888 5,7,4,0.076 
34 0.0025±0.14 0.163/p>0.2 0.8846/p=0.1003 0.999 5,7,4, 0.076 
35 -0.0044±0.139 0.172/p>0.2 0.9025/p=0.1706 1.026 5,7,4, 0.076 
36 -0.0049±0.187 0.177/p>0.2 0.8717/p=0.0687 0.755 5,7,3, 0.015 
37 -0.3161±0.167 0.309/p<0.2 (p<0.01) 0.7236/p=0.0014 0.257 2,10,3,0.182 
38 -0.232±0.162 0.154/p>0.2 0.9509/p=0.65 1.841 3,9,4,0.200 
39 -0.137±0.256 0.262/p>0.2 (p<0.05) 0.8107/p=0.0124 1.544 3,9,4, 0.200 
40 -0.0769±0.297 0.246/p>0.2 (p<0.05) 0.8471/p=0.0338 1.222 3,9,4, 0.200 
41 -0.0538±0.325 0.227/p>0.2 (p<0.1) 0.8826/p=0.0948 1.056 5,7,4, 0.076 
42 -0.0385±0.345 0.17/p>0.2 0.8774/p=0.0812 0.948 6,6,4, 0.067 
43 -0.0196±0.35 0.169/p>0.2 0.8534/p=0.0405 0.949 5,7,4, 0.076 
44 -0.0113±0.356 0.226/p>0.2 (p<0.1) 0.8116/p=0.0127 0.921 4,8,4,0.109 
45 -0.0019±0.362 0.188/p>0.2 0.8477/p=0.0344 1.032 5,7,5,0.197 
46 -0.0063±0.339 0.188/p>0.2 0.8822/p=0.0936 1.289 4,8,4,0.109 
47 -0.009±0.302 0.195/p>0.2 0.894/p=0.1325 1.667 4,8,5,0.289 
48 0.0129±0.193 0.223/p>0.2 (p<0.15) 0.87/p=0.0656 1.752 4,8,7,0.788 
49 -0.0053±0.22 0.242/p>0.2 (p<0.1) 0.813/p=0.0132 1.76 4,8,5,0.289 
N  is a number of subsets; e ±SE are the average for deviations plus-minus standard error; KS is value of Kolmogorov – 

Smirnov test and respective probability; SW is value of Shapiro – Wilk test and respective probability; DW is value of Durbin – 

Watson criteria; ST is result of application of the serial test (Swed Frieda, Eisenhart, 1943): first and second numbers correspond 

to deviations with different signs, third number is the number of sets of deviations with one and the same signs, fourth number is 

the respective (cumulative) probability.  
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In some cases (when estimations of model parameters are very far from the “biological zone”) values of 

model parameters which correspond to local minima, were used (see tables 1, 3 and 4) for estimating of 

tendencies.   

 

Table 3 Values of model parameters which are far from “biological zone” 

N 
0x  a  b  

minQ  x  2)1( xsN   

1 1.093·10-21 16092.48 18753.79 5.287 0.59 5.767 
2 1.769·10-18 29810.85 38679.15 5.158 0.555 5.864 
3 9.77·10-12 5167.83 6561.7 5.063 0.603 5.91 
4 4.623·10-10 54241.61 69336.23 5.043 0.652 5.694 
8 2.46 1024.8 2523.3 0.904 0.577 4.771 
22 0.607 38344291887.96 187546040465.67 0.208 0.238 0.356 
49 2.718 2748965359569.63 3790829143023.0 3.151 0.891 6.793 

 

 

Table 4 Results of analyses of sets of deviations when estimations of model parameters are far from “biological zone” 

