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Abstract

In this paper, we study the qualitative behavior of following discrete-time population model:

Xns1 = A+ Bxn +VXp1M Yy =8+ eyn + {ypqe7m,

where parameters a,f,v,6,¢, {and initial conditions x,,x_q,y0, V-, are positive real numbers. More
precisely, we investigate the existence and uniqueness of positive equilibrium point,boundedness character,
persistence, local asymptotic stability, global behavior and rate of convergence of unique positive equilibrium
point of this model. Some numerical examples are given to verify our theoretical results.
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1 Introduction

In population dynamics, difference and differential equations are used in many models (Nedorezov, 2012;
Nedorezov and Sadykov, 2012; Elena et al., 2013). Exponential difference equations have many applications
in population dynamics. One can see the references (EI-Metwally et al., 2001; Papaschinopoulos et al., 2011;
Papaschinopoulos et al., 2012) for some interesting results related to qualitative behavior of population models.
From Zhou and Zou (2003) and Liu (2010) it is clear that difference equations are much better as compared to
differential equations, when the populations are of non-overlapping generations. In literature, there are many
papers in which discrete dynamical systems are used to study the qualitative behavior of population models
(Ahmad, 1993; Zhou and Zou, 2003; Tang andZou, 2006; Din, 2013; Din and. Donchev, 2013; Din et al., 2013;
Din, 2014). In case of discrete—time models one can compute mathematical results more efficiently. There are
many research papers which are related to mathematical models in population dynamics. During the last few
decades, many researchers are attracted by such computational models. For detail of biological models see
(Edelstein-Keshet, 1988; Brauer and Castillo-Chavez, 2000; Allen, 2007). Nonlinear difference equations are
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very important in application. Naturally, such equations appear as discrete approximation of differential and
delay differential equations and these models are related to applied sciences such as ecology,biology, physics,
chemistry, physiology, engineering, bio-chemistry and economics. We cannot find the solutions of nonlinear
difference equations in all cases. So, one can study the behavior of solutions by local asymptotic stability of
equilibrium points. El-Metwally et al. (2001) studied the qualitative behavior of following population
model:x,,, = a + Bx,_, e *». Papachinopoulous et al. (2011) investigated the dynamics of following
population model:x, ., = a + bx,_1e™* , y,41 = ¢ + dy,_,e~*n. Recently, Papachinopoulous et al. (2012)
study following two exponential nonlinear difference equations: u,,q = a; + f1up_1 €™ Vpy1 =Vv1 +
Sjupqe ' and upyy = @y + Prup_1e7, Upyg =¥+ Sy g7

Our aim in this paper is to investigate existence and uniqueness of positive equilibrium point, boundedness
character, persistence, local asymptotic stability, global behavior of unique positive equilibrium point of
following four-dimensional discrete-time population model:

Xpe1 = A+ Bxn +yxn_1€7",  Ynig = 86+ €Yy + {ypqeT (€Y)

where parameters «, 8,y, 8, &, {and initial conditions xg, x_;,y,,y—-1 are positive real numbers. System (1) is
an extension of (Papachinopoulouset al., 2011).

2 Boundedness and Persistence
The following Theorem shows that every positive solution of (1) is bounded and persists.

Theorem 2.1 Assume that e®p +e%/2/edB2 + 4y < 2e%,e% + e*/2\[e%e? + 4 < 2e*, then every
positive solution {(x,,, y,,)} of system (1) is bounded and persists.

