Article

Global behavior of an anti-competitive system of fourth-order rational difference equations

A. Q. Khan, Q. Din, M. N. Qureshi, T. F. Ibrahim

1Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
2Department of Mathematics, Faculty of Sciences and Arts King Khalid University, Abha, Saudi Arabia
3Permanent address: Department of Mathematics, Faculty of Sciences Mansoura University, Mansoura 35516, Egypt

E-mail: abdulqadeerkhan1@gmail.com, qamar.sms@gmail.com, nqureshi@ajku.edu.pk, tfoze@kku.edu.sa

Received 22 October 2013; Accepted 28 November 2013; Published online 1 March 2014

Abstract

In the present work, we study the qualitative behavior of an anti-competitive system of fourth-order rational difference equations. More precisely, we study the local asymptotic stability, global character of the unique equilibrium point, and the rate of convergence of the positive solutions of the given system. Some numerical examples are given to verify our theoretical results.

Keywords system of rational difference equations; stability; global character; rate of convergence.

1 Introduction

Difference equations or discrete dynamical systems are diverse field which impact almost every branch of pure and applied mathematics. Every dynamical system $a_{n+1} = f(a_n)$ determines a difference equation and vice versa. Recently, there has been great interest in studying difference equations systems. One of the reasons for this is a necessity for some techniques which can be used in investigating equations arising in mathematical models describing real life situations in many applied sciences. The theory of discrete dynamical systems and difference equations developed greatly during the last twenty-five years of the twentieth century. Applications of discrete dynamical systems and difference equations have appeared recently in many areas. The theory of difference equations occupies a central position in applicable analysis. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. Nonlinear difference equations of order greater than one are of paramount importance in applications. Such equations also appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations which model various diverse phenomena in biology, ecology, physiology, physics, engineering, economics, probability theory, genetics, psychology and resource management. It is very interesting to investigate the
behavior of solutions of a system of higher-order rational difference equations and to discuss the local
asymptotic stability of their equilibrium points. Systems of rational difference equations have been studied by
several authors. Especially there has been a great interest in the study of the attractivity of the solutions of such
systems. For more results for the systems of difference equations, we refer the interested reader to Cinar
(2011), Touafek and Elsayed (2012a, b), Elsayed and Ibrahim (in press), Din (a, b; in press).
Zhang et al. (2012) studied the dynamics of a system of rational third-order difference equation:
\[
x_{n+1} = \frac{x_n}{B + y_n y_{n-1} y_{n-2}}, \quad y_{n+1} = \frac{y_{n-2}}{B + x_n x_{n-1} x_{n-2}}, \quad n = 0, 1, \ldots.
\]
Din et al. (2012) investigated the dynamics of a system of fourth-order rational difference equations
\[
x_{n+1} = \frac{\alpha x_{n-3}}{\beta + \gamma \prod_{i=0}^{3} y_{n-i}}, \quad y_{n+1} = \frac{\alpha_1 y_{n-3}}{\beta_1 + \gamma_1 \prod_{i=0}^{3} x_{n-i}}, \quad n = 0, 1, \ldots,
\]
where the parameters \(\alpha, \beta, \gamma, \alpha_1, \beta_1, \gamma_1\) and initial conditions \(x_0, x_{-1}, x_{-2}, x_{-3}, y_0, y_{-1}, y_{-2}, y_{-3}\) are
positive real numbers. This paper is a natural extension of (Shojaei et al., 2009; Din et al., 2012; Zhang et al.,
2012).
Let us consider eight-dimensional discrete dynamical system of the form:
\[
x_{n+1} = f(x_n, x_{n-1}, x_{n-2}, x_{n-3}, y_n, y_{n-1}, y_{n-2}, y_{n-3}),
\]
\[
y_{n+1} = g(x_n, x_{n-1}, x_{n-2}, x_{n-3}, y_n, y_{n-1}, y_{n-2}, y_{n-3}), \quad n = 0, 1, \ldots,
\]
where \(f: I^4 \times J^4 \rightarrow I\) and \(g: I^4 \times J^4 \rightarrow J\) are continuously differentiable functions and \(I, J\) are some
intervals of real numbers. Furthermore, a solution \((x_n, y_n)_{n=-3}^{\infty}\) of system (2) is uniquely determined by
initial conditions \((x_i, y_i) \in I \times J\) for \(i \in \{-3, -2, -1, 0\}\). Along with the system (2) we consider the
corresponding vector map
\[
F = (f, x_n, x_{n-1}, x_{n-2}, x_{n-3}, g, y_n, y_{n-1}, y_{n-2}, y_{n-3}).
\]
An equilibrium point of system (2) is a point \((\tilde{x}, \tilde{y})\) that satisfies
\[
\tilde{x} = f(\tilde{x}, \tilde{x}, \tilde{x}, \tilde{x}, \tilde{y}, \tilde{y}, \tilde{y}, \tilde{y})
\]
\[
\tilde{y} = g(\tilde{x}, \tilde{x}, \tilde{x}, \tilde{x}, \tilde{y}, \tilde{y}, \tilde{y}, \tilde{y})
\]
The point \((\tilde{x}, \tilde{y})\) is also called a fixed point of the vector map \(F\).