N e ±SE KS SW DW ST 
1 -0.12±0.197 0.14/p>0.2 0.9299/p=0.3788 1.093 5,7,4,0.076 
2 -0.064±0.197 0.191/p>0.2 0.8675/p=0.0608 1.127 6,6,4,0.067 
3 -0.036±0.196 0.258/p>0.2 (p<0.05) 0.847/p=0.0314 1.222 6,6,5,0.175 
4 -0.024±0.195 0.251/p>0.2 (p<0.05)  0.842/p=0.0266 1.233 5,7,6,0.424 
8 1.32·10-8±0.083 0.249/p>0.2 (p<0.05) 0.833/p=0.0229 1.459 4,8,6,0.533 
22 3.59·10-10±0.04 0.196/p>0.2 0.877/p=0.0803 0.768 4,8,4,0.109 
49 0.0±0.155 0.264/p>0.2 (p<0.05) 0.722/p=0.0014 1.526 3,9,5,0.491 

 

 

For estimations of parameter a  (numbers 6, 7, 10, 11, 19, 26, 38, 46-48; for these cases model (1) is 

suitable for fitting; fig. 2a; tables 1 and 2) we have the following regression line: 

4072.10213.0  ra , 0362.02 R , 

with 13C . For sample size 10 critical values for Theil criterion are following: 054.0}19{ CP  (one-

side criterion) and 072.0}21{ CP  (double-side criterion; Theil, 1950; Hollander, Wolfe, 1973).  

Additionally, 146.0}13{ CP . Thus, Theil criterion doesn’t allow rejecting the hypothesis 0:0 gH  

for parameter a . Selected method of analysis doesn't allow concluding that changing of external conditions 

had influence on maximum value of birth rate. Respectively, it gives some reasons to say that during the 60 

years of population monitoring of the density of pine looper moth there weren’t confident changing of 

productivity and surviving of individuals. 

With the same conditions regression line for parameter b  is following (Fig. 2b): 

0877.1001.0  rb , 0001.02 R , 

with statistics 8C . Like in previous case Theil criterion doesn’t allow rejecting the hypothesis 0:0 gH  

for parameter b . It means that we have a certain reason to say that during 60 years the intra-population 

competition between individuals didn’t change.  
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Fig. 2 Changing of parameters a  (case a) and b  (case b) of model (1) with respect to changing of variable r  (for the cases when 
model with these parameters gives good fitting of the respective subsets of initial sample), and linear regression lines. 
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Let’s consider the case with bigger number of points in samples for estimations of parameters a  and b . In 

some cases (when variable r  is equal to 9, 12, 13, 20, 21, 27, 28, 30, 34, 35, 41, 42; table 2) Durbin – Watson 

criterion cannot give a conclusion about absence or presence of serial correlation. Other criteria showed good 

results for fitting of the respective sub-samples. Combining both samples we obtain two new time series (fig. 

3).  

For estimations of parameter a  (fig. 3a; tables 1, 2) we have the following regression line: 

4703.1067.0  ra , 0717.02 R , 

with 45C . For sample size 22 critical values for Theil criterion are following: 051.0}59{ CP  (one-

side criterion) and 054.0}69{ CP  (double-side criterion; Theil, 1950; Hollander, Wolfe, 1973).  

Additionally, 109.0}45{ CP . Thus, in considering case Theil criterion doesn’t allow rejecting the 

hypothesis 0:0 gH  for parameter a . Method of data analysis doesn't allow concluding that changing of 

external (weather) conditions had influence on maximum value of birth rate. Respectively, it gives some 

reasons to say that during the 60 years the pine looper moth hadn’t confident changes in productivity and 

surviving of individuals. 

With the same conditions regression line for parameter b  is following (fig. 3b): 

5988.10451.0  rb , 0154.02 R , 

with statistics 43C . Like in previous case Theil criterion doesn’t allow rejecting the hypothesis 

0:0 gH  for parameter b , 12.0}43{ CP  (Theil, 1950; Hollander, Wolfe, 1973). It means that we 

have a certain reason to say that during 60 years the intra-population competition between individuals didn’t 

change. In both last cases Null hypotheses cannot be rejected even with 10% significance level. 