Proof. Consider the following second-order difference equations:
Xns1 = a+ Bx, + y)?n_le‘g, VYne1 =0 + &Vp + (Yp_1e™% (2.1)
The solutions of (2.1) are given by

n
-— a - -
Xn =1—,8T‘5y+2 "(e 6<€6IB—€6/2 ,eé‘ﬁz +4]/>> Cq1
n
+ 27" (e‘5 <e‘5,8 + e8/2 fe‘sﬁz + 4)/)) C,

n n
P = %e—a{ + 27" (e‘“(e“s —e®/2 [eas? + 4()) c;+2™" (e‘“(e“e +e%/2 [ens? + 4()) Ca,
where ¢4, ¢3, ¢35, ¢, depend on initial values x_4, X, ¥_1, ¥o-
Assume that e®f + e9/2,/edp2 + 4y < 2e%,e% + e?/2,/e®e? + 4 < 2e*. Then it follows that:

— a —
y+c1+c2 andyns1

Xn S sy +c¢3+c, for all n=1,2,---. Evidently, the sequences {x,}

_E_e—az

and {y,} are bounded for all n = 1,2,---. Then, by comparison we obtain
X, < 1_ﬁi+6yand Yo < ?‘e_a( forall n = 1,2, ---. Hence we have
a

< _—yand <y, < ?‘e_a( forall n = 1,2,---. This completes the proof.

3 Existence of Invariant Set for Solutions
Theorem 3.1 Let {(x,y,)} be a positive solution of system of (1). Then ,
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a E) .. .
[a, m] X [5, m] is invariant set for system (1).

Proof. Let {(x,,v,)} be a solution of system (1) with initial conditions x_;,x, € I = [a,ﬁ] and
5
1-eg—e~%¢

Y-1,Yo €J = [6, ] Then, it follows from system (1) that

X1 =a+ Bxy+yx_,e¥0
a s a

< =—
<a+f 1—ﬁ—e‘5ye T

‘ +
1-B—e %y v

and
Vi1 =08 +ey,+{y_e*o

1) )
< = '
_5+£1—5—e‘“(+€1—£—e‘“5 l—¢—e9¢

Hence, x; €I and y; € J. Suppose that result is true for n =k > 1,i.e., x, €I and y, €. Then, for
n =k + 1 from system (1) one has:

Xir1 = @+ By +yxp_q€7k
a ot = a
1-B—e %y 1-B—e %y

+ ) _ )
l1—e—e™%¢ (1—€—e‘“( B 1—£—e‘“(5

<a+p +vy

a
1-p—-e%

Vi1 =0+ ey + {yp ek <5 +¢

Hence, the proof follows by induction.

4 Existence and Uniqueness of Positive Equilibrium and Local Stability
Theorem 4.1 Assume that e®B + e%/2,/edp2 + 4y < 2e5,e% + e¥/?,Je®e?2 + 47 < 2¢%,0 < B,€< 1 and

{exp <_86_6< exp(_@» <y<(@d-B)exp (1—8-67“5)

1-¢—¢ eXp(_1—/3—e—5y)

Then the system (1) has a unique positive equilibrium point (x,y) such that x € [a,ﬁ"ye_a] = Jand
_ 5

ye o=

Proof. Consider the following system of equations:

X

x=a+fx+yxe,y=8+ey+yye”

a ) . a 1)
Then, one has x = Wand y = r{e‘x' Taklng F(X) = m — x, where f(X) = r@_x and
x € 1. Then, it follows that
_ _aBef@*) i if (1—B)ef@ — ; _ _ 8
F(a) = e @ Now, F(a) > 0 if and only if (1 —pB)e {(>0,i.e,(<(1—=p)exp (1_£_<8_a).

Hence, it follows that F(a)>0 if and only if ¢(<@-PB)exp ($)

Furthermore, we have

a _ 1 _ 1
F(W) - l—B—(e_f(l—B—(xye—tS) hye |
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= 8 It is easy to see that F($)<O if and only if

1—8—(6_1—3‘1’9_6

(e_f(ﬁ) <ye™d e, {exp (—55—55 eXP(_PBfV&_E)) <y.

a
1-e—¢ eXp(_71—/3—ye—5)

where f (l_ﬁfe_ay)

It follows that F (

. . -£6-6¢ exp(— — _“ e—5)
ﬁ)<0, |fandonly|f(exp< 1-B-y ><y.