Definition 1. Let \((\tilde{x}, \tilde{y})\) be an equilibrium point of the system (2).

(i) An equilibrium point \((\tilde{x}, \tilde{y})\) is said to be stable if for every \(\varepsilon > 0\) there exists \(\delta > 0\) such
that for every initial conditions \((x_i, y_i), i \in \{-3, -2, -1, 0\}\) if \(\|\sum_{i=-3}^{0} (x_i, y_i) - (\tilde{x}, \tilde{y})\| \leq \delta\)
implies \(\|x_n, y_n\| < \varepsilon\) for all \(n > 0\), where \(\|\cdot\|\) is usual Euclidian norm in \(\mathbb{R}^2\).
(ii) An equilibrium point \((\tilde{x}, \tilde{y})\) is said to be unstable if it is not stable.
(iii) An equilibrium point \((\tilde{x}, \tilde{y})\) is said to be asymptotically stable if there exists \(\eta > 0\) such that
\(\|\sum_{i=-3}^{0} (x_i, y_i) - (\tilde{x}, \tilde{y})\| < \eta\) and \((x_n, y_n) \to (\tilde{x}, \tilde{y})\) as \(n \to \infty\).
(iv) An equilibrium point \((\tilde{x}, \tilde{y})\) is called global attractor if \((x_n, y_n) \to (\tilde{x}, \tilde{y})\) as \(n \to \infty\).
(v) An equilibrium point \((\tilde{x}, \tilde{y})\) is called asymptotic global attractor if it is a global attractor and stable.

Definition 2. Let \((\tilde{x}, \tilde{y})\) be an equilibrium point of a map
\[
F = (f, x_n, x_{n-1}, x_{n-2}, x_{n-3}, g, y_n, y_{n-1}, y_{n-2}, y_{n-3})
\]
where \(f\) and \(g\) are continuously differentiable functions at \((\tilde{x}, \tilde{y})\). The linearized system of (2) about the
The equilibrium point \((\bar{x}, \bar{y})\) is given by
\[X_{n+1} = F(X_n) = F_j X_n, \]
where \(X_n = \begin{pmatrix} x_n \\ x_{n-1} \\ x_{n-2} \\ y_n \\ y_{n-1} \\ y_{n-2} \\ y_{n-3} \end{pmatrix} \) and \(F_j\) is Jacobean matrix of the system (2) about the equilibrium point \((\bar{x}, \bar{y})\).

To construct corresponding linearized form of the system (1) we consider the following transformation:
\[(x_n, x_{n-1}, x_{n-2}, x_{n-3}, y_n, y_{n-1}, y_{n-2}, y_{n-3}) \rightarrow (f, f_1, f_2, f_3, g, g_1, g_2, g_3), \]
where \(f = \frac{\alpha y_n}{\beta + \gamma y_n}, f_1 = x_n, f_2 = x_{n-1}, f_3 = x_{n-2}, g = \frac{\alpha x_{n-3}}{\beta_1 + \gamma_1 y_{n-1}}, g_1 = y_n, g_2 = y_{n-1}, g_3 = y_{n-2}\) The Jacobian matrix about the fixed point \((\bar{x}, \bar{y})\) under the transformation (3) is given by
\[
F_j(\bar{x}, \bar{y}) = \begin{pmatrix} A & A & A & A & 0 & 0 & 0 & B \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & C & D & D & D & D \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.
\]

where \(A = -\frac{\alpha y \bar{x}^3}{(\beta + \gamma \bar{x}^2)^2}, B = \frac{\alpha}{\beta + \gamma \bar{x}^2}, C = \frac{\alpha_1}{\beta_1 + \gamma_1 \bar{y}^2} \) and \(D = -\frac{\alpha_1 y \bar{x} \bar{y}^3}{(\beta_1 + \gamma_1 \bar{y}^2)^2} \).

