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Abstract 

In current publication non-parametric model (model of Kolmogorov’s type) of hermaphrodite population 

dynamics is analyzed. It is assumed that there are four basic variables: number of individuals, number of pairs, 

and number of pregnant individuals. It is also assumed that number of pairs is fast variable: it allows 

decreasing of number of differential equations. For conditions of pure qualitative type for birth and death rates 

of individuals in population possible dynamic regimes are determined. 
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1 Introduction 

Sex structure plays extremely important role in population dynamics (see, for example, Maynard, 1978; 

Bolshakov and Kubantsev, 1984; Geodakjan, 1965, 1981, 1991; Iannelli et al., 2005; Grechanii and Pogodaeva, 

1996; Batlutskaya et al., 2010, and many others). We have to take into account existence of sex structure 

analyzing epidemiological situations with sexually-transmit diseases, some methods of population size 

management are based on input of sterile individuals into the system etc. Thus, constructing and testing of 

mathematical models of population dynamics with sex structure are among very actual problems of modern 

modeling. 

In 1949 Kendall (Kendall, 1949) gave a description of model of population dynamics which contains 

individuals of two types: )(tF  and )(tM  are the numbers of females and males respectively in population 

at moment t , 
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In model (1) coefficient   is an intensity of death rate, 0 const , and function ),( MFB  
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describes a reproduction process:  
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In (2) }0,0:),{(2  MFMFR . Conditions (2) are rather obvious: if number of males or females 

is equal to zero we have no reasons to talk about production process; increase of number of males or females 

leads to increase of the respective rates.  

Model (1)-(2) has the following properties. If 0)0( F  or 0)0( M  then for all 0t  we have 

0)( tF  or 0)( tG  respectively. At the same time other variable decreases monotonously. It means that 

origin is locally stable knot. From conditions (2) we get that isocline of vertical inclines 0P  is univocal 

with respect to F ; isocline of horizontal inclines 0Q  is univocal with respect to M . For 0)0( FF  , 

0)0( MM   we have 

teMFtMtF  )()()( 00 . 

It means that within the framework of model (1)-(2) initial difference between females and males 

converges to zero asymptotically. If 00 MF   then for all 0t  we have )()( tMtF  . For the situation 

when 00 MF   and FMMFB ),( , we have  
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This equation has two stationary states: stable point 01 F  and unstable point 22 F . If 20 FF   then 

population degenerates asymptotically, 0)( tF  when t . If we have the inverse inequality, 

20 FF  , then population size becomes equal to infinity during the finite time *t : 
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If we don’t want to have such dynamical effect within the framework of considering model when model 

can be applied to the description of population dynamics during finite time interval, we can assume, for 

example, that birth rate ),( MFB  is a linear function of population size (Kendall, 1949). But it looks more 

productive the following way: it is obvious that birth rate cannot increase up to plus infinity if number of males 

increases unboundedly at fixed value of females; it means that the following relation is truthful: 

aFMFB
M




),(lim , 0 consta . 

It means that limit value of birth rate depends on number of females and coefficient a  which characterizes 

maximum properties of females. The following relation must be truthful too: for fixed value of number of 

males unlimited increasing of females gives the following result: 

cMMFB
F




),(lim , 0 constc . 

In this relation parameter c  characterizes maximum possibilities of males. In most primitive case function 

),( MFB  can be presented in the form: 

aFcM

acFM
MFB




1
),( .                                                     (3) 

For particular case 00 MF   model (1)-(2) with function (3) has the form: 

2
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In (4) 02/1  constacg , 02  constcag . Equation (4) is particular case of Bazykin’ 

model (Bazykin, 1967, 1969, 1985) when self-regulation is absent in population ( 0 const ).  

Further development of this scientific direction was connected with analysis of various modifications of 

model (1)-(2) (Ginzburg and Yuzefovich, 1968; Gimelfarb et al., 1974; Nedorezov, 1979, 1986; Kiester et al., 

1981; Pertsev, 2000; Preece and Mao, 2009, and others), and in particular, with analysis of general properties 

of models of (1)-(2) type within the framework of non-parametric model (model of Kolmogorov’ type; 

Nedorezov, 1978). A lot of publications were devoted to very actual problem of changing of population size at 

input of sterile males into the system (see, for example, Bazykin, 1967; Alexeev and Ginzburg, 1969; 

Brezhnev and Ginzburg, 1974; Costello and Taylor, 1975; Brezhnev et al., 1975; Nedorezov, 1979, 1983, 1986; 

Thome et al., 2010, and many others).  

