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Abstract 

In the present work, we study the qualitative behavior of an anti-competitive system of fourth-order rational 

difference equations. More precisely, we study the local asymptotic stability, global character of the unique 

equilibrium point, and the rate of convergence of the positive solutions of the given system. Some numerical 

examples are given to verify our theoretical results. 
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1 Introduction 

Difference equations or discrete dynamical systems are diverse field which impact almost every branch of pure 

and applied mathematics. Every dynamical system ܽାଵ ൌ ݂ሺܽሻdetermines a difference equation and vice 

versa. Recently, there has been great interest in studying difference equations systems. One of the reasons for 

this is a necessity for some techniques which can be used in investigating equations arising in mathematical 

models describing real life situations in many applied sciences. The theory of discrete dynamical systems and 

difference equations developed greatly during the last twenty-five years of the twentieth century. Applications 

of discrete dynamical systems and difference equations have appeared recently in many areas. The theory of 

difference equations occupies a central position in applicable analysis. There is no doubt that the theory of 

difference equations will continue to play an important role in mathematics as a whole. Nonlinear difference 

equations of order greater than one are of paramount importance in applications. Such equations also appear 

naturally as discrete analogues and as numerical solutions of differential and delay differential equations which 

model various diverse phenomena in biology, ecology, physiology, physics, engineering, economics, 

probability theory, genetics, psychology and resource management. It is very interesting to investigate the 
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behavior of solutions of a system of higher-order rational difference equations and to discuss the local 

asymptotic stability of their equilibrium points. Systems of rational difference equations have been studied by 

several authors. Especially there has been a great interest in the study of the attractivity of the solutions of such 

systems. For more results for the systems of difference equations, we refer the interested reader to Cinar 

(2004), Stevic (2012a, b), Bajo and Liz (2011), Kalabusic et al. (2009, 2011), Kurbanli (2011), Kurbanli et al. 

(2011), Touafek and Elsayed (2012a, b), Elsayed and Ibrahim (in press), Din (a, b; in press). 

Zhang et al. (2012) studied the dynamics of a system of rational third-order difference equation: 

ାଵݔ ൌ
ିଶݔ

ܤ  ିଶݕିଵݕݕ
 , ାଵݕ ൌ

ିଶݕ
ܤ  ିଶݔିଵݔݔ

, ݊ ൌ  .ڮ,0,1

Din et al. (2012) investigated the dynamics of a system of fourth-order rational difference equations 

ାଵݔ ൌ
ିଷݔߙ

ߚ  ∏ ߛ ିଷݕ
ୀ

  , ାଵݕ ൌ
ିଷݕଵߙ

ଵߚ  ଵߛ ∏ ିଷݔ
ୀ

, ݊ ൌ  ,ڮ,0,1

Our aim in this paper is to investigate the qualitative behavior of an anti-competitive system of fourth order 

rational difference equations 

ାଵݔ ൌ
ఈ௬షయ

ఉାఊ ∏ ௫ష
య
సబ

  , ାଵݕ ൌ
ఈభ௫షయ

ఉభାఊభ ∏ ௬ష
య
సబ

, ݊ ൌ  (1)                        ,ڮ,0,1

where the parameters ߙ, ,ߚ ,ߛ ,ଵߙ ,ଵߚ ଵߛ  and initial conditions ݔ, ,ଵିݔ ,ଶିݔ ,ଷିݔ ,ݕ ,ଵିݕ ,ଶିݕ ଷିݕ  are 

positive real numbers. This paper is natural extension of (Shojaei et al., 2009; Din et al., 2012; Zhang et al., 

2012). 

Let us consider eight-dimensional discrete dynamical system of the form: 

ାଵݔ ൌ ݂ሺݔ, ,ିଵݔ ,ିଶݔ ,ିଷݔ ,ݕ ,ିଵݕ ,ିଶݕ  ,ିଷሻݕ
ାଵݕ ൌ ݃ሺݔ, ,ିଵݔ ,ିଶݔ ,ିଷݔ ,ݕ ,ିଵݕ ,ିଶݕ ,ିଷሻݕ ݊ ൌ  (2)                 ,ڮ,0,1

where݂: ସܫ ൈ ସܬ ՜  ܫ  and ݃: ସܫ ൈ ସܬ ՜ ,ܫ are continuously differentiable functions and ܬ ܬ  are some 

intervals of real numbers. Furthermore, a solution ሼሺݔ, ሻሽୀିଷݕ
ஶ  of system (2) is uniquely determined by 

initial conditions ሺݔ, ሻݕ א ܫ ൈ ݅ for ܬ א ሼെ3,െ2,െ1,0ሽ. Along with the system (2) we consider the 

corresponding vector map  

ܨ ൌ ሺ݂, ,ݔ ,ିଵݔ ,ିଶݔ ,ିଷݔ ݃, ,ݕ ,ିଵݕ ,ିଶݕ  .ିଷሻݔ
An equilibrium point of system (2) is a point ሺݔҧ,  തሻ that satisfiesݕ

