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Abstract 

Complex dynamics is detected in an ecological model of host-parasitoid interaction. It illustrates fractalization 

of basins with self-similarity and chaotic attractors. This paper describes these dynamic behaviors, bifurcations, 

and chaos. Fractals basins are displayed by numerical simulations. 
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1 Introduction 

We deal with two-dimensional noninvertible maps which have contributed greatly to the understanding of 

complex nonlinear dynamics. Such behaviors have been studied extensively, particularly in the applied 

dynamics literature, and constitute a central issue in population ecology. A host-parasite model is considered, 

it is of interest and offers a richness of bifurcations and an interesting set of dynamical phenomena due to the 

presence of multistable states basins, deformation of basin boundaries and transient chaos. 

An attractor is a set towards which a dynamical system evolves over time. It is very common for dynamical 

systems to have more than one attractor. Such attractors can be static, periodic, quasiperiodic, or chaotic and 

are contained within a basin of attraction, which is the set of initial conditions that eventually approach the 

attractor. Studying the attraction basins of such nonlinear maps helps in understanding the ways of 

multistability formation. 

Multistability poses a challenge for studying and investigating the dynamics occurring in various areas of 

engineering and environmental sciences. Sometimes the basin boundaries are fractal sets, which can make the 

identification of the final behavior extremely difficult. The fractal structure may be revealed by fractal basin 

boundaries or by patterns of self-similarity. The analysis of these structures is useful for obtaining information 

about the future behavior of attractors and their basins, and it provides important knowledge about the relation 

between them. The concept of chaos and strange attractors was also very attractive in ecological research see 

(Ivanchikov and Nedorezov, 2011, 2012). 

In the present work, we consider an ecological system for proving persistence, the local exponential 
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stability of a positive fixed point. Our approach extensively revolves around and relies on numerical 

simulations. It concerns one research area, the detection of fractal basin sets and the identification and 

verification of some properties of attractors, and it intends to give the basic patterns of complex non-

uniqueness in the dynamical behavior of this parasitised host population proposed in Kaitala & Heino, 1996, 

and Kaitala et al., 1999 in a complex nonlinear mathematical expression. The authors present evidence 

supporting the claim that their basins of attraction are fractals, and the system exhibits multiple attractors with 

a qualitative dynamics which depends on the initial conditions. The importance of this research is to help us to 

understand the mechanisms inducing the irregular fluctuations of the parasitised populations. 

This paper is organized as follows: Section 2 describes some peculiar properties of such a map, their 

dependence on the parameters, and stability of the fixed points or attractors. The qualitative behavior and 

bifurcations of this map are examined by using a qualitative theory and standard bifurcation theory. In section 

3, we discuss some cases where bifurcations can lead to creation of fractal basins and can cause qualitative 

changes in the structure of the domain as parameters are varied. Finally, we give the conclusion. 

 

2 Host-parasite Interaction Model 

To investigate the multiple attractors with complex basins in the case of interacting populations, we consider 

the model T  studied by (Holling, 1959; Royama, 1971; Rogers, 1972; Zhao, 2009), for understanding the 

population dynamics and the mechanisms that induce the population variations. 
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where r  is the intrinsic growth rate of the host population, a  is the instantaneous search rate.The variables 
x   and y  are, respectively, the host and parasitoid population sizes. 

These authors observed rare features and complex dynamics patterns such as supertransients and chaotic 

transients, multiple attractors and basins of attraction with fractal properties (patterns of selfsimilarity and 

fractal basin boundaries). 

The host-parasitoid model may produce stable, periodic, quasiperiodic or chaotic dynamics. Here we are 

interested in sustained coexistence of both species. We consider the dynamics of the host population in terms 

of constant parameter values of r , and use a  as a bifurcation parameter. 

Because the analytical intractability of this mathematical model, we validate our results by numerical 

simulations and discuss their implications. We provide some numerical evidence for the qualitative dynamic 

behavior of the map. 

