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Abstract 

Resource selection functions (RSFs) are used for quantify how animals are selective in the use of the habitat 

period or food. A Resource Selection Probability Function (RSPF) can be estimated if N, the total number of 

units in the population, and n1 the total number of used units in the study period are both known and small. An 

approximation of the RSPF can then be estimated using any standard program for logistic regression but the 

variances of the estimates of the parameters are too small. Three methods of bootstrap sampling, parametric, 

nonparametric and a modified parametric method are proposed for the estimation of variances, with a 

discussion about the limitations of logistic regression for estimating RSPF. The method for estimating the 

RSPF described here has potential applications in medicine, ecology and other areas. 

 

Keywords resource selection functions (RSFs); resource selection probability function (RSPF); bootstrap; 

logistic regression. 

 

 

 

 

 

 

 

 

1 Introduction 

Using our approach the RSPF can be estimated using any standard logistic regression program but the 

variances of parameter estimates that are output by the program will be too small and goodness of fit statistics 

will not be correct. Also, there is some small sample bias in parameter estimates. To overcome these problems 

bootstrap resampling of the data is proposed. Three methods for doing this resampling are described and a 

simulation study indicates that one of these methods gives very satisfactory results.  

The paper concludes with a discussion about some of the potential limitations with using logistic 

regression to estimate RSPFs. For example, if the probability of use for units in a one year study is given 

exactly by a logistic regression equation and this function also holds for a second study year then the function 

describing the probability of use for two years cannot be a logistic function. 

 It should be noted that the method for estimating a RSPF described here has potential applications in many 
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other situations. For example if there is interest in how the probability of a disease is related to the 

environmental conditions in a town there may be information on the living conditions for the n1 people in the 

town recorded as having the disease and for a large random sample of n2 people in the town without the 

disease. Logistic regression can then be used to relate the probability of being recorded with the disease to the 

variables recorded for each person. 

 

2 Material and Methods 

Resource selection functions (RSFs) are widely used to quantify the extent to which animals are selective in 

their use of habitat or food, as discussed by Strickland and McDonald (2006) and other authors in the same 

publication. These functions were originally developed in the late 1980s as a generalization of fitness functions 

that were being widely used at that time for the study of natural selection on animal populations (Manly, 1985), 

although these two types of function are not quite the same. Fitness functions are concerned with the 

probability of surviving selection whereas RSFs are concerned with the probability of being used, i.e. not 

surviving selection (McDonald et al., 1990). 

 The use of a RSF depends on a population of N resource units being defined, where each unit is defined by 

its values for p variables X1 to Xp. The resource units might be items of food, in which case the X variables 

might describe such things as their size and colour. Alternatively, the resource units might be units of habitat 

such as the one hectare plots of land in a large national park in which case the X variables might describe such 

things as the distance from the plot to water, the elevation, and the dominant vegetation on a plot. For the 

remainder of this paper only habitat selection will be discussed but in general what is said applies to food 

selection as well. 

 The value of N may be very large or even infinite, and may not be known. For example, Manly et al. (2002, 

Example 3.4) describe a situation where 24 clumps of vegetation found to contain fernbird (Bowdleria puncta) 

nests in a two year period were compared with 25 clumps of vegetation randomly selected from the study area.  

In this case the resource units are the clumps of vegetation in the study area and the total number of them was 

unknown, but presumably very large. 

 In some studies the resource units might be considered to be the points in the study area where animals are 

found, in which case there will be an infinite number of resource units in the population. This can, however, be 

avoided by considering the study area to consist of N non-overlapping plots of land, with a plot being used if 

one or more animals are found in the plot. In this case the value of N will depend on the size of the plots.  For 

example if the plots are one square kilometre then there may be thousands of them in the study area, whereas if 

the plots are one square metre then N will be a million times larger. 

 Whatever the definition of a resource unit, a RSF is defined to be any function w(x1, x2,..., xp) that is 

proportional to the probability that a unit with values x1 to xp for the variables X1 to Xp is used during the 

course of a study, whereas a resource selection probability function (RSPF) is defined to be the function 

w*(x1,x2,...,xp) that gives the actual probability of use for a unit with values x1 to xp for the variables X1 to Xp.  