It is very important to point out the following problem of models of (1)-(2) type. For every fixed values of 

model variables F  and M  we have fixed value of function B  that means that we have fixed value of 

pregnant females. This property of model doesn’t correspond to reality, and number of pregnant females can 

vary from zero up to )(tF . Respectively, for every fixed values of model variables F  and M  we have to 

have a certain variety of values of function B . This problem can be solved in one way only if we have one or 

more additional variables which described dynamics of pregnant females or number of existing families.  

Development of theory in this direction when models contain three or more variables (for families, 

pregnant females, with sex-age structures etc.) was provided in a lot of publications (see, for example, Kendall, 

1949; Goodman, 1953, 1967; Pollard, 1973; Yellin and Samuelson, 1974, 1977; Nedorezov, 1979, 1986; 

Hadeler et al. 1988; Hadeler and Ngoma, 1990; Hadeler, 1992, 1993; Pertsev, 2000; Iannelli et al., 2005, and 

others). One more well-developed sub-direction contains models with discrete time (Hadeler et al. 1988; 

Hadeler and Ngoma, 1990; Hadeler, 1992, 1993; Castillo-Chaves et al., 2002; Frisman et al., 2011; Frisman, et 

al., 2010 a, b).  

It is possible to point out some sub-directions which are not well-developed up to current moment but their 

further development look rather actual. Ginzburg (1969) analyzed model of predator-prey system dynamics in 

a situation when individuals in interacting populations were divided into two sexes. In our publications 

(Nedorezov, Utyupin, 2003, 2011) continuous-discrete model (system of ordinary differential equations with 

impulses) of bisexual population dynamics was analyzed. These models give more adequate description for 

insect population dynamics in boreal zone than models with continuous or discrete time. 

In current publication we analyze non-parametric (model of Kolmogorov’ type) dynamic model of 

hermaphrodite population. This sub-direction in modeling of population dynamics with sex structure is well-

developed, and it is possible to point out models of various types (see, for example, Armsworth, 2001; Stewart, 

and Phillips, 2002; Cheptou, 2004; Alvarez et al., 2006; Harder et al., 2007; Kebir et al., 2010, and others) 

because of very important role hermaphrodites play in ecological processes, epidemiological processes etc. 

(Charnov et al. 1976; Maynard, 1978; Civeyrel and Simberloff, 1996; Barker, 2002).  

 

2 Description of Model 

Let )(tN  be a number of free individuals in population at moment t , )(tS  be a number of pairs, and 

)(tP  be a number of pregnant individuals. For every free individual N  we will assume that it can die with 

intensity 1k  and can organize a pair S  with other free individual with coefficient 2k . For coefficient 1k  

we’ll assume that it depends on total population size  , where SPN 2 , and the following 
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conditions are truthful: 

)(11 kk  , 01 
d

dk
, * : *   )(1 k .                             (5) 

Kendall (1949) had been analyzed the model with three variables - )(tF , )(tM , and )(tS , - assuming 

that speed of appearance of new pairs in system is proportional to the following function: 

),min(2),( MFMFg  . 

  is positive coefficient. Pollard (1973) had been assumed that 

)(
2

1
),( MFMFg  . 