Theorem 1. (Sedaghat, 2003) For the system \(X_{n+1} = F(X_n), n = 0,1,\cdots\), of difference equations such that \(\bar{X}\) be a fixed point of \(F\). If all eigenvalues of the Jacobian matrix \(J_F\) about \(\bar{X}\) lie inside the open unit disk \(|\lambda| < 1\), then \(\bar{X}\) is locally asymptotically stable. If one of them has a modulus greater than one, then \(\bar{X}\) is unstable.

2 Main Results

Let \((\bar{x}, \bar{y})\) be an equilibrium point of the system (1), then system (1) has only one equilibrium point namely \((0,0)\).

Theorem 2. Let \(\{x_n, y_n\}\) be a positive solution of the system (1), then for every \(m \geq 0\) the following result hold:
\[
(i) \ 0 \leq x_n \leq \left\{ \begin{array}{l}
\left(\frac{\alpha}{\beta} \right)^{m+1} \left(\frac{\alpha_1}{\beta_1} \right)^m y_{-3}, \ n = 8m + 1, \\
\left(\frac{\alpha}{\beta} \right)^{m+1} \left(\frac{\alpha_1}{\beta_1} \right)^m y_{-2}, \ n = 8m + 2, \\
\left(\frac{\alpha}{\beta} \right)^{m+1} \left(\frac{\alpha_1}{\beta_1} \right)^m y_{-1}, \ n = 8m + 3, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-3}, \ n = 8m + 5, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-2}, \ n = 8m + 6, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-1}, \ n = 8m + 7, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_0, \ n = 8m + 8.
\end{array} \right.
\]

\[
(ii) \ 0 \leq y_n \leq \left\{ \begin{array}{l}
\left(\frac{\alpha}{\beta} \right)^m \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-3}, \ n = 8m + 1, \\
\left(\frac{\alpha}{\beta} \right)^m \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-2}, \ n = 8m + 2, \\
\left(\frac{\alpha}{\beta} \right)^m \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} x_{-1}, \ n = 8m + 3, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} y_{-3}, \ n = 8m + 5, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} y_{-2}, \ n = 8m + 6, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} y_{-1}, \ n = 8m + 7, \\
\left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha_1}{\beta_1} \right)^{m+1} y_0, \ n = 8m + 8.
\end{array} \right.
\]

Proof. It follows from induction.

Lemma 1. Let \(\frac{\alpha}{\beta} \frac{a}{b} < 1 \), then every solution \(\{x_n, y_n\}_{n=-3}^{\infty} \) of the system (1) is bounded.

Proof. Assume that

\[
\lambda_1 = \max \left\{ \frac{\beta_1}{\alpha_1} x_{-3}, \frac{\beta_1}{\alpha_1} x_{-2}, \frac{\beta_1}{\alpha_1} x_{-1}, \frac{\beta_1}{\alpha_1} y_0, x_{-3}, x_{-2}, x_{-1}, x_0 \right\},
\]

and

\[
\lambda_2 = \max \left\{ \frac{\beta}{\alpha} x_{-3}, \frac{\beta}{\alpha} x_{-2}, \frac{\beta}{\alpha} x_{-1}, \frac{\beta}{\alpha} x_0, y_{-3}, y_{-2}, y_{-1}, y_0 \right\}.
\]
Then from Theorem 2 one can see that $0 \leq x_n < \lambda_1$ and $0 \leq y_n < \lambda_2$ for all $n = 0, 1, \ldots$. ■

Theorem 3. If $0 \leq \frac{\alpha_1}{\beta \beta_1} < 1$ then equilibrium point $(0, 0)$ of the system (1) is locally asymptotically stable.

