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Abstract

In the present work, we study the qualitative behavior of an anti-competitive system of fourth-order rational
difference equations. More precisely, we study the local asymptotic stability, global character of the unique
equilibrium point, and the rate of convergence of the positive solutions of the given system. Some numerical
examples are given to verify our theoretical results.
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1 Introduction

Difference equations or discrete dynamical systems are diverse field which impact almost every branch of pure
and applied mathematics. Every dynamical system a,,; = f(a,)determines a difference equation and vice
versa. Recently, there has been great interest in studying difference equations systems. One of the reasons for
this is a necessity for some techniques which can be used in investigating equations arising in mathematical
models describing real life situations in many applied sciences. The theory of discrete dynamical systems and
difference equations developed greatly during the last twenty-five years of the twentieth century. Applications
of discrete dynamical systems and difference equations have appeared recently in many areas. The theory of
difference equations occupies a central position in applicable analysis. There is no doubt that the theory of
difference equations will continue to play an important role in mathematics as a whole. Nonlinear difference
equations of order greater than one are of paramount importance in applications. Such equations also appear
naturally as discrete analogues and as numerical solutions of differential and delay differential equations which
model various diverse phenomena in biology, ecology, physiology, physics, engineering, economics,
probability theory, genetics, psychology and resource management. It is very interesting to investigate the
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behavior of solutions of a system of higher-order rational difference equations and to discuss the local
asymptotic stability of their equilibrium points. Systems of rational difference equations have been studied by
several authors. Especially there has been a great interest in the study of the attractivity of the solutions of such
systems. For more results for the systems of difference equations, we refer the interested reader to Cinar
(2004), Stevic (20123, b), Bajo and Liz (2011), Kalabusic et al. (2009, 2011), Kurbanli (2011), Kurbanli et al.
(2011), Touafek and Elsayed (2012a, b), Elsayed and Ibrahim (in press), Din (a, b; in press).

Zhang et al. (2012) studied the dynamics of a system of rational third-order difference equation:

Xn—2 Vn-2

B+ YnYn-1Yn-2 Yt = B+ XnXn—1Xn-2 e 0’1’

Din et al. (2012) investigated the dynamics of a system of fourth-order rational difference equations
Xn+1 = ns yYn+e1 = T1ns

.B t+y H?:o Yn—i .81 + 7 H?:oxn—i

Our aim in this paper is to investigate the qualitative behavior of an anti-competitive system of fourth order

rational difference equations

Xn+1 =

In = 0111...1

aAYyn-3 A1Xn-3
By g tm ") = Bt [Bog ym i’ SR @)

Xn+1 =
where the parameters a, 5,¥, @4, B1,¥1 and initial conditions xq, X_1,X_5, X_3,V0,V-1,Y-2,Y—3 are
positive real numbers. This paper is natural extension of (Shojaei et al., 2009; Din et al., 2012; Zhang et al.,
2012).

Let us consider eight-dimensional discrete dynamical system of the form:
Xns1 = [ (Xn Xn_1, Xn—2, Xn—3, Yo Yn-1 Yn-2) Yn—-3),
Y1 = 9Xn, Xn—1, Xn—2, Xn-3, Yo Yn-1, Yn-2, Yn-3),n = 0,1, -+, )
wheref:1* X J* > 1 and g:1* X J* > J are continuously differentiable functions and I,] are some
intervals of real numbers. Furthermore, a solution {(x;, V) }n=—3 Of system (2) is uniquely determined by
initial conditions (x;,y;) € I X ] for i € {—3,—2,—1,0}. Along with the system (2) we consider the
corresponding vector map
F = (f, % Xn-1, Xn—2, Xn-3, 9, Yn» Yn—1, Yn—2) Xn—3)-

An equilibrium point of system (2) is a point (X,Y) that satisfies

The point (X, y) isalso called a fixed point of the vector map F.
Definition 1. Let (X, y) be an equilibrium point of the system (2).

(i) An equilibrium point (X ,y) is said to be stable if for every € > 0 there exists § > 0 such
thatfor every initial conditions (x;,y;),i € {—3,—2,—1,0} if ||Z?=_3(xi,yi) — (%, }7)” )
implies ||(x,,, ) — (X, )| < & forall n > 0, where ||-|| is usual Euclidian norm in R2.

(ii) An equilibrium point (X ,y) issaid to be unstable if it is not stable.

(iii) An equilibrium point (X, y) is said to be asymptotically stable if there exists n > 0 such that
[Z-—sCxi y) = G| <1 and(xn, ¥) = (&, 7)as n > o,

(iv) An equilibrium point (X, ) is called global attractor if (x,,v,) = (X,y) as n — oo.

(v) An equilibrium point (X, y) is called asymptotic global attractor if it is a global attractor andstable.