Following the idea which is on the base of Bazykin’ model (1967, 1969) we’ll assume that speed of 

organizing of new pairs is proportional to 2N  when number of free individuals is rather small, and it is 

proportional to N  when number of free individuals is rather big. Thus, function g  can be presented in the 

following form: 

bN

aN
Ng




1
)(

2

.                                                           (6) 

In (6) 0,  constba . Respectively, it allows us concluding that coefficient of appearance of new pairs 

)1/()(2 bNaNk   is monotonic decreasing function; in general case, we’ll assume that following 

conditions are truthful: 

)(22 Nkk  , 0)0(2 k , 0)(2 k , 02 
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Dynamics of free individuals can be described by the following equation: 

PmkNNkNk
dt

dN
)1()(2)( 5

2
21   .                                  (8) 

In (8) coefficient 5k  corresponds to time of staying of individuals in pregnant conditions, and it is naturally 

to assume that 05  constk . Function m  is productivity of pregnant individuals. We’ll assume that the 

next conditions are truthful for this function: 

)(mm  , 0)0( m , 0)( m , 0
d

dm
.                                  (9) 

Conditions (9) are rather obvious. Increasing of total population size   leads to changing of food conditions 

for individuals (in a result of increasing of intensity of intra-population competition between individuals for 

food), and, finally, it leads to decreasing of productivity.  

Pairs S  can be organized in system in a result of interaction of free individuals with coefficient 2k  (7), 

and can be destroyed with coefficient 3k . We’ll assume that in a result of destruction of complex S  two 

pregnant individuals P  appear in population; coefficient 3k  must be positive and constant, 

03  constk . Taking it into account, dynamics of variable S  can be described by the following equation: 

SkNNk
dt

dS
3

2
2 )(  .                                                    (10) 

It is obvious that S  (10) is fast variable: time of existing of complex S  is much less than time of living of 

free individuals and staying of individuals in pregnant condition. Thus, we can assume that 0/ dtdS , 
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0/)( 3
2

2  kNNkS , and 2*
23 ))(0( kk  .  

Every pregnant individual P  can die with coefficient 4k  (we have no reasons to assume that coefficient 

4k  is equal to 1k  but similar conditions to (5) are truthful for 4k ) or can transforms into 1m  free 

individuals with coefficient 5k . Dynamics of variable )(tP  describes with following equation: 

PkPkSk
dt

dP
)(2 453  .                                               (11) 

Taking into account that conditions (5) are truthful for coefficients 1k  and 4k , we can conclude that for 
*)0( N  and *)0( P  we have for all 0t  variables *)( tN  and *)( tP . From (7) we 

obtain that for *)0( SS   we have for all 0t  following inequality: 

3

2*
2* ))(0(

)(
k

k
StS


 . 

Thus, solutions of system of differential equations (8), (10), (11) belong to stable invariant compact 

],0[],0[],0[ ***   S . 

Thus, we can decrease the order of system of differential equations, and determine the structure of phase space 

of system (8), (10), (11) analyzing properties of system 

PmkNNkNk
dt

dN
)1()(2)( 5

2
21   , 

PkPkNNk
dt

dP
)()(2 45

2
2  .                                         (12) 

Graphically all possible transitions of individuals in population are presented on Fig. 1. Note, that such 

kind of interactions is observed for various species, and, in particular, for earthworm (Lumbricina), for snails 

Helix pomatia and for other species. Such kind of interaction is normal for simultaneous (or synchronic) 

hermaphrodites.   

 

3 Some Properties of Model (12) 

1. For non-negative and finite initial values of variables solutions of the system (12) are non-negative and 

bounded. 

2. Let 

0)1()(2)(),( 5
2

211  PmkNNkNkPNF  , 

0)()(2),( 45
2

22  PkPkNNkPNF  .           

(13) 

From (5), (7), and (9) we obtain the following inequality: 
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It means that isocline of vertical inclines of system (12) 0),(1 PNF  is a single-valued function with 

respect to P . For isocline of horizontal inclines we have the following inequality: 

0)( 4
45

2 






d

dk
Pkk

P

F
. 
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Thus, isocline of horizontal inclines (13) is a single-valued function with respect to N . Conditions (5), (7), 

(9) for coefficients jk , 5,...,1j , don’t allow determining of signs for expressions PF  /1  and 

NF  /2 . 

 

 

Fig. 1 All possible transformations of individuals in population. 1k  and 4k  are intensities of death rate. 2k  is coefficient of 
forming of pair S . 3k  is coefficient of destruction of pair S . 5k  is a coefficient of staying of individual in pregnant state. m  
is number of new free individuals which are produced by one pregnant individual. 

 

 

3. Previous properties of model (12) give us the following inequality: 

021 







P

F

N

F
. 