Proof. The linearized system of (1) about the equilibrium point $(0, 0)$ is given by:

$$X_{n+1} = F_j(0, 0)X_n,$$

where $X_n = \begin{pmatrix} x_n \\ x_{n-1} \\ x_{n-2} \\ x_{n-3} \\ y_n \\ y_{n-1} \\ y_{n-2} \\ y_{n-3} \end{pmatrix}$ and $F_j(0, 0) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{\alpha}{\beta} \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$.

The characteristic polynomial of $F_j(0, 0)$ is given by

$$P(\lambda) = \lambda^8 - \frac{\alpha_1}{\beta \beta_1}.$$

(4)

The roots of $P(\lambda)$

$$\lambda_k = \left(\frac{\alpha_1}{\beta \beta_1}\right)^{\frac{1}{8}} \exp\left(\frac{k \pi i}{4}\right)$$

for $k = 0, 1, \ldots, 7$. Now, it is easy to see that $|\lambda_k| < 1$ for all $k = 0, 1, \ldots, 7$. Since all eigenvalues of Jacobian matrix $F_j(0, 0)$ about $(0, 0)$ lie in open unit disk $|\lambda| < 1$. Hence, the equilibrium point $(0, 0)$ is locally asymptotically stable. ■

Theorem 4. If $0 \leq \frac{\alpha_1}{\beta \beta_1} < 1$ then equilibrium point $(0, 0)$ of the system (1) is globally asymptotically stable.

Proof. From theorem 3, $(0, 0)$ is locally asymptotically stable. From Lemma 1, every positive solution $\{x_n, y_n\}_{n=-2}^{\infty}$ of the system (1) is bounded. Now, it is sufficient to prove that $\{x_n, y_n\}$ is decreasing. From system (1) one has

$$x_{n+1} = \frac{\alpha y_{n-3}}{\beta + \gamma \prod_{i=0}^{3} x_{n-i}}.$$

This implies that $x_{8n+1} < y_{8n-3}$ and $x_{8n+9} < y_{8n+5}$. Also

$$y_{n+1} = \frac{\alpha_1 x_{n-3}}{\beta_1 + \gamma_1 \prod_{i=0}^{3} y_{n-i}}.$$

This implies that $y_{8n+1} < x_{8n-3}$ and $y_{8n+9} < x_{8n+5}$. So $x_{8n+9} < y_{8n+5} < x_{8n+1}$ and $y_{8n+9} < x_{8n+5} < y_{8n+1}$. Hence, the subsequences $\{x_{8n+1}\}, \{y_{8n+1}\}, \{x_{8n+2}\}, \{y_{8n+2}\}, \{x_{8n+3}\}, \{y_{8n+3}\}, \{x_{8n+4}\}, \{y_{8n+4}\}, \{x_{8n+5}\}, \{y_{8n+5}\}, \{x_{8n+6}\}, \{y_{8n+6}\}, \{x_{8n+7}\}, \{y_{8n+7}\}, \{x_{8n+8}\}$ and $\{y_{8n+1}\}, \{y_{8n+2}\}, \{y_{8n+3}\}, \{y_{8n+4}\}, \{y_{8n+5}\}, \{y_{8n+6}\}, \{y_{8n+7}\}, \{y_{8n+8}\}$ are decreasing. Therefore the sequences $\{x_n\}$ and $\{y_n\}$ are decreasing. Hence
\[\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0. \]

Theorem 5. Let \(\alpha > \beta \) and \(\alpha_1 > \beta_1 \). Then, for solution \((x_n, y_n)\) of system (1) following statements are true:

(i) If \(x_n \to 0 \), then \(y_n \to \infty \).

(ii) If \(y_n \to 0 \), then \(x_n \to \infty \).