ҧݔ ൌ ݂ሺݔҧ, ҧݔ , ҧݔ , ҧݔ , ,തݕ ,തݕ ഥ,ݕ  തሻݕ
തݕ ൌ ݃ሺݔҧ, ҧݔ , ҧݔ , ҧݔ , ,തݕ ,തݕ ഥ,ݕ  തሻݕ
The point ሺݔҧ,  .ܨ തሻ is also called a fixed point of the vector mapݕ

Definition 1. Let ሺݔҧ ,  .തሻ be an equilibrium point of the system (2)ݕ

(i) An equilibrium point ሺݔҧ , ߝ തሻ is said to be stable if for everyݕ  0 there exists ߜ   0 such 

thatfor every initial conditionsሺݔ, ,ሻݕ ݅ א ሼെ3,െ2,െ1,0ሽ  if ฮ∑ ሺݔ, ሻݕ

ୀିଷ െ ሺݔҧ, തሻฮݕ ൏  ߜ

implies ԡሺݔ, ሻݕ െ ሺݔҧ, തሻԡݕ ൏ ݊ for all ߝ  0, where ԡ·ԡ is usual Euclidian norm in Թଶ. 

(ii) An equilibrium point ሺݔҧ ,  .തሻ  is said to be unstable if it is not stableݕ

(iii) An equilibrium point ሺݔҧ , ߟ തሻ is said to be asymptotically stable if there existsݕ   0 such that 

ฮ∑ ሺݔ, ሻݕ

ୀିଷ െ ሺݔҧ, തሻฮݕ ൏ ,ݔandሺ ߟ ሻݕ ՜ ሺݔҧ , ݊ തሻasݕ ՜ ∞. 

(iv) An equilibrium point ሺݔҧ , ,ݔതሻ is called global attractor if ሺݕ ሻݕ ՜ ሺݔҧ , ݊ തሻ asݕ ՜ ∞. 
(v) An equilibrium point ሺݔҧ ,  .തሻ is called asymptotic global attractor if it is a global attractor andstableݕ

Definition 2. Letሺݔҧ ,   തሻ be an equilibrium point of a mapݕ

ܨ ൌ ሺ݂, ,ݔ ,ିଵݔ ,ିଶݔ ,ିଷݔ ݃, ,ݕ ,ିଵݕ ,ିଶݕ  ିଷሻݔ
where ݂ and ݃are continuously differentiable functions atሺݔҧ ,  തሻ. The linearized system of (2) about theݕ
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equilibrium point ሺݔҧ ,  തሻ is given byݕ

ܺାଵ ൌ ሺܺሻܨ ൌ  ,ܺܨ

where ܺ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

௫
௫షభ
ିଶݔ
ିଷݔ
ݕ
ିଵݕ
ିଶݕ
یିଷݕ

ۋ
ۋ
ۋ
ۊ

 and ܨis Jacobean matrix of the system (2) about the equilibrium point ሺݔҧ ,  .തሻݕ

To construct corresponding linearized form of the system (1) we consider the following transformation: 

ሺݔ, ,ିଵݔ ,ିଶݔ ,ିଷݔ ,ݕ ,ିଵݕ ,ିଶݕ ିଷሻݕ ՜ ሺ݂, ଵ݂, ଶ݂, ଷ݂, ݃, ଵ݃, ݃ଶ, ݃ଷሻ,        (3) 

where ݂ ൌ ఈ௬షయ
ఉାఊ ∏ ௫ష

య
సబ

, ଵ݂ ൌ ,ݔ ଶ݂ ൌ    ,ିଵݔ ଷ݂ ൌ ݃ ,ିଶݔ ൌ
ఈభ௫షయ

ఉభାఊభ ∏ ௬ష
య
సబ

, ଵ݃ ൌ ,ݕ ݃ଶ ൌ

,ିଵݕ ݃ଷ ൌ , ҧݔିଶThe Jacobian matrix about the fixed point ሺݕ  തሻ under the transformation (3) is given byݕ