In general it is desirable to estimate the RSPF rather than a RSF. However, in situations like the fernbird 

example where the total number of clumps of vegetation used in the two year study period and the total 

number of clumps of vegetation in the study area are both unknown it seems unrealistic to expect to be able to 

estimate actual probabilities of use. In a case like this a RSF can still be estimated using a sample of used units 

and a sample of available units and this function is all that is needed to quantify the selection process (Manly 

et al., 2002; Keating and Cherry, 2004). 

 In principle a RSPF can clearly be estimated if N, the total number of resource units in the population, and 

n1, the total number of units used during the study period, are both known. With many studies there is no 
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difficulty in determining N. For example, if the resource units are one hectare plots in a national park then it is 

easy to calculate the total number of plots in the park. Determining n1 is often not so easy. For example, in a 

radio tracking study the position of a bird might be recorded once per day. This then gives a number of plots 

observed to be used, but there is no way of knowing where the bird was when its position was not recorded.  

We propose that this problem is overcome by defining the used resource units to be those that are recorded as 

being used when observations of use are made. This then fixes the value of n1 and there is no question about 

what it means for a unit to be used. It also means that all of the N - n1 units in the population of units that are 

not observed to be used are by definition unused units. 

 Given this situation it would be possible in principle to estimate a RSPF using standard methods.  We 

assume, however, that N is so large that it is not possible to enter data on all of the N - n1 unused units into a 

computer program.  For example there might be several million of these unused units. In the next section of 

this paper we therefore describe a simple method for estimating a RSPF based on the n1 units observed to be 

used plus a large sample of n2 unused units drawn, for example, from a geographical information system.  

Logistic regression is used for this purpose, but the proposed approach can be used equally well with another 

function describing the relationship between the probability of use and the variables X1 to Xp measured on 

resource units.  

 Consider a standard logistic regression situation. Suppose that a random sample of units is taken and each 

unit is classified as used or unused. There are n1 used units and n2 unused units, and the probability of use for a 

unit is modelled by the logistic function 

 
 exp (β0 + β1x1 + ... + βpxp)     
          P(x1,...,xp) = ----------------------------------------                (1) 
 1 + exp(β0 + β1x1 + … + βpxp)   
 

The estimation of this function is usually by maximum likelihood. Assume that units 1 to n1 are the used ones 

and units n1+1 to n1+n2 are the unused ones. Then the likelihood function (the probability of the observed data) 

is 

 

n1        n1 + n2             

L = { ∏ Pi} { ∏ (1 - Pi)}, 
 i = 1       i = n1+1            

 

where Pi is the logistic function probability of use for resource unit i, as defined before. It is the natural 

logarithm of the likelihood function that is usually maximized. This is 

 

 n1             n1 + n2                  

                log(L) =∑ log(Pi) + ∑ log(1 - Pi)                    (2) 
 i = 1            i = n1+1                

 

 Now suppose that the data come from a study of habitat selection, and that the n1 units are all of those 

observed to be used, but the n2 units are a random sample from the large number of units not recorded as being 

used N - n1. Then the second term in the likelihood function (1) can be used to estimate the mean contribution 

to the likelihood for an unused unit, which is 

 

n1 + n2                        

    Qmean = { ∑ log(1 – Pi) }/n2  
i = n1 + 1                       

93



Computational Ecology and Software, 2013, 3(4): 91-101 

 IAEES                                                                                    www.iaees.org

Multiplying this mean by the total number of unused units in the whole study area then gives an estimate of the 

contribution to the log-likelihood for all unused units and the  logarithm of a pseudo-likelihood for all the 

units in the whole population is 

 

n1                                    

               log(L*) = ∑ log(Pi) + (N - n1) Qmean                            (3) 
i = 1                                   

 

We therefore propose that a RSPF given by equation (1) is estimated by maximizing the logarithm of the 

pseudo log-likelihood defined by equation (3). This idea is not new. A similar approach was suggested by 

McCracken et al. (1998) with discrete choice modelling where one unit is chosen for use from the large 

number of units that can be chosen and there is interest in estimating the probability that a particular unit is 

chosen as a function of values of p variables measured on the unit. Essentially the contribution to the 

likelihood function from all of the units that can be chosen is approximated using a large sample of these units. 