1-¢—¢ exp(—il_ﬁ_uye_s)
Hence, F(x) has positive solution in 1.
Moreover, we have that
e/ @af'(x)
(@ (=1+p) +{)?

dF
E (X) =-1

PP -
e ex(—1+s)+(a5{2

=-1+ x5 < 0.
(€*(~1+&)+{)2(~1+B+eeX 1+ +{ry2

Hence,F(x) has a unique positive solution in I. The proof is therefore completed.
Consider a fourth-dimensional discrete dynamical system of the form:

Xn+1 = O Yoo Xn—1, Yn-1) }
Vi1 = 9 (X Y Xn1, Yn-1),n = 0,1, -,
where f:12 x J2 > I and g:1? x J2 - ] are continuously differentiable functions, and 1,] are real intervals.
Furthermore, a solution {(x,,y,,)} of system (4.1) is uniquely determined by initial conditions (x;,y;) € I X
J for i € {—1,0}. Along with system (4.1) we consider a vector map of the formF = (f, g, x,, y»,). A constant
solution or equilibrium point (fixed-point) of (4.1) is point that satisfies:

x=f(y%79),

4.1)

y=9&xy,x75).
The point (x,¥) is also point called a fixed point of the vector map F.
Definition 4.1 Assume that (x,y) be aconstant solution (steady-state) of (4.1).
1. A constant solution(x, ¥) is called stable, if for an arbitrary € > 0 there exists a positived such that
for any initial condition (¥;,¥;),i € {—1,0}if I X0__,(x;,y) — (X, ) <&, then one has Il (x,, y) —

(x,%) i< e forall n > 0, where -]l denotes usual Euclidean norm in R2.

2. A constant solution(x, ) is called unstable if it did not satisfy stability condition.

3. A constant solution(x,y) is locally asymptotically stable, if there exists a positive n such that
i I e y) = (&) I<n and (g, ) = (X,7) as n - o,

4. A constant solution(x, ¥) is said to be global attracter if (x,,y,) = (X,y) as n — .

5. A constant solution (%, y) is said to be asymptotically global attractor if it is global attractor and stable.

Assume that(x,y) be a fixed-point of map defined by F=(f,x,,g,v,), wWhere f and g are continuously
differentiable functions about (x, ). The linearized system of (4.1)about the fixed-point (x, y) is given by:
Xnt1 = F(Xp) = FiXn,
xn

Yn
Xn—-1

Yn-1
Lemma 4.1 (Sedaghat, 2003) Consider the discrete dynamical system of the form X,,,; = F(X,,)),n =0,1, -,
such that X be an equilibrium point of (4.1). Then following statements are true:

(i) If all eigenvalues of Jacobian - at X lie inside an open unit disc |A| < 1, then the fixed-point X is

where X,, = and F; is a Jacobain matrix of (4.1) about the fixed-point (X, ¥).
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locally asymptotically stable.
(i) If one of the eigenvalue of Jacobian matrix /- has an absolute value greater than one, then X is unstable.
To construct corresponding linearized form of system (1) we consider the following transformation:

(xn' Ynr xn—1,:)’n—1) — (f,9,f1,91), (4.2)
wheref = X401, 9 = Yns1, f1 = Xxpand g; = y,. The Jacobian matrix about the fixed point (x,y) of (1)
under the transformation (4.2) is given by

B —yxe ye ¥ 0
F@Ey=(—¢ve" & 0 fe™)

1 0 0 0

0 1 0 0

Theorem 4.2The unique positive equilibrium point (x,y) of system (1) is locally asymptotically stable if the
following condition is satisfied:

ad
(1—B—e‘5y)(1—e—e‘“<)) <1 @3

Proof. The characteristic polynomial of Jacobain matrix F;(x,y) about (X, y) is given by
P =2*—(B+e)A3 — A% + BA+yle "7, (4.4)

B+e+Pe+l(1+Be *+y(1l+e)ed+yle 9 (1 +

where A= (e +ye ¥ +ylxye* Y — e and B = fle ™ + yee™.
Let p(A) = A*and Y1) = (B + )23 + AA2 — BA — ye %7,
Assume that condition (4.3) is satisfied and |A| = 1, then one has
YD <B+e+|Al+B+yle ™Y
=B+e+|le ¥ +ye ¥ +yixye ¥V — el
+ Ble ™ +yee ™ +yle ¥V
<B+e+le*+ye ¥ +ylxye Y + Pe
+ ple™* +yee™V +yle Y
<B+e+Pe+i(1+PRe*+y(l+e)e’

P ad
+yle (1 + (1—,B’—e‘5y)(1—s—e—“{)) <1.

