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Abstract 

Recently, I showed that ecological and biological networks can be controlled by coupling their dynamics to 

evolutionary modelling. This provides numerous solutions to the goal of guiding a system’s behaviour towards 

the desired result. In this paper, I face another important question: how reliable is the achieved solution? In 

other words, which is the degree of uncertainty about getting the desired result if values of edges and nodes 

were a bit different from optimized ones? This is a pivotal question, because it’s not assured that while 

managing a certain system we are able to impose to nodes and edges exactly the optimized values we would 

need in order to achieve the desired results. In order to face this topic, I have formulated here a 3-parts 

framework (network dynamics - genetic optimization - stochastic simulations) and, using an illustrative 

example, I have been able to detect the most reliable solution to the goal of network control. The proposed 

framework could be used to: a) counteract damages to ecological and biological networks, b) safeguard rare 

and endangered species, c) manage systems at the least possible cost, and d) plan optimized bio-manipulations. 
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1 Introduction 

Recently, I showed that ecological and biological networks can be efficiently controlled by coupling their 

dynamics to evolutionary modelling (Ferrarini, 2013). This provides numerous solutions to the goal of guiding 

a system’s behaviour towards the desired state. The proposed solution is able to drive networks towards the 

desired state without the need of a permanet control on nodes values as, instead, it was proposed by Liu et al. 

(2011). The application of genetic algorithms to network dynamics allows to act on the highest number of 

switches, while maintaining the computational effort to tractable levels. In addition, they allow to control 

multiple nodes and edges at the same time in a reasonably computational effort (Ferrarini, 2011). 

In this paper, I face another pivotal topic, i.e. how reliable is the achieved solution? In other words, which 

is the degree of uncertainty about getting the desired result if values of edges and nodes were a bit different 
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from optimized ones? This is a pivotal question, because it’s not assured that while managing a certain system 

we are able to impose exactly the optimized values to nodes and edges we would need in order to achieve the 

desired result. To this aim, here I have coupled system dynamics and evolutionary modelling to stochastic 

simulations and, using an illustrative example, I was able to detect the most reliable solution to the goal of 

network control. 

 

2 Mathematical Conceptualization 

Most real systems’ dynamics can be modelled and simulated using a system of canonical, linear equations (Liu 

et al., 2011; Slotine and Li, 1991), as follows: 
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where Si is the number of individuals (or the total biomass) of the generic i-th species, while I and O represent 

inputs and outputs from outer universe. The previous system has initial values 
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Under genetic optimization (Holland, 1975; Goldberg, 1989, Parolo et al., 2009; Ferrarini, 2012a), 

equation (1) becomes (Ferrarini, 2013): 
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where asterisks stand for the optimization of edges (i.e., coefficients of interaction among variables) or nodes 

(i.e., initial stocks), that is the modification of their values at the beginning of the network dynamics in order to 

get a certain goal (e.g., maximixation of the final value of a certain variable). 

After optimization is reached, one could wonder how reliable is the achieved result, i.e. which is the degree 

of uncertainty about getting the desired result if optimized values of edges and nodes change of a small amount? 

This is a pivotal question, because it’s not assured that while managing a certain system we are able to impose 

exactly the optimized values to nodes and edges. To answer this question, I changed eq. (4) into: 
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where: 
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or alternatively: 
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In other words, aij represents a 5% (or 10%) uncertainty about aij*,  while Sj represents a 5% (or 10%) 

uncertainty about Sj
*. If, after genetic optimization, we stocastically vary n times (e.g. 10,000 times) aij* and Sj

*, 

we are able to compute how many times such uncertainty make the optimization procedure useless. Hence, 

uncertainty about network control can be computed as: 

% 100*
k

U
n

           (8) 

where k is the number of stocastic simulations acting upon optimized parameters that make the optimization 

procedure useless (i.e. the goal of optimization is not reached). 

