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Abstract 

In current publication possible population dynamics regimes are analyzed using pre-model statistical method. 

Method was applied to well-known pine hawkmoth (Hyloicus pinastri L.) time series (Schwerdtfeger, 1944, 

1968). Provided statistical analysis showed that observed dynamics of pine hawkmoth doesn’t correspond to 

strong 2-, 3-,…, or 9-year cycles which can be generated by one-dimensional discrete models, and doesn’t 

correspond to fluctuations near stable level. 
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1 Introduction 

Search for suitable mathematical model, estimation of model parameters using empirical datasets, and 

determination of basic features of population phase portraits are among of the main elements of population 

dynamics analysis (Isaev et al., 1984, 2001; Bazykin, 1985; McCallum, 2000; Tonnang et al., 2009, 2010, 

2012; Turchin, 2003; Wood, 2001; Gao, Chang, Wang, 2012; Nedorezov, 2013 a, b and many others). Without 

finding of a suitable model (or without constructing of new suitable model) it is impossible to prepare strong 

scientifically-based forecasts of pest population changing in time and optimal methods of its management. But 

up to current moment there are no criterions, which can help in finding of a suitable model before comparison 

of theoretical trajectories and empirical datasets (Isaev et al., 1984, 2001; Nedorezov, Utyupin, 2011; 

Nedorezov, 2012 a). Even comparison of model trajectories with empirical time series can give us a set of 

suitable models (for fitting of empirical datasets), and again we may have a situation when it is necessary to 

find a best one (Nedorezov, 2010, 2011 a, b, 2012 a, b). In such a situation preliminary and pre-model 

statistical analysis of existing time series can be very useful in a process of searching of suitable model and/or 

group of suitable models. 

Pre-model analysis is a testing of correspondence of observed population fluctuations to any dynamical 
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regimes which can be generated by various mathematical models (first of all, by models with discrete time; 

Kostitzin, 1937; Varley, 1949; Skellam, 1951; Ricker, 1954; Nedorezov, 1986, 1997; Elsadany,  2012; 

Elsadany et al., 2012 and many others). For example, it is a testing of correspondence of population dynamics 

to 1-cycle (fluctuations near stable level), 2-cycle etc. (Nedorezov, 2013 a, b, c). All deviations from 

coordinates of n -cycle must be explained as results of influence of external stochastic factors, by used 

methods of data collection etc. In other words, before choosing of model we can try to determine a dynamical 

regime which is observed in natural conditions. More precisely, we can try to find a dynamical regime with the 

following property: modern statistical methods don’t allow us concluding that considering regime doesn’t 

correspond to observed fluctuations (Nedorezov, 2011a, 2013 a, b, c).  

It is known, that for estimation of model parameters under the use of global fitting for empirical time series, 

researches use initial parts of model trajectories, and don’t use parts of trajectories which correspond to 

stabilized regime of population fluctuations (McCallum, 2000; Nedorezov, 2010, 2012; Turchin, 2003; Wood, 

2001 and others). Approximation of empirical time series by initial parts of model trajectories is correct if we 

analyze a process of population size changing in time which corresponds to non-stabilized dynamic regime 

(Gause, 1934; Nedorezov, 2011 b, 2012 a, b). But if we analyze dynamics of species which exist in local 

habitat (and where datasets were collected) during long time period the use of initial parts of model trajectories 

for fitting of empirical time series needs in additional explanation.  

 

2 Algorithm 

Let 1x , 2x ,…, Nx  be a time series of considering hypothetical population. Time step is equal to one year, 

thus kx  is a population size (or density) at k th year. First of all, we have to solve the following question: 

what kind of datasets we have now? If, for example, we analyze time series presented in book by G.F. Gause 

(1934), it is obvious, that for every trajectory we can point out initial part (it can be exponential phase of 

population growth), mid part of trajectory (where we can observe growth of influence of intra-population self-

regulative mechanisms on process of population size changing), and stabilized behavior (fluctuations near 

stable level). In such a situation we have a good background for application of initial parts of theoretical 

(model) trajectories for fitting of experimental datasets (Nedorezov, 2011 b, 2012 a, b). 