Let’s consider the last case with all obtained estimations of model parameters (tables 1, 2; fig. 4). For all 

estimations of parameter a  (fig. 4a) we have the following regression line: 

2463.10958.0  ra , 1266.02 R , 

with 278C  and 549.2* C . For 5% significance level critical level for statistics *C  is 1.96. Thus, we 

have the inequality 96.1* C , and Null hypothesis must be rejected with 5% significance level (double-sided 

criterion). Taking into account that 0108.0}55.2{ * CP  Null hypothesis cannot be rejected with 1% 

significance level.  

Formally, we got a contradiction with results obtained in two previous cases (if we confine ourselves with 

5% significance level; and there are no contradictions between results if we choose 1% significance level). In 

this situation we have to take into account that a lot of parameters used for determination of tendency 

corresponds to situations when model gives insufficient approximation of respective sub-samples.  
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Fig. 3 Changing of parameters a  (case a) and b  (case b) of model (1) with respect to changing of variable r  (for the cases when 
model with these parameters gives good fitting of the respective subsets of initial sample, plus cases when Durbin – Watson test 
cannot give a conclusion about existence/absence of serial correlation in sequences of residuals), and linear regression lines. 
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Fig. 4 Changing of parameters a  (case a) and b  (case b) of model (1) with respect to changing of variable r  (for all obtained  
estimations), and linear regression lines. 
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On fig. 4b there are values of all estimations of parameter b  and the respective regression line which is 

determined by the following equation: 

6205.10617.0  rb , 0241.02 R , 

with statistics 278C  and 549.2* C . Like in previous case with parameter a  we have to reject Null 

hypothesis 0:0 gH  for parameter b . Thus, if we confine ourselves with 5% significance level we can 

conclude that there exist some reasons for conclusion that during 60 years weather conditions had been 

changed, and it led to increase of population birth rate and to increase of intra-population self-regulation.   

 

5 Conclusion 

It is the simple idea considered in current publication which is in the base of approach to analysis of population 

dynamics. Initial sample (on changing of population size or population density in time) transforms with the use 

of non-linear mathematical model to some other time series; and these new time series are analyzed with 

known statistical methods. Considered in current publication the time series on fluctuations of pine looper 

moth density in Germany (Schwerdtfeger, 1957, 1968) was transformed with the use of Kostitzin model into 

two new time series – changing in time of maximum of population birth rate and coefficient of intra-

population competition (coefficient of self-regulation). Analysis of these new time series showed that there are 

no reasons for conclusion that changing of external conditions (during 60 years) had confidence influence onto 

basic population characteristics if we use for estimation of tendencies parameters which correspond to 

situations when model gives good fitting of the respective sub-samples. If we use for estimation of tendencies 

of model parameters all obtained estimations we have unobvious situation: with 5% significance level we have 

to reject the Null hypotheses (for both population parameters), and we cannot reject the Null hypotheses if we 

use 1% significance level.  

It is important to point out some problems we have when we apply considered method for population 

dynamics analysis. One or other variant of solution of these problems may have strong influence on final 

results. 

First of all, it is a problem of choosing of mathematical model we assume to use for fitting of time series. 

In current publication the well-known Kostitzin model (1) was used. This model has very poor set of 

dynamical regimes (regimes of monotonic stabilization only), and it cannot give us a guarantee that this model 

is the best one among all other mathematical models. We cannot exclude the situation when with the help of 

other model (for example, discrete logistic model or Moran – Ricker model which have very rich sets of 

dynamical regimes) we can obtain better results (when we have smaller number of situations when model isn’t 

suitable for fitting or when checked hypotheses can be rejected with bigger level of significance).  

The second problem of considered approach is choosing of the size of sub-samples (number of empirical 

values we use for estimation of model parameters). If sub-sample size is low the confidence of obtained results 

isn’t big. Increasing of sub-sample size leads to the decreasing of sizes of obtaining new time series (for model 

parameters). In general case the size of sub-samples must depend on existing initial sample, and main goals of 

providing investigations. 
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