 

3 An Applicative Example 

Fig. 1 depicts an ecological network borrowed with modifications from Ferrarini (2012b). Greenish nodes 

represent positive actors or events for the goal of the network control, i.e. the increase of individuals of the 

target species (centre of the network). Reddish nodes represent ecological actors or events with negative 

impact on the target species. Blueish nodes represent resources needed by the target species. The goal is to 

preserve target species’ occurrence in the study area. Stocks stand for the actual amounts of individuals or 

biomass. Updates stand for yearly internal dynamics (i.e., intraspecific gains due to births and/or immigration 

rates minus losses due to deaths and/or emigration rates). Minimum and maximum values stand for lowest and 

highest values of stock values. For the sake of simplicity, the maximum possible value for each actor (in italic 

hereafter) has been set to 100. The percent value associated to links represents the percentage of the receiver 

that is yearly consumed by the transmitter (average values of the last 5 years) at the beginning of the network 

simulation. Road mortality and re-introductions accounts for 18 and 10 individuals per year respectively 

(average values of the last 5 years). 

Since data are yearly-based, I expressed equation (1) using a system of difference recurrent equations, 

instead of differential ones. The previous ecological network has the following inertial dynamics (Fig. 3), with 

the target species (green line) going extinct after 7 years. 

 

4 Solutions to the Goal of Network Control  

As latterly depicted (Ferrarini, 2013), I have found several solutions in order to drive the above network to the 

desired dynamics (i.e. maximization of target species’ stock). Table 1 summarizes some of the detected 

solutions. 
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    Fig. 1 The ecological network on which evolutionary control has been applied. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 
Fig. 2 Resulting dynamics for the network of Fig. 1. X-axis measures time in years. Dynamics were calculated using the software  
Quant-Lab (Ferrarini, in preparation). 
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   Table 1 Actions that can drive system’s dynamics to the goal of maximizing target species’ stock. 

Solution Description 

1 imposing pred2’s initial stock to be <8  

2 increasing target species’ intraspecific coefficient above the value 1.36  

3 imposing input-output (reintroductions minus road mortality) balance to be > -6 

4 yearly substraction of at least 5 individuals for both pred1 and pred2 

 

 

5 Computing Associated Uncertainty 

For each of the previous solutions, I computed 1%, 5% and 10% stochastic simulations on all the network 

parameters simultaneously as depicted in equation (5), then I computed U% as expressed in equation (8). Each 

time, I repetead 10,000 simulations using Quant-Lab (Ferrarini, in preparation). 
 

 
Table 2 Control uncertainty (U%) associated to 1% uncertainty on the optimized network parameters. The lower U%, the more  
reliable the action purposed to network control. In bold, solutions with null uncertainty associated. Actions 10, 14 and 19 resulted  
safe from uncertainty. 

ID Actions Simulations U% 

1 pred2’s initial stock = 7 10,000 35.07 

2 pred2’s initial stock = 6 10,000 28.38 

3 pred2’s initial stock = 5 10,000 21.25 

4 pred2’s initial stock = 4 10,000 17.05 

5 pred2’s initial stock = 3 10,000 15.78 

6 pred2’s initial stock = 1 10,000 14.27 

7 pred2’s initial stock = 0 10,000 12.58 

8 target species’ intraspecific coefficient = 1.361 10,000 34.00 

9 target species’ intraspecific coefficient = 1.38 10,000 2.29 

10 target species’ intraspecific coefficient = 1.39 10,000 0 

11 input-output balance = -5 10,000 30.88 

12 input-output balance = -4 10,000 3.82 

13 input-output balance = -3 10,000 3.82 

14 input-output balance = -2 10,000 0 

15 yearly substraction of 5 individuals for both pred1 and pred2 10,000 25.75 

16 yearly substraction of 6 individuals for both pred1 and pred2 10,000 8.75 

17 yearly substraction of 7 individuals for both pred1 and pred2 10,000 4.12 

18 yearly substraction of 8 individuals for both pred1 and pred2 10,000 1.10 

19 yearly substraction of 9 individuals for both pred1 and pred2 10,000 0 

 