 What our proposed method for estimating a logistic RSPF does is to effectively weight each of the 

resource units in the sample of n2 unused units by (N - n1)/n2. This means that the pseudo-maximum likelihood 

estimates based on equation (3) can be obtained from a standard program for logistic regression. Most of these 

programs require that each data point is defined by a number of trials (m) and a number of successes (r) from 

those trials. Usually when estimating a RSPF with logistic regression m = 1 for both the used and unused units 

and r = 1 for a used unit or 0 for an unused unit.  For the pseudo-maximum likelihood method the estimated 

RSPF can be obtained by setting m = 1 for all used units and m = (N - n1)/n2 for the unused units.  This 

requires (N - n1)/n2 to be an integer, which can be arranged once N and n1 are known.  For example, suppose 

n1 = 80 and N = 100000. Then N - n1 = 99920 must be a multiple of n2 such as 2498, 4996, 9992, etc. 

 Because the size of the sample of unused units is artificially inflated with the maximum pseudo-likelihood 

method that we are proposing the properties of the estimators obtained such as the standard errors of regression 

parameters are not what is provided by the standard theory of logistic regression. We therefore propose that 

parametric bootstrapping is used to assess the properties of the maximum pseudo-likelihood estimators. 

 Parametric bootstrapping uses the model estimated from the real data to generate new sets of data. The 

estimated model gives a estimated probability of being observed to be used for all of the sampled units but 

account must be taken of the fact that the n1 units observed to be used are all of the units that are observed to 

be used while the n2 units not observed to be used must represent N - n1 units. The bootstrap procedure 

therefore proceeds as follows for generating a new set of data from the original data. 

(a) A random number between 0 and 1 is generated. If it is less than n1/N then one of the n1 used units 

is randomly selected, otherwise one of the n2 unused units is selected.  

(b) The probability of being observed to be used is calculated for the selected unit using the fitted 

logistic regression for the original data.  It is recorded as used with this probability or otherwise 

recorded as not used. 

(c) If the unit is recorded as used in step (b) and there are less than n1 used units the unit with its X 

values joins the sample of units observed to be used.  If there are already n1 used units then the unit is 

discarded.  Similarly, if the unit is recorded as unused at step (b) and there are less than n2 unused 

units then the unit with its X values joins the sample of units not observed to be used.  If there are 

already n2 units not observed to be used then the unit is discarded. 

(d) If the number of units observed to be used is less than n1 or the sample of units not observed to be 

used is less than n2 then return to step (a); otherwise stop. This procedure ends up with the sample 

sizes of used and unused units the same as for the original data. The bootstrap data obtained are 

94



Computational Ecology and Software, 2013, 3(4): 91-101 

 IAEES                                                                                    www.iaees.org

analysed in exactly the same way as the original data. 

 A nonparametric bootstrapping method was also considered (Zhang, 2010). This is simpler and much 

faster than Method 1. It just involves resampling the n1 used units in the original data with replacement to 

obtain a bootstrap sample of n1 units, and similarly resampling the n2 unused units with replacement to obtain a 

bootstrap sample of n2 unused units. Once a bootstrap set of data is generated it is analysed in the same way as 

the original data. 

 

3 Results and Discussion 

We have conducted a simulation study to examine the properties of the estimated regression coefficients from 

the maximum pseudo-likelihood method and the effectiveness of bootstrapping. All simulations were based on 

an artificial model population consisting of one million resource units, with each unit having values for three X 

variables, with each X variable being normally distributed with a mean of zero and variance of one. 