But in the case when we analyze insect population dynamics in locations where insects live thousands and 

thousands years, we haven’t a background with the same properties. In these situations we observe stabilized 

dynamical regime. Thus, for the estimation of model parameters we have to minimize, for example, the sum of 

squared deviations of real datasets from coordinates of asymptotically stable attractors.  

First of all, we must determine a dynamical regime which is realized for population: it is a hypothesis we 

have to check. For example, we can start with assumption that observed fluctuations of population size 

correspond to cycle of the length two: ...ababab  Let’s assume that minimizing functional form is equal to 

sum of deviations squared. In this case we have: 

ba
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From (1) we get the following estimations for coordinates of 2-cycle: 
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where NNN  *** , and *** NN   or 1***  NN . After estimation of coordinates of 2-cycle (2) 

we have to check hypothesis that observed regime is 2-cycle: more precisely, we have to analyze two 

sequences ax 1 , ax 3 ,... and bx 2 , bx 4 ,… and to show that arithmetic averages are equal to 
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zeros, distribution functions for both sets are symmetric functions, and there are no serial correlation in 

sequence ax 1 , bx 2 , ax 3 ,... (Bolshev, Smirnov, 1983; Draper, Smith, 1986, 1987). In the end we 

have to reject Null hypothesis about equivalence of coordinates of cycle: Null hypothesis is ba  . 

If all used tests show that there are no reasons for rejecting of the respective Null hypotheses and Null 

hypothesis ba   must be rejected for selected significance level, we have to start the process of selection of 

mathematical model. It is obvious, if observed changing of population size corresponds to 2-cycle there are no 

reasons for consideration of the Skellam model or Kostitzin model – in both models there are the regimes of 

asymptotic stabilizations of population size at any levels only for all values of model parameters (Skellam, 

1951; Kostitzin, 1937). In this situation it is better to use Moran – Ricker model or discrete logistic model: 

both models contain a lot of various dynamical regimes (Moran, 1950; Ricker, 1954; Isaev et al., 1984, 2001; 

Bazykin, 1985; Nedorezov, 1986, 1997 and others).  

 

3 Datasets  

In current publication algorithm described above was applied to time series of pine hawkmoth (Hyloicus 

pinastri L.) (Schwerdtfeger, 1944, 1968; Varley, 1949; NERC Centre for Population Biology, Imperial 

College (1999) The Global Population Dynamics Database, N 3757). Population densities are presented in 

units “logarithm of individuals (larvae) per squared meter” from 1881 to 1930. Total sample size is equal to 49 

(information on population density for 1912 is absent). 

On figure 1 there are graphics of changing of density of larvae of pine hawkmoth (curve 2) and logarithm 

of density (curve 1) in time. These fluctuations look like as periodic process under (very) strong influence of 

external stochastic factors: hypothesis about periodicity of observed fluctuations cannot be rejected a’priori.  

 

Fig. 1 Changing in time of logarithm of individuals (larvae) per squared meter (curve 1, left ordinate line) and density of 

individuals per squared meter (curve 2, right ordinate line). 
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4 Results  

In table 1 there are the estimations of cycle’s coordinates (under the assumptions that one or other attractor is 

realized for pine hawkmoth fluctuations), and respective values of minimizing functional form Q  (it is a sum 

of squared deviations of real values from the estimated coordinates of cycle; in particular case Q  is 

presented for 2-cycle with formula (1)). It was assumed that maximum length of cycle is 9.  

It is obvious that increasing of the length of cycle must lead to decreasing of the value of minimizing 

functional form Q  (as we can see from the table 1, it can be non-monotonic process). It is obvious, if length 

of cycle is equal to 50 or more then 0Q . But in table 1 there is no strong decreasing of Q : local minima 

are observed for 3-cycle, 7-cycle, and 9-cycle. At the same time, differences between values of functional Q  

are rather small.  

 

Table 1 Estimations of coordinates of cycles and respective values of sums of squared deviations between 
theoretical and empirical trajectories. 