, ҧݔሺܨ തሻݕ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ܣ ܣ ܣ ܣ 0 0 0 ܤ
1 0 0 0 0 0 0 0
0
0
0
0
0
0

1
0
0
0
0
0

0 0 0 0 0 0
1 0 0 0 0 0
0 ܥ ܦ ܦ ܦ ܦ
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0 ی

ۋ
ۋ
ۋ
ۋ
ۊ

, 

where ܣ ൌ െ ఈఊ௬ത௫ҧయ

ሺఉାఊ௫ҧరሻమ
  , ܤ ൌ ఈ

ఉାఊ௫ҧర
, ܥ ൌ ఈభ

ఉభାఊభ௬തర
 and ܦ ൌ െ ఈభఊభ௫ҧ௬തయ

ሺఉభାఊభ௬തరሻమ
. 

Theorem 1. (Sedaghat, 2003) For the system ܺାଵ ൌ ,ሺܺሻܨ ݊ ൌ  of difference equations such ,ڮ,0,1

that തܺ be a fixed point of ܨ. If all eigenvalues of the Jacobian matrix ܬி about തܺ lie inside the open 

unitdisk |ߣ| ൏ 1, then തܺ is locally asymptotically stable. If one of them has a modulus greater than one, then 
തܺ is unstable. 

 

2 Main Results  

Let ሺݔҧ ,  തሻbe an equilibrium point of the system (1), then system (1) has only one equilibrium point namelyݕ

ሺ0,0ሻ. 
Theorem 2.Let ሼݔ, ݉ ሽ be a positive solution of the system (1), then for everyݕ  0 the following result 

hold: 
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ሺ݅ሻ 0  ݔ 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
൬ۓ
ߙ
ߚ
൰
ାଵ

൬
ଵߙ
ଵߚ
൰


,ଷିݕ ݊ ൌ 8݉  1,

൬
ߙ
ߚ
൰
ାଵ

൬
ଵߙ
ଵߚ
൰


,ଶିݕ ݊ ൌ 8݉  2,

൬
ߙ
ߚ
൰
ାଵ

൬
ଵߙ
ଵߚ
൰


,ଵିݕ ݊ ൌ 8݉  3,

൬
ߙ
ߚ
൰
ାଵ

൬
ଵߙ
ଵߚ
൰


,ݕ ݊ ൌ 8݉  4,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଷିݔ ݊ ൌ 8݉  5,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଶିݔ ݊ ൌ 8݉  6,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଵିݔ ݊ ൌ 8݉  7,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ݔ ݊ ൌ 8݉  8.

 

 

ሺ݅݅ሻ 0  ݕ 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
൬ۓ
ߙ
ߚ
൰


൬
ଵߙ
ଵߚ
൰
ାଵ

,ଷିݔ ݊ ൌ 8݉  1,

൬
ߙ
ߚ
൰


൬
ଵߙ
ଵߚ
൰
ାଵ

,ଶିݔ ݊ ൌ 8݉  2,

൬
ߙ
ߚ
൰


൬
ଵߙ
ଵߚ
൰
ାଵ

,ଵିݔ ݊ ൌ 8݉  3,

൬
ߙ
ߚ
൰


൬
ଵߙ
ଵߚ
൰
ାଵ

,ݔ ݊ ൌ 8݉  4,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଷିݕ ݊ ൌ 8݉  5,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଶିݕ ݊ ൌ 8݉  6,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ଵିݕ ݊ ൌ 8݉  7,

൬
ଵߙߙ
ଵߚߚ

൰
ାଵ

,ݕ ݊ ൌ 8݉  8.

 

Proof. It follows from induction.ז 

Lemma 1.Let0  ఈఈభ
ఉఉభ

൏ 1, then every solution ሼݔ, ሽୀିଷݕ
ஶ  of the system (1) is bounded. 