 

With 1% uncertainty on the optimized network parameters (Table 2), it’s clear that lowering pred2’s initial 

stock is not enough. In fact, even with pred2’s initial stock=0 there’s no certainty about getting the 

maximixation of target species (U%=12.58%). Instead, the other 3 actions can achieve null uncertainty (actions 

in bold). 
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Table 3 Control uncertainty (U%) associated to 5% uncertainty on the optimized network parameters. The lower U%, the more  
reliable the action purposed to network control. In bold, solutions with null uncertainty associated. Actions 4 and 9 resulted safe  
from uncertainty. 

ID Description Simulations U% 

1 target species’ intraspecific coefficient = 1.39 10,000 28.15 

2 target species’ intraspecific coefficient = 1.42 10,000 7.19 

3 target species’ intraspecific coefficient = 1.45 10,000 1.61 

4 target species’ intraspecific coefficient = 1.46 10,000 0 

5 input-output balance = -2 10,000 24.71 

6 input-output balance = +8 10,000 1.94 

7 input-output balance = +12 10,000 1.70 

8 input-output balance = +15 10,000 0.25 

9 input-output balance = +16 10,000 0 

10 yearly substraction of 9 individuals for both pred1 and pred2 10,000 36.25 

 

 

With 5% uncertainty on the optimized network parameters (Table 3), the yearly substraction of 9 

individuals for both pred1 and pred2 is not enough (U%= 36.25%). Instead, the other 2 actions can achieve null 

uncertainty (actions in bold). 

With 10% uncertainty on the optimized network parameters (Table 4), two actions are still effective 

(actions in bold). In this case, target species’ intraspecific coefficient should be set to 1.57 or above, or input-

output balance should be set to +21 or above. 

 

 
Table 4 Control uncertainty (U%) associated to 10% uncertainty on the optimized network parameters. The lower U%, the more  
reliable the action purposed to network control. In bold, solutions with null uncertainty associated. Actions 7 and 15 resulted safe  
from uncertainty. 

ID Description Simulations U% 

1 target species’ intraspecific coefficient = 1.39 10,000 43.41 

2 target species’ intraspecific coefficient = 1.42 10,000 30.29 

3 target species’ intraspecific coefficient = 1.45 10,000 18.64 

4 target species’ intraspecific coefficient = 1.50 10,000 7.09 

5 target species’ intraspecific coefficient = 1.54 10,000 4.29 

6 target species’ intraspecific coefficient = 1.56 10,000 1.88 

7 target species’ intraspecific coefficient = 1.57 10,000 0 

8 input-output balance = -2 10,000 33.30 

9 input-output balance = 0 10,000 19.31 

10 input-output balance = 2 10,000 9.82 

11 input-output balance = 4 10,000 9.70 

12 input-output balance = 8 10,000 5.29 

13 input-output balance = 12 10,000 3.09 

14 input-output balance = 18 10,000 1.65 

15 input-output balance = +21 10,000 0 
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It’s clear that the proposed 3-component framework (network dynamics - genetic optimization - stochastic 

simulations) is able to find several further solutions, for instance by acting simultaneously on target species’ 

intraspecific coefficient, input-output balance, pred2’s initial stock etc. In addition, using the proposed 

framework one could simulate uncertainty just on a subset of the network parameters (e.g., actors’ stocks), or 

could also seek multiple goals (e.g. target species’ maximization + pred2’s minimization). 

 

5 Conclusions 

Ecological and biological networks’ control is a pivotal issue. It could be used to a) counteract damages to 

ecological and biological networks, b) safeguard rare and endangered species, and c) manage ecological 

systems at the least possible cost. Here, I have proposed a feasible solution to this topic by coupling system 

dynamics and evolutionary modelling to stochastic simulations. 
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