 1* 2 3 4 5 6 7 8 9 

1 0.195 0.201 0.193 0.192 0.208 0.224 0.237 0.195 0.22 

2  0.189 0.212 0.181 0.218 0.212 0.174 0.174 0.172 

3   0.18 0.211 0.188 0.164 0.141 0.191 0.124 

4    0.198 0.17 0.158 0.169 0.171 0.12 

5     0.193 0.212 0.201 0.188 0.165 

6      0.196 0.204 0.189 0.224 

7       0.23 0.23 0.25 

8        0.23 0.307 

9         0.203 

Q 0.731 0.729 0.723 0.725 0.717 0.7 0.679 0.71 0.572 

*1-cycle is stationary level 

 

Below we’ll consider the following way for analysis of correspondence between empirical values and 

theoretical assumptions that observed fluctuations correspond to cyclic dynamics with cycle of the certain 

length. Traditional way is based on the next assumptions: average of sample of deviations between theoretical 

and empirical is equal to zero (there are no reasons for rejecting of the respective hypothesis), distribution must 

correspond to Normal, and serial correlation cannot be observed in sequences of residuals. Absence of serial 

correlation can be checked with Durbin – Watson criteria, with analysis of behavior of auto-correlation 

function etc. (Draper, Smith, 1986, 1987; Nedorezov, 2013 a, b, c).  

Let’s note that assumption about Normality of deviations is rather strong, and it is never realized for 

biological datasets (Orlov, 2004). More realistic assumptions are following: deviations must have symmetric 

density function with respect to the origin, both tails of density must be monotonic functions, and second 

derivative of density function can change its sign two times of less. It is obvious density function for Normal 

distribution satisfies these requirements.   

For testing symmetry of density function we used the well-known Kolmogorov – Smirnov test. It is 
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obvious, if distribution of deviations is symmetric with respect to origin distribution function )(xF  for 

}{ 
ie  must be equal to distribution function )(xG  for }{  ie . Thus, Null hypothesis for Kolmogorov – 

Smirnov test is )()( xGxF  . 

If we assume that considering time series correspondents to stochastic fluctuations near one stable level, 

Kolmogorov – Smirnov test shows that with 1% significance level hypotheses about Normality of residuals 

must be rejected. Testing of symmetry gives the following results: 3158.0d  with corresponding 

probability 159.0p . Thus, even with 10% significance level we cannot reject Null hypothesis about 

symmetry of density function. With rather big probability 32.0p  dataset }{ 
ie  has log normal 

distribution; dataset }{  ie  has Normal distribution with 54.0p . It means that with big probability 

)(xG  isn’t monotonic function.  

For testing the property of monotonous behaviour of branches of density function we used the following 

criterion. Let’s assume that }{ 
ie  is ordered set,   meee ...21 , and let  10 e , 

  121 ee ,…, 



  11 mmm ee  be intervals between deviations. Thus, we get the following set of points 

on the plane: ),0( 0 , ),( 11 e ,…, ),( 11 

 mme  . It is obvious, that with ideal variant we have to have the 

following inequalities for set }{ k : 110 ...  m . In such a situation non-parametric Theil criterion 

(Hollander, Wolfe, 1973; Theil, 1950) will show that we have confident tendency in increasing of respective 

values: coefficient of linear regression line doesn’t equal to zero confidently. Let 

baxy  , 

be the linear regression line for points on plane. Thus, Null hypothesis for Theil criterion is following :0H  

0a ; alternative hypothesis is :1H  0a .  

We can also use the same criterion in the following manner: we can analyze behavior of the intervals - 
 2

1
0 e ,   13

1
1 ee ,…, 




  2
1

2 mmm ee . Ideal variant for these intervals is the same: 
1

2
1
1

1
0 ...  m . After calculation of all elements of set }{ 1

k  we can use Theil criterion for checking 

of the same Null hypothesis. The similar procedure can be provided for other intervals }{ j
k , 1j , which 

are determined by the initial sample }{ 
ie . It is obvious that }{  ie  must be initial sample too.  

Other possible way for testing of the same property is following. In the case when we have ideal 

variant for set }{ k  we have to provide 0 permutations for ordering of the set. When we have the situation 

1m , 2m ,…, 0 , number of permutations has its maximum value: 

2

)1(
max




mm
S . 