Proof. Assume that  

ଵߣ ൌ max ቄ  ఉభ
ఈభ
,ଷିݕ

ఉభ
ఈభ
,ଶିݕ

ఉభ
ఈభ
,ଵିݕ

ఉభ
ఈభ
,ݕ ,ଷିݔ ,ଶିݔ ,ଵିݔ  ,ቅݔ

and 

ଶߣ ൌ max ቄ  ఉ
ఈ
,ଷିݔ

ఉ

ఈ
,ଶିݔ

ఉ

ఈ
,ଵିݔ

ఉ

ఈ
,ݔ ,ଷିݕ ,ଶିݕ ,ଵିݕ  .ቅݕ
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Then from Theorem 2 one can see that 0  ݔ ൏ ଵ and 0ߣ  ݕ ൏ ݊ ଶ for allߣ ൌ  ז.ڮ,0,1

Theorem 3.If  0  ఈఈభ
ఉఉభ

൏ 1 then equilibrium point (0, 0) of the system (1) is locally asymptotically stable. 

Proof. The linearized system of (1) about the equilibrium point (0, 0) is given by: 

ܺାଵ ൌ ,ሺ0ܨ 0ሻܺ, 

whereܺ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

௫
௫షభ
ିଶݔ
ିଷݔ
ݕ
ିଵݕ
ିଶݕ
یିଷݕ

ۋ
ۋ
ۋ
ۊ

 and ܨሺ0, 0ሻ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ
0 0 0 0 0 0 0 ఈ

ఉ

1 0 0 0 0 0 0 0

0
0
0
0
0
0

1
0
0
0
0
0

0 0 0 0 0 0
1 0 0 0 0 0
0 ఈభ

ఉభ
0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 ی0

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

.  

The characteristic polynomial of ܨሺ0, 0ሻ is given by  

ܲሺߣሻ ൌ ଼ߣ െ ఈఈభ
ఉఉభ

                                                            (4) 

The roots of ܲሺߣሻ 

ߣ ൌ ൬
ଵߙߙ
ଵߚߚ

൰
ଵ
଼
exp  ൬

݅ߨ݇
4
൰ 

for ݇ ൌ ڮ,0,1 ,7.  Now, it is easy to see that |ߣ| ൏ 1 for all ݇ ൌ ڮ,0,1 ,7.  Since all eigenvalues of 

Jacobian matrix  ܨሺ0, 0ሻ about (0, 0) lie in open unit disk |ߣ| ൏ 1. Hence, the equilibrium point (0, 0) is 

locally asymptotically stable.ז 

Theorem 4.If  0  ఈఈభ
ఉఉభ

൏ 1 then equilibrium point (0, 0) of the system (1) is globally asymptotically stable. 

Proof. From theorem 3, (0, 0) is locally asymptotically stable. From Lemma 1, every positive solution 

ሼݔ, ሽୀିଷݕ
ஶ of the system (1) is bounded. Now, it is sufficient to prove that ሼݔ,  ሽis decreasing. Fromݕ

system (1) one has 

ାଵݔ ൌ
ିଷݕߙ

ߚ  ∏ ߛ ିଷݔ
ୀ

 

ାଵݔ 
ఈ

ఉ
ିଷݕ ൏  .ିଷݕ

This implies that ଼ݔାଵ ൏ ାଽ଼ݔ ିଷ and଼ݕ ൏  ାହ. Also଼ݕ

ାଵݕ ൌ
ିଷݔଵߙ

ଵߚ  ଵߛ ∏ ିଷݕ
ୀ

 

ାଵݕ 
ఈభ
ఉభ
ିଷݔ ൏  .ିଷݔ

This implies that ଼ݕାଵ ൏ ିଷ଼ݔ  and ଼ݕାଽ ൏ ାହ଼ݔ . So ଼ݔାଽ ൏ ାହ଼ݕ ൏ ାଵ଼ݔ  and 

ାଽ଼ݕ ൏ ାହ଼ݔ ൏  ାଵ. Hence, the subsequences଼ݕ

ሼ଼ݔାଵሽ, ሼ଼ݔାଶሽ, ሼ଼ݔାଷሽ, ሼ଼ݔାସሽ, ሼ଼ݔାହሽ, ሼ଼ݔାሽ, ሼ଼ݔାሽ, ሼ଼ݔା଼ሽ 
and 

ሼ଼ݕାଵሽ, ሼ଼ݕାଶሽ, ሼ଼ݕାଷሽ, ሼ଼ݕାସሽ, ሼ଼ݕାହሽ, ሼ଼ݕାሽ, ሼ଼ݕାሽ, ሼ଼ݕା଼ሽ 

are decreasing. Therefore the sequences ሼݔሽ and ሼݕሽ are decreasing. Hence 
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 lim՜ஶ ݔ ൌ lim՜ஶ ݕ ൌ  ז.0

Theorem 5. Let ߙ  ଵߙ and ߚ  ,ݔଵ. Then, for solution ሺߚ  ሻ of system (1) following statements areݕ

true: 

(i) If ݔ ื 0, then ݕ ื ∞. 