For this model population the RSPF is given by 

 
                exp(β0 + 2.0x1 + 1.0x2 + 0.0x3) 

     W*(x1,x2,x3) = ----------------------------------------------- 
                1 + exp(β0 + 2.0x1 + 1.0x2 + 0.0x3) 

 

so X3 is not important for selection and the value of β0 fixes the overall probability of a unit being recorded as 

being used by an animal. Fig. 1 shows the function for the particular case where 1000 of the million resource 

units are expected to be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Relative probabilities of use for a large sample of resource units when the expected total number of used units is 1,000, i.e., 

0.1% of all one million units. Probabilities of use vary from about 10-8 to 0.25, with a mean of 0.001. 

 

 

 For the simulation study the expected number of used units in the population (n1) was set at 50, 100, 200, 

400 or 800. For each of these expected values of n1 the sample size for unused units (n2) was set at 1000, 5000 

or 25000. There were therefore 5 x 3 = 15 different scenarios considered. For each scenario 100 sets of data 

were generated and 100 bootstrap sets of data were used for the two bootstrap methods described above.  For 
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real data many more than 100 bootstrap sets of data would be used so that, if anything, the bootstrap results 

obtained in the simulation study are not as good as what might be obtained with real data. 

 We summarise the bootstrap results in two ways. First, Table 1 shows the true regression coefficients, the 

mean and standard deviation from 100 generated sets of data, the apparent bias in the estimates, the mean bias 

estimated by bootstrapping and the mean standard deviation estimated by bootstrapping. Only the results for 

parametric bootstrapping are given in this table. As discussed below, this clearly gave better results than 

nonparametric bootstrapping. 

 

 
Table 1 Results from generating 100 sets of data for each of 15 scenarios with 50 to 800 resource units expected to be observed to be
used and a sample of 1000, 5000 or 25000 unused resource units. 
 
Approx. 

Number 

Useda 

  1000 Unused Units 5000 Unused Units 25000 Unused Units 
 True 

Value 

Estimatesc Bootstrapd Estimates Bootstrap Estimates Bootstrap

Paramb Mean SD Bias Bias SD Mean SD Bias Bias SD Mean SD Bias Bias SD 
50 β0 -12.33 -12.94 0.94 -0.61 -0.70 1.28 -12.55 0.54 -0.22 -0.19 0.52 -12.44 0.34 -0.11 -0.09 0.39
 β1 2.00 2.26 0.45 0.26 0.30 0.60 2.07 0.26 0.07 0.07 0.25 2.03 0.14 0.03 0.03 0.18
 β2 1.00 1.15 0.38 0.15 0.16 0.40 1.07 0.21 0.07 0.04 0.20 1.03 0.15 0.03 0.02 0.16
 β3 0.00 0.04 0.21 0.04 0.00 0.29 -0.01 0.19 -0.01 0.00 0.20 0.00 0.14 0.00 0.00 0.15

100 β0 -11.66 -12.17 0.74 -0.51 -0.51 0.88 -11.80 0.40 -0.14 -0.15 0.39 -11.74 0.30 -0.08 -0.07 0.29
 β1 2.00 2.25 0.41 0.25 0.24 0.46 2.04 0.21 0.04 0.06 0.20 2.02 0.14 0.02 0.03 0.14
 β2 1.00 1.10 0.30 0.10 0.13 0.31 1.05 0.16 0.05 0.03 0.16 1.04 0.13 0.04 0.02 0.12
 β3 0.00 0.00 0.28 0.00 0.00 0.24 0.02 0.16 0.02 0.00 0.14 0.00 0.10 0.00 0.00 0.11

200 β0 -10.90 -11.39 0.62 -0.49 -0.44 0.74 -11.12 0.37 -0.21 -0.13 0.33 -10.95 0.26 -0.04 -0.06 0.21
 β1 2.00 2.25 0.34 0.25 0.21 0.40 2.10 0.19 0.10 0.06 0.17 2.02 0.13 0.02 0.02 0.11
 β2 1.00 1.12 0.26 0.12 0.11 0.28 1.05 0.13 0.05 0.03 0.13 1.02 0.09 0.02 0.01 0.09
 β3 0.00 0.00 0.19 0.00 0.00 0.21 0.02 0.13 0.02 0.00 0.12 -0.01 0.08 -0.01 0.00 0.08