3 Rate of Convergence

In this section we will determine the rate of convergence of a solution that converges to the equilibrium point \((0, 0)\) of the system (1). The following results give the rate of convergence of solutions of a system of difference equations

\[X_{n+1} = \left(A + B(n) \right) X_n, \tag{5} \]

where \(X_n \) is an \(m \)-dimensional vector, \(A \in \mathbb{C}^{m \times m} \) is a constant matrix, and \(B : \mathbb{Z}^+ \to \mathbb{C}^{m \times m} \) is a matrix function satisfying

\[\|B(n)\| \to 0 \]

as \(n \to \infty \), where \(\| \cdot \| \) denotes any matrix norm which is associated with the vector norm

\[\|B(n)\| = \sqrt{x^2 + y^2} \]

Proposition 1. (Perron’s theorem) (Pituk, 2002) Suppose that condition (6) holds. If \(X_n \) is a solution of (5), then either \(X_n = 0 \) for all large \(n \) or

\[\rho = \lim_{n \to \infty} (\|X_n\|)^\frac{1}{n} \]

exist and is equal to the modulus of one the eigenvalues of matrix \(A \).

Proposition 2. (Pituk, 2002) Suppose that condition (6) holds. If \(X_n \) is a solution of (5), then either \(X_n = 0 \) for all large \(n \) or

\[\rho = \lim_{n \to \infty} \frac{\|X_{n+1}\|}{\|X_n\|} \]

exist and is equal to the modulus of one the eigenvalues of matrix \(A \).

Assume that \(\lim_{n \to \infty} x_n = \bar{x}, \lim_{n \to \infty} y_n = \bar{y} \). First we will find a system of limiting equations for the map \(F \). The error term are given by

\[x_{n+1} = \bar{x} + \sum_{i=0}^{3} A_i (x_{n-i} - \bar{x}) + \sum_{i=0}^{3} B_i (y_{n-i} - \bar{y}) \]

\[y_{n+1} = \bar{y} + \sum_{i=0}^{3} C_i (x_{n-i} - \bar{x}) + \sum_{i=0}^{3} D_i (y_{n-i} - \bar{y}) \]

Set \(e_n^1 = x_n - \bar{x} \) and \(e_n^2 = y_n - \bar{y} \), one has

\[e_{n+1}^1 = \sum_{i=0}^{3} A_i e_{n-i}^1 + \sum_{i=0}^{3} B_i e_{n-i}^2 \]

\[e_{n+1}^2 = \sum_{i=0}^{3} C_i e_{n-i}^1 + \sum_{i=0}^{3} D_i e_{n-i}^2 \]

where

\[A_0 = -\frac{\alpha \beta \gamma \prod_{i=0}^{3} x_{n-i}}{(\beta + \gamma \prod_{i=0}^{3} x_{n-i}) (\beta + \gamma \bar{x} + \gamma \bar{x}^2 + \gamma \bar{x}^3)}, \quad A_1 = -\frac{\alpha \beta \gamma \prod_{i=0}^{3} x_{n-i}}{(\beta + \gamma \prod_{i=0}^{3} x_{n-i}) (\beta + \gamma \bar{x} + \gamma \bar{x}^2 + \gamma \bar{x}^3)}, \]

\[A_2 = -\frac{\alpha \beta \gamma \prod_{i=0}^{3} x_{n-i}}{(\beta + \gamma \prod_{i=0}^{3} x_{n-i}) (\beta + \gamma \bar{x} + \gamma \bar{x}^2 + \gamma \bar{x}^3)}, \quad A_3 = -\frac{\alpha \beta \gamma \prod_{i=0}^{3} x_{n-i}}{(\beta + \gamma \prod_{i=0}^{3} x_{n-i}) (\beta + \gamma \bar{x} + \gamma \bar{x}^2 + \gamma \bar{x}^3)} \]

\[B_i = 0 \text{ for } i \in \{0, 1, 2\}, \]

\[B_3 = \frac{\alpha}{\beta + \gamma \prod_{i=0}^{3} x_{n-i}} \]

\[C_i = 0 \text{ for } i \in \{0, 1, 2\} \]
\[C_3 = \frac{\alpha_1}{\beta_1 \gamma_1 \Pi_{i=0}^{n-1} y_{n-i}}, \]

\[D_0 = -\frac{\alpha_1 \gamma_1 \bar{x} \Pi_{i=0}^{n-1} y_{n-i}}{(\beta_1 + \gamma_1 \Pi_{i=0}^{n-1} y_{n-i}) (\beta_1 + \gamma_1 \bar{y})}, \]