From Fig. 1, we can draw the following conclusion: For r >0 and a >0, in the white area, the host and the 

parasitoid can coexist. For r =3.5 and a =0.037, a period-3 cycle can coexist with a closed invariant curve. 

For r =2.2 and a =0.04,a period-5 cycle exists and for r =1.93 and a =0.053, we have a period-6 cycle. 
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Fig. 1 Bifurcation diagram for the host-parasitoid system (Kaitala et al., 1999). 

 

 

The fixed points of T  in Eq. (2.1) are solutions obtained by a trivial manipulation of (2.1) with xx '  

and yy ' . Besides the trivial solution )0,0( which always exists, we observe that two additional fixed 

points exist if a ≥0. 

We have to focus attention on bifurcations playing an important role in the dynamics, those happening for 

a ≥0 and r >0. We can state the following propositions: 

Proposition 1  :   If a =0,  then x*=1 is the unique fixed point of the unidimensional reduced map 

))1(exp(' xrxx  . If a >0,  then two more fixed points )0,1(1 P  and  2P  can exist such that 

)))1(exp(1(,(2 xrxxP  .  

Lemma 2  : The system (2.1) admits 2P  as a positive fixed point if a >0.01. 

Proof: The fixed point )))1(exp(1(,(2 xrxxP   has positive components because x  is the intersection 

of two curves )))1(exp(1(100)1)(1( xraxaxxr   and 10  x , we can not obtain the solutions 

explicitly 

Let us investigate the qualitative behaviors of the system (2.1). As usual, the local dynamics of map (2.1) 

in the neighborhood of a fixed point is dependent on the Jacobian matrix. The Jacobian is evaluated at the 

fixed point, which we denote by ),(det yxDTJ  . 
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be the Jacobian matrix of T  at the state variable ),( yx . 

   We consider now the conditions for local stability of the fixed point )0,1(1 P  in terms of the 
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parameters in Eq. (2.1). The study of the stability and attractivity of the positive fixed point 2P  gets difficult. 

The Jacobian matrix 
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)0,1( of T in )0,1(1 P  has two multipliers 1- r ; 100 a /(1+ a ). 

For a >0, and by a simple computation, it is straightforward to obtain the following result: 

- If 0< r <2 and a <0.01: the fixed point )0,1(1 P is a stable and 2P  is a saddle with a negative second 

component.  

- If r >2 and a >0.01 : )0,1(1 P which always exists, is unstable and 2P  is a stable point. Both of these 

fixed points undergo bifurcations in parameter space for positive values of a . We can see that for a =0.010, 

one of the multipliers of )0,1(1 P  is 1 and the other is not one with modulus. Thus the transcritical 

bifurcation occurs with a =(1/99) . 

Proposition 3 : If r =2, the map (1) undergoes a flip bifurcation at the fixed point )0,1(1 P . 

Proof: By simple computation, we can prove this proposition. 

   The population dynamics will be fully investigated through numerical simulations. In Figure 2a, for 

a =0.01 the transcritical bifurcation takes place with 1P = 2P  with the extinction of the Y species, the saddle 

1P  with the two multipliers S₁=-1,S₂≤1 gives rise to a stable period-2 cycle located on the x -axis.  

In Figure 2b, for a =0.0097 the stable fixed point and interior is 1P  appears and its attraction basin is 

illustrated by the red color, 2P  has negative components and it is a saddle located on the fourth quadrant. 

 

 

               

 
Fig. 2a Coexistence of two merged fixed points,               Fig. 2b Coexistence of three fixed points (0,0), 

(0,0) and (1,0) and period-2 cycle (blue crosses)               1P  and 2P  and period-2 cycle (blue crosses)  

for 01.2r , 01.0a .                              for 01.2r , 0097.0a . 

 

 

 

Proposition 4 : If a=(10/3),  the system (2.1) undergoes a Neimark-Sacker bifurcation at the stable interior 

fixed point P₂. Moreover an attracting invariant closed curve bifurcates from the fixed point.    