In this situation Null hypothesis must be rejected, and alternative hypothesis :1H  0a  - must be accepted. 

If for any concrete situation number of permutations is rather small (for example, it is less than 20/maxS ) 

then we can assume (we have a good background for this conclusion) that sequence of intervals was produced 

with the help of monotonic decreasing density function.  

For the first assumption that considering time series correspondents to stochastic fluctuations near one 

stable level, for right tale of initial sample }{ 
ie  Theil criterion for }{ k  shows the following result: 

31C . Critical value (for 054.0p  and 19m  where m  is number of positive deviations }{ 
ie ; 

Hollander, Wolfe, 1973; Theil, 1950) is equal to 47. Thus, we cannot reject Null hypothesis :0H  0a  

and, respectively, we haven’t a background for conclusion that right tale of density function is monotonic 

decreasing function.  

For left tale we have 7C . It means that for 30m  probability that value of criterion is bigger than 7 

is about 0.45. Thus, for left tale we cannot reject Null hypothesis too, and we haven’t a background for 

conclusion that left tale of density function is monotonic increasing function. Finally, it gives us a background 
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for conclusion that branches of density function are non-monotonic functions, and assumption that observed 

dynamics corresponds to fluctuations near stable level isn’t correct.  

Let’s assume that observed fluctuations correspond to 2-cycle. As it was showed before in our publications 

(Nedorezov, 2012 a, 2013 b) variance of measurements of population size (or density) has strong dependence 

on real value, and it may have non-linear character. It means that we have to analyze all sub-sets separately: 

we have to be sure deviations from cycle’s coordinates correspond to one and the same distribution. Deviations 

from various coordinates of cycle will have different variances.   

On the other hand, for 2-cycle we have 4 branches for two density functions – respectively, we have about 

4/m  deviations per branch. For 3-cycle we have 6 branches for three density functions – it is obvious, that 

number of deviations per branch decreases very fast, and very fast we can get situations when we cannot apply 

Kolmogorov – Smirnov test for comparison of two independent samples.   

Taking into account that combination of several samples which were generated by independent stochastic 

variables with symmetric (with respect to origin) density functions, gives new sample which is generated by 

stochastic variable with symmetric density function. Moreover, if every density function has monotonic left 

and right branches, new stochastic variable has density function with the same property. Combined sample can 

be generated by the following stochastic variable: 













kk p

p

p

,

...

,

,

22

11
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
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  

where jp  is equal to relation of number of deviations of empirical numbers from the j-coordinate of k-cycle. 

Thus, j  0jp , and 1...21  kppp . Let )(xFj  be a distribution function for j : 

}{)( xPxF jj   . Let also jH  be the event that j  . Taking into account that j  0jp , 

0}{  jj pHP ,  ji HH  if ji  , and  


k

j
jH

1

 , 

}{ jH  is a full set of events. Thus, distribution function )(xF  for   is determined by the following 

expression: 

  



k

j
jjj

k

j
j xFpHPHxPxPxF

11

)()()()(  . 

If for all j  distribution functions )(xFj  have derivatives )(xf j  which are symmetric with respect to 

origin and monotonic functions, we have 





k

j
j xf

dx

xdF
xf

1

)(
)(

)( 
 . 

Thus, density )(xf  is symmetric function with monotonic branches. 

For first (bigger) value of 2-cycle (Table 1) we have the following results. Kolmogorov – Smirnov test 

shows that with 5% significance level hypotheses about Normality of residuals must be rejected. For right 

branch (for }{ 
ie ) Theil criterion for }{ k  is equal to -2. Thus, we cannot reject Null hypothesis :0H  

0a . For the left branch of sample we have that with very big probability 9.0p  set of deviations 

correspond to Normal distribution (with average 077.0  and standard deviation 047.0 ), and with 
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27.0p  it may have log-normal distribution.  

For the second (smaller) value of 2-cycle (table 1) we have the following results. Kolmogorov – Smirnov 

test shows that with 1% significance level hypotheses about Normality of residuals must be rejected. 