Then, by Rouche’s theorem ¢ (1) and ¢(1) — (1) have same number of zeroes in an open unit disc
|A| < 1. Hence, all the roots of (4.3) satisfies [1] < 1, and it follows from Lemma 4.1 that the unique positive
equilibrium point (x,y) of system (1) is locally asymptotically stable.

5 Global Stability
Theorem 5.1 The unique positive equilibrium point (x,y) of system (1) is globally asymptotically stable.
Proof. Let{(x,,y,,)} be an arbitrary positive solution of system (1) and let 0 < I; = lim,_,inf x,,0 <[, =
lim,,_,inf y,,, S; = lim,_sup x,, < ©,S, = lim,,_,,sup y, < c. Then, from (1) one has:

I, = a+pl +yle

L >a+pl, +yle™

S <a+BS,+ySe2

S, <a+BS,+ySe™
Furthermore,

i —
TT1-B—ye

Lz2——F+—F
2T 1—€e—e S
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L —
'T1-B—ye

S, <

Then, it follows that:
IS, > 0(—52
T 1-p-ye™
LS, > — 0%
T 1—e—{e" 5
al,
S = T—f—ye ™
LS, < _Oh
T1—-€e—{e™h
Hence one has 1_[3?6_52 < 1_:2:_116. 1_;2_51 < 1_B'iI;e_IZ. Now consider the following functions:

ox ay
flx) = T_(e_xandg(y} = m,xel.}'d-
Moreover, for every (x,y)el X J:
df e *x86¢ )
E(x) T (1-e—e*)? + (1—-€e—e™XQ) >0,
dg e Yyay é
-~ = + > 0.
dy o) A-p—-ey)> (A-B—ey)

Hence, I, =S; and I, =S,.

6 Existence of Unbounded Solutions
Theorem 6.1 Let B8,e € (0,1) and {(x,,y,,)} be a positive solution of system (3.1) Then following are true:

S5
(i) Ify > er-¢, then x, » ©,y, = 6 + eln(y)asn - .
(ii) If { > er-v,then x, > a + BIn({),y, > ©asn - w,

S
Proof. (i) Let y > ei-e. Choosing the initial conditions x,,x_1,¥, y-1 for the system (1) such that

Xg,X_1 > a and y,,y_4 < b with = In%,b = Iny. Then from system (1) one has:

y1=6+y,€yy+{y_1e7* < 8§ +¢€b+ (be ® =b,
and
X, =a+fxg+yx_e¥>a+pfat+yae? =a+af +a>a.
Suppose that result is true for n =k > 1, i.e., x;, > aand y, < b. Thenfor n =k + 1 from system (1)
one has:
Xpo1 =+ Bxp +yxp_1e k> a+fa+yae® =a+af+a>a,

and

Vi1 =06 + €y + {yx_1e ¥ <5 +¢eb+{be * =b.
Hence, Xp>a,y, < b for all n= 1,2, Furthermore, Xp41 =+ ﬁxn + ]/Xn_le_y" >a+ an +
Yxn_1e P = a+ Bx, + x,_4. Let 2,4, = a + Bz, + z,_, with initial conditions z_;, zy. Then,z, = _% +
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27MB — 4+ D) zy + 27(B + /4 + B2)"z_,. Hence by comparison x,, > z,. But z, — wasn — o, S0
lim,,_,,, x,, = . Moreover, § <y .1 =6 + €y, +{yp_1e7*n < § + €b + {(be *n. Hence, lim,,_,, ¥y, =5 +

eln(y).
(it) The proof of (ii) is similar, therefore it is omitted.

