
Computational Ecology and Software, 2014, 4(4): 215-222 

 IAEES                                                                                    www.iaees.org

Article 

 

Siplab, a spatial individual-based plant modelling system 

 
Oscar García 
University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada 

E-mail: garcia@unbc.ca 

 

Received 4 September 2014; Accepted 10 October 2014; Published online 1 December 2014 

 

 
Abstract 

Spatially-explicit individual-based models are important tools in forestry and plant ecology. They are 

commonly implemented through custom computer coding that is time-consuming, may cause compatibility 

and availability problems, and makes difficult the evaluation, comparison and re-use of model components. 

Siplab is an R package that aims at improving this situation with a flexible computing environment that can 

handle a variety of model forms, and without requiring advanced programming knowledge. The article briefly 

reviews spatial individual-plant models, and then explains the general framework used by siplab to represent 

such models in a unified way. The structure and practical use of the package are introduced through some of 

the examples previously discussed. 
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1 Introduction 

Spatially-explicit individual-based models are widely used to investigate the development of plant 

communities. In forestry they can be traced back to Reventlow (1960), who used them to produce yield tables 

around the year 1800. Staebler (1951) introduced the idea of competition indices based on overlapping zones 

of influence (ZOI), employed in much of the later work. Commonly known as distance-dependent individual-

tree models they proliferated once electronic computers became widely available, starting with Newnham and 

Smith (1964). For operational growth and yield forecasting, since the 1980's these were largely replaced by 

simpler distance-independent (aspatial) models, but remain important research tools (Weiskittel et al., 2011; 

Burkhart and Tomé, 2012). In general plant ecology the interest in spatial individual-based models is more 

recent (Grimm, 1999), but they have received much attention (Grimm and Railsback, 2005). 

Computer implementations are usually specific to each model, and often poorly documented or not 

publicly available. Therefore, it can be difficult to apply the models to new data and conditions, and to 

evaluate or combine different ideas. Siplab (for Spatial Individual-Plant Modelling Laboratory) is a software 
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        plot = TRUE, afree = FALSE, centroid = FALSE) 

Additional arguments are the pixel size pixsize, an array or function resource with the resource spatial 

distribution (defaulting to uniform), an efficiency function efficiency with parameters in effpar, and 

flags for the optional output of graphics, free-growing assimilation, and centroid of the effective assimilation 

for each plant. The centroids were used in García (2014b), where the Supplementary Files contain examples of 

advanced siplab use. 

Assimilation or competition indices near the edges of the sample are distorted because competitors are 

missing. Functions edges and core are available to correct for edge effects by omitting border trees or by 

plot replication. 

Full usage details are available in the Reference Manual at http://cran.r-project.org/web 

/packages/siplab/siplab.pdf. 

 

5 Conclusions 

Siplab calculates competition or assimilation indices specified in ways that include and extend many of those 

described in the literature. It is possible to emulate published models, generalize them, and to "mix and match" 

components from different models. This is done within a flexible and convenient computational environment 

that does not require major programming skills. It is expected that this and similar approaches may improve 

transparency and reproducibility in forest modelling, and allow for the evaluation and comparison of 

alternative formulations on an equal footing. 
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