Definition 2. Let(X ,¥) be an equilibrium point of a map

F=(f, % Xn-1, Xn—2,Xn-3, 9, ¥n» Yn—1, Yn-2) Xn-3)
where f and gare continuously differentiable functions at(x ,y). The linearized system of (2) about the
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equilibrium point (X ,%) is given by
Xny1 = F(Xy) = Fi X,
Xn
Xn—1
Xn—2
Xn-3
where X, = 1y, and Fjis Jacobean matrix of the system (2) about the equilibrium point (x,y).
Yn-1
Yn-2
Yn-3
To construct corresponding linearized form of the system (1) we consider the following transformation:
(Xns Xn—1, Xn—2, Xn—3, Yn» Yn-1, Yn-2,Yn-3) = (f f1, f2, 3, 9, 91, 92, 93), 3)

A1 Xn—
fi=Xn fo=%p1, [3=%Xp2 9= — 5 91 =Y 92 =

f — AYn-3
B1tv1 H?:o Yn—i

where —_—
ﬁ+VITioxn—ﬁ

Yn-1,93 = Yn—o The Jacobian matrix about the fixed point (X ,¥) under the transformation (3) is given by

A A A A 0 0 0 B

/1 0 0O 0 0 0 0 o \
0 1 0O 00 0 0 O
- = _10 0 1 0 0 0 0 O

FGEN=19 00 c¢cppopopl
0 O 0O 01 0 0 o
0 O 0 0 01 0 o
0 O 0O 00 01 O

___ayyE? __ @ —_n - _ a1y1%y°
where 4 = 0 3+V’E4’C B1+y1¥* and D (B1+r17H?

Theorem 1. (Sedaghat, 2003) For the system X,,,; = F(X,), n = 0,1, -, of difference equations such
that X be a fixed point of F. If all eigenvalues of the Jacobian matrix Jr about X lie inside the open
unitdisk |A] < 1, thenX is locally asymptotically stable. If one of them has a modulus greater than one, then
X is unstable.

2 Main Results

Let (X, ¥)be an equilibrium point of the system (1), then system (1) has only one equilibrium point namely
(0,0).

Theorem 2.Let {x,,y,} be a positive solution of the system (1), then for every m = 0 the following result
hold:
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— — 2, n=8m+1,
(ﬁ) (/53) ¥-3
- — _,, n=8m+ 2,
g \p) 7
- — 1, n=8m+3,
g \p)
(a)m+1 <a1 m
— —) Yoo n=8m+4,
() 0 < < B Bl 0
l - xn - (aal m+1
— X_3, n=8m+5,
ﬁ[ﬂ)
<T> X_,, n=8m-+6,
1
(aal m+1
— X4, n=8m+7,
ﬁ[ﬂ)
— X n=8m+8
L (,8,81) 0
— — X_3, n=8m+1,
(ﬁ) (/53) 3
<a m al m+1
- — X_, n=8m+2,
5) ()
- — X_4, n=8m+3,
5) ()
<a>m (a1>m+1
— — X9, N =8m+4,
(i) 0 <y, <A B/ \Bs i
- yn - (aal m+1
— y_3, n=8m+35,
ﬁ[ﬂ)
(aal m+1
— V_,, n=8m+6,
ﬁﬁ1>
— y_1, n=8m+7,
ﬁ[ﬂ)
\ (m) Yo, n=8m+8.

Proof. It follows from induction. m

Lemma 1.Let0 < % < 1, then every solution {x,, V,,}n=—3 Of the system (1) is bounded.

1

Proof. Assume that

B B B1 B1
A= max{ 2. V-3 g V-2 V-1 Vo X-3,X-2,X_1, X {,
1 a a1 a1

and

B B B B
/12 = max{ ;X_3,;X_z,;x_l,;xo,y—&y—zi Y-1,Yo
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Then from Theorem 2 one canseethat 0 < x,, < 4; and 0 <y, < A, foral n =0,1,---.m

Theorem 3.1f 0 < % < 1 then equilibrium point (0, 0) of the system (1) is locally asymptotically stable.
1

Proof. The linearized system of (1) about the equilibrium point (0, 0) is given by:
XTl+1 S F](O, O)Xn,

0 a
%n 0 0 00 0O 2
;”‘1 1 0 00 00O 0 O
n-2 0 000 00
*n—3 O L 1 000 0 0
whereX, =| 1y, | and F;(0,0)=]0 0 0!1
o0 0 — 0O0O0TPO
Yn-1 B1
\yn—Z/ 00001000
Vn-3 0 001 0 o0
0 0
0 000 1 0
The characteristic polynomial of F;(0,0) is given by
P(A) =28 -2 4)