Kolmogorov – Smirnov test shows also that with rather big significance level we cannot reject Null hypothesis 

:0H  )()( xGxF  : 3857.0d  with respective probability 275.0p . For left tale of the sample with 

very big probability 96.0p  it corresponds to Normal distribution with small average ( 067.0 ) and 

standard deviation ( 051.0 ), and with 43.0p  it may have log-normal distribution.  

For combined sample we have the following results. Kolmogorov – Smirnov test shows that 2211.0d  

with respective probability 564.0p . It means that with very big significance level we cannot reject Null 

hypothesis :0H  )()( xGxF  . For right (positive) tale of sample with 1% significance level we have to 

reject Null hypothesis about Normality; for left tale of the sample with very big probability 84.0p  it 

corresponds to Normal distribution with small average ( 072.0 ) and standard deviation ( 044.0 ). It 

means, that with rather big probability we can observe a local minimum which is closed to origin.  

The next important test is a test for behavior of increments of population size. If there is a big number of 

cases when theoretical time series demonstrates population size increasing and at the same time moments 

empirical time series shows decreasing of population size (or vice versa) we have a background for conclusion 

about impossibility to use considering model for fitting of dataset. If there is a small number of cases when 

theoretical and empirical time series demonstrate population size increasing or decreasing at one and the same 

time moments we have a good background for conclusion that there is a good correspondence in behavior of 

theoretical and empirical trajectories.  

We will assume that stochastic variable   which is equal to 1, 1 ,  when we observe the 

equivalence between signs of increments and equal to 0, 0 ,  when we have different signs, corresponds 

to independent Bernoulli trials. In such a situation, we have to check the Null hypothesis :0H  5.0P  

with alternative hypothesis :1H  5.0P  where P  is a frequency of cases when 0 . But it is 

possible to use more primitive test: if number of cases when 0  is bigger than 5% of all cases it doesn’t 

give us a reason for rejecting Null hypothesis. 

If we reject Null hypothesis on previous stage of analysis, we have to continue analysis of correspondence 

between theoretical and empirical time series. Next step must contain analysis of correspondence between 

second derivatives of trajectories which can be estimated with the following formula: 

11
'' 2   kkkk xxxx  

(it is assumed that time step is equal to one). This process can be continued: model gives very good 

approximation of real time series if we have good correspondence for time series, first derivatives, second 

derivatives, and so on. 

For 2-cycle we have 0  in 15 times, and 1  in 27 times; in 5 cases we have undetermined 

situations. Thus, 372.0P . Taking into account results presented above, we can conclude that dynamics of 

pine hawkmoth doesn’t correspond to 2-cycle.  

For 3-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 2632.0d  with respective probability 343.0p . It means that with big significance level 

we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) of considering sample 

Theil criterion for }{ k  is equal to 70. Thus, we have to reject (even with 1% significance level) Null 

hypothesis :0H  0a  (for sample size 19 we have 008.0}69{ CP ; Hollander, Wolfe, 1973; Theil, 

1950). It means that with very big probability alternative hypothesis is truthful ( 0a ), and right branch of 

density function is monotonic decreasing function. For left branch of considering sample Theil criterion 
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90C . Thus, we cannot reject (with 5% significance level) Null hypothesis :0H  0a  (for sample size 

30 we have 054.0}91{ CP ). But it is important to note, that it is rather close to critical situation, and it 

gives a background to continue analysis of correspondence of real datasets to 3-cycle. Analysis of changing of 

increments gave the same results we obtained for 2-cycle: number of situations when 0  is rather big, and 

it means that we cannot conclude that dynamics of pine hawkmoth corresponds to 3-cycle. 

For 4-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 25.0d  with respective probability 395.0p . It means that with very big significance level 

we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) of considering sample 

Theil criterion for }{ k  is equal to 52. For sample size 20 we have 049.0}52{ CP . Thus, we have to 

reject with 5% significance level Null hypothesis. For left branch of considering sample Theil criterion 

88C . Thus, we cannot reject (with 5% significance level) the Null hypothesis :0H  0a  (for sample 

size 29 we have 052.0}88{ CP ). But like in previous situation with 3-cycle it is rather close to critical 

situation, and it gives a background to continue analysis of correspondence of real datasets to 4-cycle. Analysis 

of changing of increments gave the following results:   is equal to 1 in 25 times. Thus, we cannot conclude 

that dynamics of pine hawkmoth corresponds to 4-cycle. 