For 00.2r , the fixed point (1,0) undergoes a flip bifurcation. In this case the parasitoid becomes 
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extinction and the host pass through period doubling bifurcation. As r  increases, the interior fixed point 2P  

becomes unstable through a discrete Neimark-Sacker bifurcation and the behavior of host-parasitoid model 

becomes chaotic (see Fig. 4) .                        

 

 

 
  Fig. 3 Neimark-Sacker Bifurcation at 

2P , 82.2r , 033.0a . 

 

 

3 Fractal Basins 

A plot of the fractal basins associated with a dynamical system provides a qualitative indication of the 

difficulty in predicting its future evolution. Since the relation between fractality and nonlinear dynamics has 

been established, we use a numerical technique to characterize the fractal nature of the basins. We follow the 

evolution of the phase plane as we vary the parameters r and a. We made a survey in the phase plane, the 

system displays mostly the dynamics of two coexisting attractors. 

We assume that in the range 5.393.1  r , stable coexistence becomes possible for the range where 

053.0037.0  a  as a consequence of successive saddle-node bifurcations followed by a greater number of 

coexisting regular attractors in the phase space (see Fig. 4(a-c)). 

By analyzing the figures, we show how the particular feature is involved in explaining some properties of 

the dynamical behaviors of the map associated with the basin boundaries and their attracting sets. When 

2r  increases, the saddle 1P  located on the frontier (with its two multipliers 11 S , and 12 S ) gives 

rise to a doubling period cascade of period 
i2 cycles on the boundary initially saddles. From this 

incorporation of more and more sequences of infinitely many instable cycles of increasing order then the route 

to fractalization of the boundary in the  fourth quadrant occurs (see Fig. 4c). 

For the case 82.2r , and varying the parameter a , there are two stable attractors, each with an 

unconnected basin. We observe that for 043.0a  the basins of attraction for the two alternative attractors, 

the grey and green areas are the basins of attraction for the period-4 chaotic attractor and period-16 cycle 

respectively (blue crosses) are shown in Fig. 5. The patterns of self-similarity and fractal basin boundaries are 

also visible in Fig. 6 (Kaitala et al., 1999) revealed this intriguing result (see their work for more details). 
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(a)                                            (b) 

 

 

(c) 

 

Fig. 4 In (a) for 5.3r  and 037.0a , a period-3 cycle can coexist with the closed invariant curve. It should be noted 

that the boundary of the attraction basin of the invariant closed curve has a fractal structure. In (b) for 32.2r and 

053.0a , a period-5 chaotic attractor exists and for 53.2r  and 014.0a we have period i2 unstable cycles, 

,...,2,1i  and period-3 unstable cycle on the x -axis in (c). 

 

 

 
   Fig. 5 Fractal Basin for 82.2r , 043.0a . 
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Basins constitute an interesting object of study by themselves. The strong dependence on parameters 

generates a rich variety of complex patterns on the plane and gives rise to different mechanisms of basin 

fractalization as a consequence, such as contact bifurcations between an attractor and its basin boundary. 

 

 

 
Fig. 6 Fractal basin. 

 

     

For 99.1r  and 0588.0a , we have two attractors: the first is period-7 closed curves generated 

from a Neimark-Sacker bifurcation of a period-7 cycle and the second is a chaotic attractor created from a 

period-6 cycle whose immediate basins are multiply connected (see Mira et al., 1996 for more details). The 

right and left branches of this unstable manifold of 1P  converge toward the chaotic attractor and are dense 

inside it. We can see in Fig.7 that the immediate basin of the first attractor (period-7 closed curves) has a 

sequence of preimages converging toward the unstable focus 2P . 

 

 

 
      Fig. 7 Representation of basins of two attractors. 
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4 Conclusion 

In ecological research we detect chaos and complex dynamics. As a result, the model considered here has a 

complex attracting basin structure, mostly multiply connected, producing an unpredictability qualitatively 

greater than the classical sensitive dependence on initial conditions within a single chaotic attractor. This work 

underlines the fact this model can exhibit very different dynamics. We clarify the concept of fractality by 

evaluating and plotting basins computationally. 
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