(ii) If ݕ ื 0, then ݔ ื ∞. 

 

3 Rate of Convergence 

In this section we will determine the rate of convergence of a solution that converges to the equilibrium point 

(0, 0) of the system (1). The following results give the rate of convergence of solutions of a system of 

difference equations 

ܺାଵ ൌ ൫ܣ   ሺ݊ሻ൯ܺ,                                                     (5)ܤ

where ܺ is an ݉െdimensional vector, ܣ א :ܤ ൈ is a constant matrix, andܥ ܼା ՜  ൈ  is aܥ

matrix function satisfying  

ԡܤሺ݊ሻԡ ՜ 0                                                               (6) 

as ݊ ՜ ∞, where ԡ. ԡ denotes any matrix norm which is associated with the vector norm 

ԡܤሺ݊ሻԡ ൌ ඥݔଶ   ଶݕ

Proposition 1. (Perron’s theorem) (Pituk, 2002) Suppose that condition (6) holds. If ܺ is a solution of (5), 

then either ܺ ൌ 0 for all large ݊ or 

ߩ ൌ lim՜ஶሺԡܺԡሻ
భ
                                                       (7) 

exist and is equal to the modulus of one the eigenvalues of matrix ܣ. 

Proposition 2. (Pituk, 2002)Suppose that condition (6) holds. If ܺ is a solution of (5), then either ܺ ൌ 0 

for all large ݊ or 

ߩ ൌ lim՜ஶ
ԡశభԡ

ԡԡ
                                                          (8) 

exist and is equal to the modulus of one the eigenvalues of matrix ܣ 

Assume that lim
՜ஶ

ݔ ൌ ҧ, limݔ
՜ஶ

ݕ ൌ  ത.  First we will find a system of limiting equations for the mapݕ

 The error term are given by  .ܨ

ାଵݔ െ ҧݔ ൌ ∑ ିݔሺܣ െ ҧሻଷݔ
ୀ  ∑ ିݕሺܤ െ തሻଷݕ

ୀ , 

ାଵݕ െ തݕ ൌ ∑ ିݔሺܥ െ ҧሻଷݔ
ୀ  ∑ ିݕሺܦ െ തሻଷݕ

ୀ . 

Set ݁ଵ ൌ ݔ െ ҧ and݁ଶݔ ൌ ݕ െ  ത, one hasݕ

݁ାଵ
ଵ ൌ ∑ ܣ

ଷ
ୀ ݁ି

ଵ  ∑ ܤ
ଷ
ୀ ݁ି

ଶ , 

݁ାଵ
ଶ ൌ ∑ ܥ

ଷ
ୀ ݁ି

ଵ  ∑ ܦ
ଷ
ୀ ݁ି

ଶ , 

where 

ܣ ൌ െ
ఈఊ ௬ത ∏ ௫ష

య
సభ

ሺఉାఊ∏ ௫ష
య
సబ ሻሺఉାఊ௫ҧరሻ

ଵܣ ,  ൌ െ ఈఊ௫ҧ௬ത௫షమ௫షయ
ሺఉାఊ∏ ௫ష

య
సబ ሻሺఉାఊ௫ҧరሻ

, 

ଶܣ ൌ െ ఈఊ௫ҧమ௬ത௫షయ
ሺఉାఊ∏ ௫ష

య
సబ ሻሺఉାఊ௫ҧరሻ

ଷܣ ,  ൌ െ ఈఊ௫ҧయ௬ത

ሺఉାఊ∏ ௫ష
య
సబ ሻሺఉାఊ௫ҧరሻ

, 

ܤ ൌ 0for ݅ א ሼ0,1,2ሽ, 

ଷܤ ൌ
ఈ

ఉାఊ∏ ௫ష
య
సబ

, 

ܥ ൌ 0 for ݅ א ሼ0,1,2ሽ, 
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ଷܥ ൌ
ఈభ

ఉభାఊభ ∏ ௬ష
య
సబ

, 

 