Thus, there are no limit cycles in phase space (Bendixon’ criteria; Andronov, Vitt, Khykin, 1959). 

Consequently, within the framework of model (12) there are the regimes of asymptotic stabilization of 

population size at any level only. 

4. Origin )0,0(  is stationary state of system (12). This system in sufficient small vicinity of origin can be 

prersent6ed in following form: 

PmkNk
dt

dN
)1)0(()0( 51  , 

PkPk
dt

dP
)0(45  . 

Thus, characteristic values are negative: )0(11 k  and )0(452 kk  . Consequently, in all 

situations origin is stable knot. 

5. In a situation when we have a parametric model (model of Volterra type) we have the following main goal: 

we have to present a structure of a space of model parameters and to point out dynamical regimes which 

correspond to each determined part of space of parameters. When we have a non-parametric model (model of 

Kolmogorov type like in current publication) we have other main goal: in a result of provided analysis we have 

to present dynamical regimes which can be realized in model in principle, and their realization not in a 

contradiction with considering restrictions on the types of functions in right-hand sides of equations. Below 

we’ll consider some simplest dynamic regimes of model (12) – restrictions (8)-(11) and (14) don’t allow 

presenting all possible dynamic regimes which can be observed within the framework of model. 

If algebraic system (13) has no solutions in positive part of phase plane, origin is global stable equilibrium. 

Population eliminates for all non-negative finite initial values (Fig. 2).  
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Fig. 2 Regime of population elimination for all initial values of variables. 01 F  and 02 F  are the main isoclines of 
vertical and horizontal inclines of model trajectories respectively.  

 

 

If algebraic system (13) has two solutions in positive part of phase plane the trigger regime is realized for 

population: there are two stable attractors on phase plane (Fig. 3). Incoming separatrix y  of saddle point W  

divides zones of attraction of origin and stable equilibrium V . If initial sizes of variables are rather small 

(within the limits of zone of elimination 1 ; Fig. 3) population eliminates asymptotically. If initial values 

belong to another zone (zone of stabilization 2 ) sizes of both variables stabilize asymptotically at unique 

level. 

In general case within the limits of model (12) dynamic regimes with several stationary states in positive 

part of phase plane can be realized (see, for example, Fig. 4). When difference between total numbers of sizes 

which correspond to various stable stationary states are rather big, it can be considered as direct analog of the 

regime of fixed outbreak (Isaev et al., 1978, 1980; Isaev et al., 1984, 2001). Thus, we can conclude that big 

difference between pregnant individuals and free individuals can be a reason for population elimination or a 

reason for transmission of system from one stable level to another one (see Fig. 4). Such kind of changing of 

population size can be interpreted as unstable behavior of population within the limits of zone of population 

stability (Isaev et al., 1978, 1980; Isaev et al., 1984, 2001).  
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Fig. 3. Trigger regime of population dynamics. V  is stable stationary state. W  is saddle point. y  is incoming separatrix of 

saddle point W . 1  is zone of population elimination; 2  is zone of population stabilization. 01 F  and 02 F  

are the main isoclines of vertical and horizontal inclines of model trajectories respectively.  

Fig. 4. Dynamical regime with three stable attractors: origin, 1V , and 2V . ry  is incoming separatrix of saddle point 1W , 

boundary of attraction zone of origin. qy  is incoming separatrix of saddle point 2W , boundary of attraction zones of 1V , and 

2V . 1  is zone of population elimination (attraction zone of origin); 2  is zone of population stabilization at point 1V ; 

3  is zone of population stabilization at point 2V . 01 F  and 02 F  are the main isoclines of vertical and horizontal 

inclines of model trajectories respectively. 
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4 Conclusion 

Analysis of model of hermaphrodite population dynamics shows that in general case dynamic regimes with 

several non-trivial stationary states can be observed for the system. It means that changing of sizes of free and 

pregnant individuals (for example, under the influence of various management methods) can lead as to 

transaction of system from one stable level to another one, as to extinction of population. Existence of several 

stable levels in positive part of phase plane can be a reason of unstable behavior of system in zone of 

population stability (Isaev et al., 1978, 1980). 
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