BB1
The roots of P(A)

e (5 o ()
BB 4

for k =0,1,---,7. Now, it is easy to see that |Ax| < 1 forall k = 0,1,---,7. Since all eigenvalues of

Jacobian matrix  F;(0, 0) about (0, 0) lie in open unit disk [A| < 1. Hence, the equilibrium point (0, 0) is

locally asymptotically stable.m

Theorem 4.1f 0 < % < 1 then equilibrium point (0, 0) of the system (1) is globally asymptotically stable.
1

Proof. From theorem 3, (0, 0) is locally asymptotically stable. From Lemma 1, every positive solution
{2, Y me_30f the system (1) is bounded. Now, it is sufficient to prove that {x,, y,,}is decreasing. From
system (1) one has
— aAYn—3

[)) + 14 H?:o Xn—i

a
Xn+1 < E:Vn—3 < Yn-3-

Xn+1

This implies that Xg, 11 < Vgn_3 and Xgni9 < Vgnis. Also
a1Xn-3

Bl + V1 H?:o Yn—i

Yn+1 =

a
Yn+1 = Exn—3 < Xp-3.

This implies that Ygni1 < Xgp-3 and Ygni9 < Xgnis - SO Xgnio9 < Vgn+s < Xgn41 and

Ven+o < Xgn+s < Vant1. Hence, the subsequences

{Xgn+1} (Xsn+2} Xen+3d (Xen+ad (Xan+sh {Xsnted (Xgn+7) (Xan+s}
and

{Ven+1} Ven+2d (Ven+sd (Vensad Venssh Vensed (Vanar} (Vanss}
are decreasing. Therefore the sequences {x,,} and {y,} are decreasing. Hence
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lim, e X, =lim,,,y, = 0.1

Theorem 5. Let ¢ > [ and a; > f31. Then, for solution (x,,y,) of system (1) following statements are
true:

@) If x,, — 0, then y,, — oo.

(i) If y,, — 0, then x,, — 0.

3 Rate of Convergence

In this section we will determine the rate of convergence of a solution that converges to the equilibrium point
(0, 0) of the system (1). The following results give the rate of convergence of solutions of a system of
difference equations

Xni1 = (A+BM) Xy, (5)

where X,, is an m —dimensional vector, A € C™ ™ is a constant matrix, and B: Z* —» C"™™ s a
matrix function satisfying

1Bl -0 (6)

as n — oo, where ||.|| denotes any matrix norm which is associated with the vector norm

IB(m)|l = vx? +y?

Proposition 1. (Perron’s theorem) (Pituk, 2002) Suppose that condition (6) holds. If X, is a solution of (5),
then either X,, = 0 forall large n or

1
p= limn—mo(“Xn“)n (7
exist and is equal to the modulus of one the eigenvalues of matrix A.
Proposition 2. (Pituk, 2002)Suppose that condition (6) holds. If X, is a solution of (5), then either X,, = 0
forall large n or

1Xneall
I Xzl

(8)

= limy,,,e

exist and is equal to the modulus of one the eigenvalues of matrix A
Assume that lim x,, = X, hm 0 Y, = y. First we will find a system of limiting equations for the map

n—-oo

F. Theerror term are given by

Xpy1 — X = i=o Ai(xn—i - x) + 2?:0 Bi(yn—i - 3_’),
Ynt1 =Y = 2?:0 Ci(xn—i - J_C) + 21'3=0 Di()’n—i - )_/)
Set e} = xn — X ande2 =y, — 37 one has

eTll+1= OA enl+2 OB en i
eiv1 = XicoCien_i+XioDiel
where
A = — ayﬁ)_/n?=1xn—i A, = — AYXYXn—2Xn-3
0 (B+y [T Xn-n)(B+yxh) * 71 (B+y [T Xn—) (B+yZ4)’
A, = — ay X yxn—3 A, = — ayx3y
2 B+Y [p Xn-p)(B+yxt) 3 (B+Y [T Xn—) (B+YE)

B; = Ofor i € {0,1,2},
U —
,8+]/ H?:o xn—i’

C; =0 for i € {0,1,2},

Bs
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C. = #’

37 B+ ioyn—i
D. = — a1v1 %1y Ynoi D. = — A1V1X YYn—2Yn-3

0 Br#+71 g yn-d) Br+117%) (B1#+71 [T yn-d) B +717%)’
D, = — 11X ¥*Yn-3 D, = — 11X y°

2 (Br+71 [T yn-d (B+119%)" 3 (B 471 g Y- B1+717%)’

. L . . ayyx3 . .