ܦ ൌ െ
ఈభఊభ௫ҧ ∏ ௬ష

య
సభ

ሺఉభାఊభ ∏ ௬ష
య
సబ ሻሺఉభାఊభ௬തరሻ

ଵܦ , ൌ െ ఈభఊభ௫ ഥ௬ത௬షమ௬షయ
ሺఉభାఊభ ∏ ௬ష

య
సబ ሻሺఉభାఊభ௬തరሻ

, 

ଶܦ ൌ െ ఈభఊభ௫ ഥ௬തమ௬షయ
ሺఉభାఊభ ∏ ௬ష

య
సబ ሻሺఉభାఊభ௬തరሻ

ଷܦ, ൌ െ ఈభఊభ௫ ഥ௬തయ

ሺఉభାఊభ ∏ ௬ష
య
సబ ሻሺఉభାఊభ௬തరሻ

. 

Taking the limit, we obtain lim՜ஶ ܣ ൌൌ െ ఈఊ௬ത௫ҧయ

ሺఉାఊ௫ҧరሻమ
for ݅ א ሼ0,1,2,3ሽ , lim՜ஶ ܤ ൌ 0  for 

݅ א ሼ0,1,2ሽ , lim՜ஶ ଷܤ ൌ
ఈ

ఉାఊ௫ҧర
 , lim՜ஶ ܥ ൌ 0  for ݅ א ሼ0,1,2ሽ , lim՜ஶ ଷܥ ൌ

ఈభ
ఉభାఊభ௬തర

 and 

lim՜ஶ ܦ ൌ െ ఈభఊభ௫ҧ௬തయ

ሺఉభାఊభ௬തరሻమ
for ݅ א ሼ0,1,2,3ሽ. So, the limiting system of error terms can be written as  

ାଵܧ ൌ  , whereܧܭ

ܧ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

భ

షభ
భ

݁ିଶ
ଵ

݁ିଷ
ଵ

݁ଶ

݁ିଵ
ଶ

݁ିଶ
షయ
మ

ଶ

ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 and K=

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ
0 0 0 0 0 0 0 ఈ

ఉ

1 0 0 0 0 0 0 0

0
0
0
0
0
0

1
0
0
0
0
0

0 0 0 0 0 0
1 0 0 0 0 0
0 ఈభ

ఉభ
0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 ی0

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

, 

which is similar to linearized system of (1) about the equilibrium point (ݔҧ, തሻݕ ൌ ሺ0, 0ሻ. Using the Proposition 

1, one has following result. 

Theorem 6.Assume that ሼሺݔ, ሻሽ be a positive solution of the system (1) such that limݕ
՜ஶ

ݔ ൌ   ҧ andݔ

lim
՜ஶ

ݕ ൌ , ҧݔത where ሺݕ തሻݕ ൌ ሺ0,0ሻ. Then, the error term ܧ of every solution of (1) satisfies both of the 

following asymptotic relations 

lim
՜ஶ

ሺԡ݁ԡሻ
భ
 ൌ หܨߣሺݔҧ , തሻห, lim՜ஶݕ

ԡశభԡ

ԡԡ
ൌ หܨߣሺݔҧ ,  ,തሻหݕ

where ܨߣሺݔҧ , , ҧݔሺܨ തሻ are the characteristic roots of Jacobian matrixݕ  .തሻaboutሺ0,0ሻݕ
 

4 Examples 

In order to verify our theoretical results and to support our theoretical discussions, we consider several 

interesting numerical examples in this section. These examples represent different types of qualitative behavior 

of solutions to the system of nonlinear difference equations (1). All plots in this section are drawn with 

Mathematica. 

Example 1 

Consider the system (1) with initial conditions 

ଷିݔ ൌ 2.2 , ଶିݔ ൌ 1.9 , ଵିݔ ൌ 5.8, ,ݔ ൌ 2.9, ଷିݕ ൌ 1.8, ଶିݕ ൌ 3.9 , ଵିݕ ൌ 2.4, ݕ ൌ 1.8 .  

Moreover, choosing the parameters ߙ ൌ 116, ߚ ൌ 117, ߛ ൌ 0.9, ଵߙ ൌ 111, ଵߚ ൌ 112, ଵߛ ൌ 0.6. Then , 

the system (1) can be written as 

ାଵݔ ൌ
ଵଵ௬షయ

ଵଵା.ଽ ∏ ௫ష
య
సబ

  , ାଵݕ ൌ
ଵଵଵ௫షయ

ଵଵଶା.∏ ௬ష
య
సబ

, ݊ ൌ  (9)               ,ڮ,0,1

and with initial condition 
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