7 Rate of Convergence
To discuss the rate of convergence of discrete dynamical system, we consider the following system:

Zns1 = (K + L(W)Zy, (7.1)
where Z,, is a k-dimensional vector, K € C**k is a constant matrix, and L:Z* — C**¥ is a matrix function
such that:

ILGVII - 0, (7.2)
asn — o, where ||.|| denotes a matrix norm which associated with the vector norm of the form:

l(u, V)|l = Vu? + v2.

Lemma 7.1 (Perron’s theorem) (Pituk, 2002) Assume that the condition (7.2) holds true. If Z,, be a solution
of (7.1) then either Z,, = 0 foralln - «, or

v = lim (I1Z, )"/

is defined and it is equal to the absolute value of one of the eigenvalues of matrix K.
Lemma 7.2 (Pituk, 2002) Assume that condition (7.2) holds. If Z,, is a solution of (7.1), then either Z, =0
for alln — oo, or

o N Zpgall
nooo |Znll

is defined and is equal to the absolute value of one the eigenvalues of matrix K.

Let {(x,, y,,)} be any solution of the system (1) such that limx, = x and limy, =y, where
n—-oo n—-owo

_ a _ 1) .
X € [a, W] and y € [6, W] To find the error terms, one has from the system (1)

Xn+1 — X = By, + Vxn—le_yn —px - yxe™

¥(p=Yn — p—y
= By — %) + % O = 7) + ye (g — ),

n

and

X

Yni1 — Y = €Yn + {yp_1e™" —€y — {ye~

= A (1, — ) + ey = 7) + Gy — 7).
Let e} = x, — X, and e? = y,, — ¥, then one has
e‘rll+1 = anen + bpej + Cn3111—1 + dne%—ll
and

2 — 1 2 1 2
en+1 - fnen + Inén + hnen—l + knen—ll

where
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yE(en —e ™) _ ¢y(e —e™) _
a, =p, by, = =5 e I dy, =0, f = Tz 9T Je™ ™,
h,=0, k,=c¢€
Moreover,
lima, = B,limb, = —yxe 7, limc, =ye™¥,limd, =0,limf,, = —{ye %,
n—-oo n—-oo n—-oo n—-oo n—-oo
lim,_y, gn = €, lim,_, h, = 0,lim,_, k,, = {e™*.
Now the limiting system of error terms can be written as
1 _ 5 s 1
€n+1 B —yxe™ yeV 0 €n
eni1 _| —{ye~* £ 0 Je ™ en
en 1 0 0 0 [|ea-1
e? 0 1 0o o0 /lez,

which is similar to linearized system of (1) about the equilibrium point (%, y).
Using Lemma 7.1 one has the following result.

Theorem 7.1 Assume that {(x,, y,)} be asolution of (1) such that lim,,_,., x,, = ¥, lim,_,, y,, = ¥, where

(%,y) be unique equilibrium point of (1), then the error vector E, = of every solution of system (1)

satisfies both of the following asymptotic relations:

. 1 _
iy, (1E, 1) /n = |Ay23.4F; (%, 7)),

lim | Enall
n-o || Epl|

= |A234F (E 7)),

where 1, , 5 4F;(%,y) are the characteristic roots of the Jacobian matrixF; (x, y).

8 Examples
In this section, we consider the following numerical examples.
Example 8.1 Leta = 1.1, § =0.01,y =2.9,8 = 1.2,¢ = 0.02,{ = 2.304.Then, system (1) can be written
as
Xpe1 = 1.1+ 0.01x, + 2.9x,_1e 77, y,04 = 1.2 4+ 0.02y, + 2.9y,_,e7*7(8.1)
with initial conditions x_; = 1.3,x, = 1.2,y_; = 1.3,y, = 1.5.
In this case the unique positive equilibrium point of the system (8.1)is given by
(%,¥) = (7.93981,1.22552). Moreover, in Fig. 8.1 the plot of x,, is shown in Fig. 8.1a, the plot of y,, is

shown in Fig. 8.1b, and an attractor of the system is shown in Fig. 8.1c.
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IAEES

(8.1a) Plot of x,, for the system (8.1)

(8.1b) Plot of y,, for the system (8.1)
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Fu

(8.1c) An attractor of the system (8.1)
Fig. 8.1 Plots for the system (8.1).