Taking the limit, we obtain lim,_. 4; == ~ G for i €{0,1,2,3}, lim,_,B; =0 for
. . a . . . a
i €{0,1,2}, lim,_ ., B; = el lim,,_,, C; =0 for i €{0,1,2}, lim,_ ., C; = ﬁ1+y113_/4

_anxyE
(B1+71¥*)?
E,+1 = KE,, where

lim, o D; = — for i € {0,1,2,3}. So, the limiting system of error terms can be written as

en
en-1
en—z
1
en—
E, = n23 and K=
eTl
en_1
9%—2
e2_s 0 0
which is similar to linearized system of (1) about the equilibrium point (X, ¥) = (0, 0). Using the Proposition
1, one has following result.
Theorem 6.Assume that {(x,,y,,)} be a positive solution of the system (1) such that limx, = X and
n—oo
limy, =y where (xX,¥y) = (0,0). Then, the error term E,, of every solution of (1) satisfies both of the

n—-oo

following asymptotic relations

1
tim leal® = 42, ) Jim Tt = 126 ).

where AF;(X,y) are the characteristic roots of Jacobian matrix F;(x , ¥)about(0,0).

SO OO O »r O
SO oo L, O O

o000 @ roo o
coo®Pfooco o
cCoRr o000 O
ORrROo o000 O
ROoOO o o000 O
cCo0o o © oo IR

4 Examples
In order to verify our theoretical results and to support our theoretical discussions, we consider several
interesting numerical examples in this section. These examples represent different types of qualitative behavior
of solutions to the system of nonlinear difference equations (1). All plots in this section are drawn with
Mathematica.
Example 1
Consider the system (1) with initial conditions
X_3=22,x_5,=19,x_1=58x,=29, y 3=18,y_,=39,y_;,=24,y,=1.8
Moreover, choosing the parameters « = 116, = 117,y = 0.9,a; = 111,5;, = 112,y; = 0.6. Then,
the system (1) can be written as

116yy_3 _ 111xp—3
117409 g n "™~ 11240611y vt

n=0,1,-, )

Xn+1 =

and with initial condition
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X_3=22,x_5,=19,x_1=58x,=29, y 3=18, y_,=39,y_;, =24,y,=1.8
Moreover, in Fig. 1 the plot of x,, is shown in Fig. 1a, the plot of y,, is shown in Fig. 1b and an attractor of
the system (9) is shown in Fig. 1c.

Example 2

Consider the system (1) with initial conditions

x3=03,x_,=18,x_1=19,%x,=32, y3=11, y ,=19,y_,=01,y,=1.8
Moreover, choosing the parameters

a=11,=112,y =0.001,a; = 0.9,5, = 0.91,y; = 0.007.Then , the system (1) can be written
as

x — 1.1yn_3 y — 0.9xn_3
1T 11240001 [T gxpn—; "7 " T 0.9140.007 [1E g vni’

n=0,1,-, (9)

and with initial condition

x3=03,x_,=18,x_1=19,%x,=32, y3=11, y ,=19,y_,=01,y,=1.8
Moreover, in Fig. 2 the plot of x,, is shown in Fig. 2a, the plot of y,, is shown in Fig. 2b and an attractor of
the system (9) is shown in Fig. 2c.

(a) Plot of x;, for the system (9)
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(b) Plot of y,, for the system (9)

(c) An attractor for the system (9)

Fig. 1 Plots for the system (9).

IAEES

3
— x{n)

WWW.iaees.org



44 Computational Ecology and Software, 2014, 4(1): 35-46

(a) Plot of x,, for the system (10)

(b) Plot of y,, for the system (10)
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xim)

(c) An attractor of the system (10)
Fig. 2 Plots for the system (10)

5 Conclusions

This work is natural extension of (Shojaei et al., 2009; Din et al., 2012; Zhang et al., 2012). In the paper, we
have investigated the qualitative behavior of an eight-dimensional discrete dynamical system. The system has
only one equilibrium point which is stable under some restriction to parameters. The linearization method is
used to show that equilibrium point (0, 0) is locally asymptotically stable. The main objectiveof dynamical
systems theory is to predict the global behavior of a system based on the knowledge of its present state. An
approach to this problem consists of determining the possible global behaviors of the system and determining
which initial conditions lead to these long-term behaviors. In case of higher-order dynamical systems, it is very
crucial to discuss global behavior of the system. Some powerful tools such as semiconjugacy and weak
contraction cannot be used to analyze global behavior of the system (1). In the paper, we prove the global
asymptotic stability of equilibrium point (0, 0) by using simple techniques. Due to the simplicity of our model,
we have carried out a systematical local and global stability analysis of it. The most important finding here is
that the unique equilibrium point (0, 0) can be a global asymptotic attractor for the system (1). Moreover, we
have determined the rate of convergence of a solution that converges to the equilibrium point (0, 0) of the
system (1). Some numerical examples are provided to support our theoretical results. These examples are
experimental verifications of theoretical discussions.
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