400 β0 -10.21 -10.67 0.61 -0.46 -0.38 0.62 -10.30 0.30 -0.08 -0.11 0.26 -10.27 0.17 -0.06 -0.04 0.17
 β1 2.00 2.22 0.36 0.22 0.19 0.35 2.03 0.17 0.03 0.05 0.15 2.02 0.08 0.02 0.02 0.09
 β2 1.00 1.15 0.25 0.15 0.10 0.24 1.01 0.12 0.01 0.03 0.12 1.01 0.07 0.01 0.01 0.07
 β3 0.00 0.00 0.20 0.00 0.00 0.19 0.01 0.10 0.01 0.00 0.10 -0.01 0.07 -0.01 0.00 0.06

800 β0 -9.56 -9.88 0.47 -0.32 -0.31 0.50 -9.66 0.23 -0.10 -0.09 0.24 -9.60 0.13 -0.05 -0.04 0.13
 β1 2.00 2.17 0.29 0.17 0.16 0.30 2.05 0.14 0.05 0.05 0.14 2.01 0.07 0.01 0.01 0.07
 β2 1.00 1.08 0.21 0.08 0.09 0.22 1.03 0.09 0.03 0.02 0.11 1.01 0.06 0.01 0.01 0.06
 β3 0.00 0.02 0.18 0.02 0.00 0.18 0.00 0.08 0.00 0.00 0.09 0.00 0.06 0.00 0.00 0.05
aData are generated using probabilities of being observed to be used so that the actual number observed to be used is a random variable
with the expected value shown 

bThe true parameter values used to generate data., which are the same for the three sample sizes of unused units. 
cThe mean, standard deviation, and mean bias (mean estimate - true value) of estimates from 100 generated sets of data. 
dThe average estimated bias and the average estimated standard deviation from parametric bootstrapping applied to each of the 100 sets 
of generated data, with 100 bootstrap sets of data for each generated set of data. 

 

 

 Table 1 shows that the estimated values of the regression constant β0 have a negative bias which decreases 

as the number of unused units increases and as the sample size increases for the unused units. In contrast to 

this, the estimates of the non-zero regression coefficients β1 and β2 have positive biases which also decrease as 

the number of used units increases and as the sample size for unused units increases. There is, however, little if 

any bias in the estimates of the zero coefficient β3. These small sample biases are in the direction of making 

selection appear more extreme than it really is. 

 There is also an indication of small sample biases in the bootstrap estimates of the standard deviation of 

regression estimates. The means of the bootstrap estimates of standard deviations are usually higher than the 
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observed standard deviations of the estimates of regression coefficients with a sample of 1000 unused units 

and 200 or less used units. Although the estimated regression coefficients show bias it appears that this is 

estimated well by parametric bootstrapping, at least on average. Similarly, the observed standard deviations of 

the estimated regression parameters are close to the mean of the bootstrap estimates when there are more than 

1000 unused units or more than 200 used units. The results in Table 1 therefore indicate that the bootstrapping 

is effective for estimating and removing biases in estimated regression coefficients and for determining the 

standard deviations of these coefficients providing that the sample of used units and the sample of unused units 

are not both quite small. 

If the bootstrap estimates of biases and standard deviations are close to the correct values then inferences 

about regression coefficients can be based on the assumption that 

 

Zi = (bi - Biasi - βi)/SDi                       (4) 

 

approximately follows a standard normal distribution, where bi is the pseudo-likelihood estimate of the 

parameter βi in equation (1), Biasi is the bootstrap estimate of the bias in estimating βi, and SDi is the bootstrap 

estimate of the standard deviation of bi. For example, if the normal approximation is valid, it is possible to 

construct a 95% confidence interval for βi as  

 

    bi - Biasi - 1.96 SDi < βi < bi - Biasi + 1.96 SDi, 

 

while bi is significantly different from zero at the 5% level if (bi - Biasi)/SDi is outside the range from -1.96 to 

+1.96. 