Example 8.2 Leta = 1.5, B =0.026,y = 3.14,8 = 1.67,€ = 0.0096,{ = 2.6. Then, system (1) can be
written as
Xne1 = 1.5+ 0.026x,, + 3.14x,,_,e 77,
Yns1 = 1.67 + 0.0096y,, + 2.6y,_,e7*r (8.2)
with initial conditions x_, = 2.2,x, = 2.1,y_; = 2.35,y, = 2.25.

In this case the unique positive equilibrium point of the system (8.2) is given by
(%,y) = (2.16435,2.41379). Moreover, in Fig. 8.2 the plot of x,, is shown in Fig. 8.2a, the plot of 1y, is
shown in Fig. 8.2b, and an attractor of the system is shown in Fig. 8.2c.

(8.2a) Plot of x,, for the system (8.2)
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(8.2b) Plot of y,, for the system (8.2)

¥u
240

2.35

2.30

L 1 L L L 1 1 L L L L 1 L
2.15 2.20 2.25
(8.2¢) An attractor of the system (8.2)

Fig.8.2 Plots for the system (8.2)

Example 8.3 Leta = 1.5, § = 0.0001,y = 3.5, = 1.67,¢ = 0.00002,{ = 2.77. Then, system (1) can be
written as

Xpg1 = 2.3+ 0.0001x, + 3.5x,,_e 7

Vne1 = 1.67 + 0.00002y,, + 2.77y,,_;e *» (8.3)
with initial conditions x_; = 2.25,x, = 2.15,y_, = 2.36,y, = 2.27. In this case the unique positive
equilibrium point of the system (8.3) is given by (%,y) = (1.71494,3.33035).
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Moreover, in Fig. 8.3 the plot of x, is shown in Fig. 8.3a, the plot of 1y, is shown in Fig. 8.3b, and an
attractor of the system is shown in Fig. 8.3c.

(8.3a) Plot of x,, for the system (8.3)

(8.3b) Plot of y,, for the system (8.3)
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2.6

2.4

(8.3c) An attractor of the system (8.3)
Fig. 8.3 Plots for the system (8.3).

Example 8.4 Let a =2.3,8 =0.0009,y = 4.5,6 = 2.09,¢ = 0.0008,{ = 6.35. Then system (1) can be
written as:

Xp41 = 2.3+ 0.0009x, + 4.5x,,_,e 77,

YVn+1 = 2.09 + 0.0008y,, + 6.35y,_,e " *» (8.4)
with initial conditions x_; = 2.1,x, = 2.2,y_; = 1.1, y, = 1.5. In this case the unique positive equilibrium
point of the system (8.4) is given by (x,y) = (2.3581,5.24482). Moreover, in Fig. 8.4 the plot of x, is
shown in Fig. 8.4a,the plot of y, is shown in Fig. 8.4b,and an attractor of the system (8.4) is shown in Fig.
8.4c.

(8.4a) Plot of x,, for the system (8.4)
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(8.4b) Plot of y,, for the system (8.4)

Va

s0F

45

40}

351

3.0

251
20F

25 30 33 a0 45

(8.4¢) An attractor of the system (8.4)
Fig. 8.4 Plots for the system (8.4).

9 Conclusion

This work is related to qualitative behavior of a four-dimensional exponential discrete population model. We
prove that system (1) has a unique positive equilibrium point which is globally asymptotically stable. Usually,
biologists believe that a globally asymptotically stable equilibrium point is very important in ecological point
of view. Method of linearization is used for local asymptotic stability of steady-state of (1). Furthermore, we
prove the boundedness and persistence of positive solutions of (1), and an invariant set for its solutions is
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investigated. We prove the rate of convergence of positive solutions of system (1) which converge to its
unique positive equilibrium point.
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