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Abstract 

In this paper the Adomian Decomposition Method (ADM) is employed in order to solve linear and nonlinear 

functional equations and the results are then compared with those produced by Homotopy Perturbation Method 

(HPM) through a system of Lotka Voltera type of PDEs. The result produced by HPM are promising and 

ADM appears as a special case of HPM for Lotka Voltera type of PDEs. 
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1 Introduction 

The Lotka Voltera equations are a pair of first order non linear differential equations these are also known as 

the predator prey equations. The Lotka Voltera type problems were originally introduced by Lotka in 1920 

(Lotka, 1920) as a model for undumped oscillating chemical reactions and after that these were applied by  

Voltera (Voltera, 1926) to predator prey interactions, consist of a pair of first order autonomous ordinary 

differential equations. Since that time the Lotka Voltera model has been applied to problems in chemical 

kinetics, population biology, epidemiology and neural networks. These equations also model the dynamic 

behavior of an arbitrary number of competitors.  

Finding the solution of Lotka Voltera equations may become a difficult task either if the equations are 

fractionalized, namely they become a non-local one. Recently some new methods such as Tanh function 

method (Fan, 2000; Wazwaz, 2005) extended Jacobi elliptic function expansion method (Fu et al., 2001) and 

the simplest equation method (Kudryashov, 2005) have been used in literature to find exact solutions for both 

partial differential equation and system of partial differential equations. However, it is difficult to obtain closed 

form solutions for nonlinear problems. In most cases, only approximated solutions either analytical ones or 

numerical ones are founded. For analytical solutions of non linear problems Perturbation method is one of the 
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well-known methods. Perturbation method is based on the existence of small or large parameters, so-called 

perturbation quantities (Hinch, 1991; Fernandez-Villaverde, 2011; Nayfeh, 1993). 

 

2 Application Problem 

Consider the following system of non linear Lotka-Voltera Type of PDEs (Cherniha and King, 2005),          

    ,t x x
w ww w a ew p g    

                                   (1)
 

    ,t x x
b f q kw       

                                   (2)
 

with initial approximations as,  

   ,0 ,w x x 
  

   ,0 .x x 
                                   (3)

 

where , , , , , , ,a b e f g k p q   are arbitrary constants such that, 0, 0.ef gk    

3 Solutions  
3.1 General solution of the problem 

In the given problem the system of equations are coupled equations and quadratic non linearity terms are also 

contained in it. 

An exact periodic solution of this system was presented in (Alabdullatif et al., 2007) as, 
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Here 0, , , , , , ,e f g k p q s are arbitrary constants such that,
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3.2 Analysis of the problem by using the Adomian Decomposition Method 
 The Adomian decomposition method (Adomian, 1994; Bildik and Bayramoglu, 2005) defines a linear operator 

of the form,  

.t t


 


  

Then system (1) can be written as,
      

( ) ( ) ,t x xw ww w a ew p g     
                                      (7)
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 ( ) ( ) ,t x x b f q kw        
                                          (8)

 

Applying the inverse operator to equations (7) and (8) we will have that,
 

1( , ) ( ) [ ( )],w x t x t aw g p F w                                        (9)
 

1( , ) ( ) [ ( )],x t x t b kw q G       
                                    (10)

 

where the non linear terms are, 2 2( ) ( ) , ( ) ( ) .x x x xF w ww ew G f     
 

According to the decomposition method (Bildik and Bayramoglu, 2005) it is assumed that the unknown 

functions 
( , ), ( , )w x t x t are represented as, 

0
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w x t w x t
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  ( ), ( )F w G   

are the non linear and these non linear terms can be splited into an infinite series of polynomials 

as,
0
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 . 
Here the components 

 
   , , ,w x t x t   can be founded by use of 

recursive relations and 
 

' , 'n nA s B s   are the Adomian polynomials of ' , 'n nw s s   respectively. ,n nw   

For 0n   are represented by the following recursive relations.
 

0 ( ,0) ( ),w w x x 
                                                    (11)

 

0 ( ,0) ( ),x x   
                                                     (12) 

The other components are as follow,      
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The result can be generalized for n-terms as,  
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By using the recursive relations for
 

   , , ,w x t x t  will be determined as,
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Case #1 

Consider 3 ,a g 0
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The obtained solutions 
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are as follows
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Case #2 

For 3 ,a g  0

3
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3, 1, 1.2, 3, 1.2.a p g c k      ,
 

the following results are obtained,  
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Now in the next subsection, the analysis of this problem is presented by using Homotopy Perturbation Method 

(He, 1999; He, 2000).
 

  

3.3 Analysis of the problem by using the Homotopy Perturbation Method 

Constructed Homotopy for the given system of equations (1) and (2) respectively will be as follows, 

2
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The initial approximations are choosed as, 
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                                    (26)

 

Let us assume the solution for the above system of equations respectively as follow, 
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Putting equations (27) and (28) in equations (23) and (24) and comparing the same powers of h ,
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Case # 1  

Now consider the first case i.e. 3 .a g  
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And by taking 3, 1, 1.2, 3, 1.2.a p g c k      , we find the following relations, 
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Simplification and comparison shows that these are the same components as were calculated by using 

Adomian Decomposition Method.  

Now from equation (33) and (34) we have that, 
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Case # 2  

Now consider the second case i.e.

 

3 ,a g and by taking,

 

3, 1, 1.2, 3, 1.2, 4.a p g c k s       , 

then for this case we find that, 0 (0) 0.6966.     

Using these values the following results are calculated,  
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Simplification and comparison shows that these are the same components as were calculated by using 

Adomian Decomposition Method.  

Now from equation (33) and (34) we have that, 
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4 Concluding Remarks 

In this study, approximated solutions for some non linear problems are calculated by Adomian Decomposition 

Method (ADM) and Homotopy Perturbation Method (HPM) and then the numerical results are compared. 

It is analyzed that in Adomian Decomposition Method first Adomian polynomials are calculated which is a 

bit difficult and time wasting process and the fact that HPM solves nonlinear problems without using 

Adomian’s polynomials is a clear advantage of this technique over ADM. 

The comparative study between these two methods shows that the results obtained by using HPM with a 

special convex constructed Homotopy is almost equivalent to the results obtained by using ADM for these 

types of non linear problems. 
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