 

 
Table 2 Means and standard deviations of the Zi values as defined by equation (4) for the simulation study 
described in Section 3. Underlined values of the mean are significantly different from zero at the 5% level
(outside the range from -0.20 to + 0.20). Underlined values of the standard deviation (SD) are significantly 
different from one at the 5% level (outside the range 0.86 to 1.14). 
  Expected         
 Unused Used  Z0  Z1  Z2  Z3 
Scenario Units Units Mean SD Mean SD Mean SD Mean SD 

1 1000 50 0.24 0.71 -0.21 0.75 -0.14 0.82 0.12 0.68 
2 1000 100 0.12 0.77 -0.05 0.83 -0.14 0.89 0.00 1.01 
3 1000 200 0.04 0.78 0.02 0.82 -0.01 0.86 -0.05 0.88 
4 1000 400 -0.03 0.79 -0.02 0.83 0.15 0.87 0.02 0.98 
5 1000 800 0.07 0.81 -0.05 0.84 -0.07 0.89 0.08 0.99 
6 5000 50 0.15 1.07 -0.12 1.05 0.05 0.97 -0.03 1.04 
7 5000 100 0.12 0.95 -0.17 0.99 0.08 1.00 0.13 1.10 
8 5000 200 -0.14 1.02 0.13 1.02 0.12 0.96 0.18 1.15 
9 5000 400 0.19 1.09 -0.17 1.09 -0.17 0.95 0.13 1.01 
10 5000 800 0.03 0.94 -0.03 1.02 0.02 0.86 0.03 0.94 
11 25000 50 0.05 0.81 -0.03 0.74 0.09 0.87 -0.02 0.90 
12 25000 100 0.12 1.07 -0.10 0.97 0.13 1.04 -0.03 0.95 
13 25000 200 0.19 1.25 -0.16 1.16 0.02 1.03 -0.16 0.96 
14 25000 400 -0.03 1.03 0.00 0.95 0.00 0.98 -0.08 1.05 
15 25000 800 -0.03 0.96 -0.02 0.90 -0.02 0.93 0.09 1.06 
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Fig. 2 The distribution of values of φ(Z) for the Z values of equation (4) obtained from the simulation experiment described in 
Section 3, where φ(.) is the cumulative distribution function for the standard normal distribution. There are 2000 Z values for 
estimates with each of the different numbers of unused units used for estimation. The distribution of φ(Z) should be uniform 
between zero and one. Counts in intervals of width 0.025 are shown (●) together with the expected counts if the assumption of a 
uniform distribution is correct (—). The assumption is reasonable with 5000 and 25000 unused units but not with 1000 unused 
units. 
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Table 2 indicates that the assumption that the Zi values of equation (4) have means of zero and standard 

deviations of one is reasonable when the size of the sample of unused units is 5000 or 25000, but not when it is 

only 1000. With only a sample of 1000 unused units the simulated standard deviations of the Z values are 

usually too low because of the positive bias in the bootstrap estimated standard deviations of the regression 

coefficients. With 5000 or 25000 unused units the standard deviation of Z values is significantly different from 

one at the 5% level five times but with no clear pattern because three of the five standard deviations are greater 

than one and two are less than one. There is little evidence that the means of Z values differ from zero, so that 

over all treating Z values as having means of zero and standard deviations of one seems reasonable if the size 

of the sample of unused units is at least 5000. 

 For inferences it is also necessary that the Z values from equation (4) have distributions that are close to 

the standard normal distribution. In particular φ(Z) should have a distribution that is close to uniform between 

zero and one, where φ(z) is the cumulative normal distribution function. This is not the case with only 1000 

unused units samples, but is a good approximation for 5000 and 25000 unused units, as shown by Fig. 2. In 

this connection it can be noted that with 1000 unused units the percentage of Z values significantly different 

from zero at the 5% level is quite low at 2.0%, but the percentages for 5000 and 25000 are close to the desired 

5%, being 5.2% and 4.7%, respectively. 