\[D_1 = -\frac{\alpha_1 \gamma_1 \bar{x} \bar{y} y_{n-2} y_{n-3}}{(\beta_1 + \gamma_1 \Pi_{i=0}^{n-1} y_{n-i}) (\beta_1 + \gamma_1 \bar{y})}, \]

\[D_2 = -\frac{\alpha_1 \gamma_1 \bar{x} \bar{y}^2 y_{n-3}}{(\beta_1 + \gamma_1 \Pi_{i=0}^{n-1} y_{n-i}) (\beta_1 + \gamma_1 \bar{y})}, \]

\[D_3 = -\frac{\alpha_1 \gamma_1 \bar{x} \bar{y}^3}{(\beta_1 + \gamma_1 \Pi_{i=0}^{n-1} y_{n-i}) (\beta_1 + \gamma_1 \bar{y})}. \]

Taking the limit, we obtain \(\lim_{n \to \infty} A_i = -\frac{\alpha y \bar{y}^3}{(\beta + \gamma \bar{x})^2} \) for \(i \in \{0,1,2,3\} \), \(\lim_{n \to \infty} B_i = 0 \) for \(i \in \{0,1,2\} \), \(\lim_{n \to \infty} C_i = 0 \) for \(i \in \{0,1,2\} \), \(\lim_{n \to \infty} C_3 = \frac{\alpha_1}{\beta_1 + \gamma_1 \bar{y}} \) and

\[\lim_{n \to \infty} D_i = -\frac{\alpha_1 \gamma_1 \bar{x} \bar{y}^3}{(\beta_1 + \gamma_1 \bar{y})^2} \] for \(i \in \{0,1,2,3\} \). So, the limiting system of error terms can be written as

\[E_{n+1} = KE_n, \]

where

\[E_n = \begin{pmatrix}
 e^n_1 \\
e^n_{n-1} \\
e^n_{n-2} \\
e^n_{n-3}
\end{pmatrix} \quad \text{and} \quad K = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & \frac{\alpha}{\beta} \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & \frac{\alpha_1}{\beta_1} & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}, \]

which is similar to linearized system of (1) about the equilibrium point \((\bar{x}, \bar{y}) = (0,0)\). Using the Proposition 1, one has following result.

Theorem 6. Assume that \(\{(x_n, y_n)\} \) be a positive solution of the system (1) such that \(\lim_{n \to \infty} x_n = \bar{x} \) and \(\lim_{n \to \infty} y_n = \bar{y} \) where \((\bar{x}, \bar{y}) = (0,0)\). Then, the error term \(E_n \) of every solution of (1) satisfies both of the following asymptotic relations

\[\lim_{n \to \infty} \|e_n\|_{\infty} = |\lambda F(\bar{x}, \bar{y})|, \]

\[\lim_{n \to \infty} \frac{\|e_{n+1}\|}{\|e_n\|} = |\lambda F(\bar{x}, \bar{y})|, \]

where \(\lambda F(\bar{x}, \bar{y}) \) are the characteristic roots of Jacobian matrix \(F_j(\bar{x}, \bar{y}) \)about\((0,0)\).

4 Examples

In order to verify our theoretical results and to support our theoretical discussions, we consider several interesting numerical examples in this section. These examples represent different types of qualitative behavior of solutions to the system of nonlinear difference equations (1). All plots in this section are drawn with Mathematica.

Example 1

Consider the system (1) with initial conditions

\[x_{-3} = 2.2, x_{-2} = 1.9, x_{-1} = 5.8, x_0 = 2.9, y_{-3} = 1.8, y_{-2} = 3.9, y_{-1} = 2.4, y_0 = 1.8 \]

Moreover, choosing the parameters \(\alpha = 116, \beta = 117, \gamma = 0.9, \alpha_1 = 111, \beta_1 = 112, \gamma_1 = 0.6 \). Then, the system (1) can be written as

\[x_{n+1} = \frac{116y_{n-3}}{117 + 0.9 \Pi_{i=0}^{n-3} x_{n-i}} \]

\[y_{n+1} = \frac{111x_{n-3}}{112 + 0.6 \Pi_{i=0}^{n-3} y_{n-i}}, \]

\(n = 0,1, \ldots \) (9)

and with initial condition...
Moreover, in Fig. 1 the plot of x_n is shown in Fig. 1a, the plot of y_n is shown in Fig. 1b and an attractor of the system (9) is shown in Fig. 1c.