For 5-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 2599.0d  with respective probability 37.0p . It means that with very big significance 

level we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) of considering 

sample Theil criterion for }{ k  is equal to 60. For sample size 18 we have 013.0}59{ CP . Thus, we 

have to reject Null hypothesis with 5% significance level. For left branch of considering sample Theil criterion 

16C . Thus, we cannot reject the Null hypothesis :0H  0a  (for sample size 31 we have 

394.0}17{ CP ). Analysis of changing of increments gave the following results:   is equal to one in 

20 times and in 22 times 0 : thus, we cannot conclude that dynamics of pine hawkmoth corresponds to 5-

cycle. 

For 6-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 2024.0d  with respective probability 658.0p . It means that with very big significance 

level we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) Theil criterion for 

}{ k  is equal to 47. For sample size 21 we have 079.0}48{ CP . Thus, we cannot reject Null 

hypothesis with 5% significance level. For left branch of considering sample Theil criterion 65C . Thus, 

we cannot reject the Null hypothesis :0H  0a  even with 10% significance level (for sample size 28 we 

have 101.0}66{ CP ). Analysis of changing of increments gave the following results:   is equal to 

one in 30 times and in 12 times 0 : thus, we cannot conclude that dynamics of pine hawkmoth 

corresponds to 6-cycle. 

For 7-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 2596.0d  with respective probability 359.0p . It means that with very big significance 

level we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) Theil criterion for 

}{ k  is equal to 27. For sample size 19 we have 184.0}27{ CP . Thus, we cannot reject Null 

hypothesis even with 10% significance level. For left branch of considering sample Theil criterion 52C . 

Thus, we cannot reject the Null hypothesis :0H  0a  with 10% significance level (for sample size 30 we 

have 178.0}53{ CP ). Analysis of changing of increments gave the following results:   is equal to 

one in 27 times and in 15 times 0 : thus, we cannot conclude that dynamics of pine hawkmoth 

corresponds to 7-cycle. 

For 8-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 
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shows that 1621.0d  with respective probability 887.0p . It means that with very big significance 

level we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) Theil criterion for 

}{ k  is equal to 33. For sample size 20 we have 144.0}34{ CP . Thus, we cannot reject Null 

hypothesis even with 10% significance level. For left branch of considering sample Theil criterion 89C : it 

corresponds to critical situation. For sample size 29 we have 052.0}88{ CP  and 

048.0}90{ CP . Analysis of changing of increments gave the following results:   is equal to one in 23 

times and in 19 times 0 : thus, we cannot conclude that dynamics of pine hawkmoth corresponds to 8-

cycle. 

For 9-cycle for combined sample of deviations we have the following results. Kolmogorov – Smirnov test 

shows that 2014.0d  with respective probability 658.0p . It means that with very big significance 

level we cannot reject Null hypothesis :0H  )()( xGxF  . For right branch (for }{ 
ie ) Theil criterion for 

}{ k  is equal to 100. For sample size 21 we have 001.0}100{ CP . Thus, we have to reject Null 

hypothesis with 1% significance level. For left branch of considering sample Theil criterion 60C . For 

sample size 28 we have 123.0}60{ CP . Thus, we cannot reject the Null hypothesis :0H  0a  

with 10% significance level. Analysis of changing of increments gave the following results:   is equal to one 

in 33 times and in 9 times 0 . Thus, we cannot conclude that dynamics of pine hawkmoth corresponds to 

9-cycle. 

 

5 Discussion 

Finally, in all considering cases we cannot reject the hypothesis that deviations have symmetric distribution. 

The best situation is observed for 8-cycle when 887.0p . At the same time for all considering situations 

we cannot conclude that branches of density functions are monotonic decreasing functions. Moreover, in all 

situations we have strong differences in behavior of increments of theoretical trajectories and empirical time 

series: the best result was obtained for 9-cycle but even for this cycle in 21.4% of all cases we can observe 

different signs of increments. It is rather big number, and it allows us concluding that we haven’t a good 

correspondence between empirical time series and theoretical cyclic fluctuations. 
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