 To sum up the results from the simulation experiment, it seems that inferences about estimated regression 

coefficients can be based on assuming that they are normally distributed with small sample biases and 

variances that can be estimated reasonably well by parametric bootstrap resampling, providing that the sample 

size for unused units is large enough. For the situations considered in the simulations a sample size of 5000 or 

more unused units seems to be reasonable. This is consistent with the conclusion of Nielson et al. (2004) that 

there is little point in using more than 10000 available resource units when estimating a resource selection 

function using ordinary logistic regression with a sample of units observed to be used and a random sample 

from the population of available resource units. 

 

4 Conclusions 

There are a number of issues that need to be considered when using the logistic regression method described in 

this paper to estimate a resource selection probability function. For example, the method provides an estimate 

of the probability that resource unit is observed to be used. If not all used units are observed to be used then the 

probability being estimated can be interpreted as the probability of a units being used multiplied by the 

probability θ that the unit is recorded as being used. If θ is the same for all units then this may be considered to 

be acceptable. However, if θ varies according to the nature of the resource unit then the estimated resource 

selection probability function is biased in terms of estimating the actual use of resources. We do not consider 

this issue further here, but note that it can be allowed for using the methods discussed by Mackenzie (2006). 

 A limitation with assuming a logistic resource selection probability function is that if this is correct for 

time duration then it cannot be correct for any other time duration. For example, assume that the probability of 

a resource unit being recorded as used at least once in one year is w1*(x1,x2,...,xp), where this is a logistic 

function of the covariate values x1 to xp measured on the unit. Assume also that the probability of the unit 

being recorded as used at least once in a second year is exactly the same, with independence between years.  

Then the probability of the unit being used at least once in the two year period is 

 

 w2*(x1,x2,...,xp) = 1 - {1 - w1*(x1,x2,...,xp)}
2                  

                       = 2 w1*(x1,x2,...,xp) - w1*(x1,x2,...,xp)
2 
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which is one minus the probability that it is not recorded as used in both years. This is not a logistic regression 

function, showing that the logistic regression assumption cannot hold for both a one year selection period and 

a two year selection period unless perhaps the function is not the same in both years. 

 Although this is true, the logistic function will be a good approximation if the probability of use in one 

year is small for all resource units. In that case the numerator in the logistic function 

 
             exp(β0 + β1x1 + ... + βpxp)     
 w1*(x1,...,xp) = --------------------------------------- 
            1 + exp(β0 + β1x1 + ... + βpxp)   
 

will be close to zero and the denominator will be close to one. Also, w1*(x1,...,xp)
2 will be negligible in the 

equation for w2*(x1,...,xp). Hence 

 

   w1*(x1,...,xp) ≈ exp(β0 + β1x1 + ... + βpxp) 

 

and 

 

 w2*(x1,x2,...,xp) ≈ 2 exp(β0 + β1x1 + ... + βpxp) = exp{loge(2) + β0 + β1x1 + ... + βpxp} 

 

where both of these functions will be well approximated by logistic regressions.  

 What this means is that the assumption of a logistic regression for estimating a resource selection 

probability function will be reasonable providing that all units have small probabilities of use for the time 

periods of interest. If this is not the case then logistic regression may still give a reasonable empirical 

approximation for the true resource selection probability function but it is important to appreciate that the 

approximation is specific to the time period used for the study. The pseudo-likelihood estimation method 

described in this paper can be applied with another form of function that allows for different time periods of 

selection better, but this has not yet been investigated. 

 Finally, we note that Lele and Keim (2006) describe a method for estimating a resource selection 

probability function based on the idea of a weighted distribution. This method does not require knowledge of 

the total number of resource units in a population or how many of these were used during the period of a study.  

We would have liked to compare the estimates from this method with the estimates obtained by the method we 

describe here but we were unfortunately not able to get convergence with sets of data of the kind used in out 

simulations using the R program provided by Lele and Keim in a Supplement to their paper. We did get 

convergence with their data and suspect that the problem is that the Lele and Keim method requires a fairly 

high proportion of resource units to be used in order to produce estimates. We did generate one set of data for a 

population of 100,000 resource units with 9812 used units, i.e. 9.8% used. With data on all of the used units 

and a sample of 10,000 available units we were still unable to get convergence for the Lele and Keim R 

program, which is why we suspect that it requires a fairly high proportion of units to be used.  
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