Example 2

Consider the system (1) with initial conditions

\[
x_{-3} = 0.3, x_{-2} = 1.8, x_{-1} = 1.9, x_0 = 3.2, y_{-3} = 1.1, y_{-2} = 1.9, y_{-1} = 0.1, y_0 = 1.8
\]

Moreover, choosing the parameters

\[
\alpha = 1.1, \beta = 1.12, \gamma = 0.001, \alpha_1 = 0.9, \beta_1 = 0.91, \gamma_1 = 0.007.
\]

Then, the system (1) can be written as

\[
x_{n+1} = \frac{1.1y_{n-3}}{1.12+0.001 \prod_{i=0}^{n-3} x_{n-i}}, \ y_{n+1} = \frac{0.9x_{n-3}}{0.91+0.007 \prod_{i=0}^{n-3} y_{n-i}}, \ n = 0, 1, \ldots, (9)
\]

and with initial condition

\[
x_{-3} = 0.3, x_{-2} = 1.8, x_{-1} = 1.9, x_0 = 3.2, y_{-3} = 1.1, y_{-2} = 1.9, y_{-1} = 0.1, y_0 = 1.8
\]

Moreover, in Fig. 2 the plot of x_n is shown in Fig. 2a, the plot of y_n is shown in Fig. 2b and an attractor of the system (9) is shown in Fig. 2c.

![Plot of x_n for the system (9)](image)
(b) Plot of y_n for the system (9)

(c) An attractor for the system (9)

Fig. 1 Plots for the system (9).
(a) Plot of x_n for the system (10)

(b) Plot of y_n for the system (10)
5 Conclusions
This work is natural extension of (Shojaei et al., 2009; Din et al., 2012; Zhang et al., 2012). In the paper, we have investigated the qualitative behavior of an eight-dimensional discrete dynamical system. The system has only one equilibrium point which is stable under some restriction to parameters. The linearization method is used to show that equilibrium point (0, 0) is locally asymptotically stable. The main objective of dynamical systems theory is to predict the global behavior of a system based on the knowledge of its present state. An approach to this problem consists of determining the possible global behaviors of the system and determining which initial conditions lead to these long-term behaviors. In case of higher-order dynamical systems, it is very crucial to discuss global behavior of the system. Some powerful tools such as semiconjugacy and weak contraction cannot be used to analyze global behavior of the system (1). In the paper, we prove the global asymptotic stability of equilibrium point (0, 0) by using simple techniques. Due to the simplicity of our model, we have carried out a systematical local and global stability analysis of it. The most important finding here is that the unique equilibrium point (0, 0) can be a global asymptotic attractor for the system (1). Moreover, we have determined the rate of convergence of a solution that converges to the equilibrium point (0, 0) of the system (1). Some numerical examples are provided to support our theoretical results. These examples are experimental verifications of theoretical discussions.

Acknowledgements
This work was supported by the Higher Education Commission of Pakistan.

References
Cinar C. 2004. On the positive solutions of the difference equation system$x_{n+1} = \frac{1}{y_n}, y_{n+1} =$
\[
\frac{y_n}{x_{n-1}y_{n-1}}. \text{ Applied Mathematics and Computation, 158: 303-305}
\]

Din Q. Global character of a rational difference equation. Thai Journal of Mathematics, in press (a)

Din Q. On a system of rational difference equation. Demonstratio Mathematica, in press (b)

Kurbanli AS. 2011. On the behavior of positive solutions of the system of rational difference

\[x_{n+1} = \frac{x_{n-1}}{y_{n-1}x_{n-1}}, y_{n+1} = \frac{y_{n-1}}{x_{n-1}y_{n-1}}, z_{n+1} = \frac{1}{y_{n-1}}. \text{ Advances in Difference Equations, 40} \]

Kurbanli AS, Cinar C, Yalcinkaya I. 2011. On the behavior of positive solutions of the system of rational difference equations

\[x_{n+1} = \frac{x_{n-1}}{y_{n-1}x_{n-1}}, y_{n+1} = \frac{y_{n-1}}{x_{n-1}y_{n-1}}. \text{ Mathematical and Computer Modelling, 53: 1261-1267} \]

