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Abstract 

In this paper, we study the qualitative behavior of following discrete-time population model:  

௡ାଵݔ ൌ ߙ ൅ ௡ݔߚ ൅ ,௡ିଵ݁ି௬೙ݔߛ ௡ିଵݕ ൌ ߜ ൅ ௡ݕߝ ൅  ,௡ିଵ݁ି௫೙ݕߞ

where parameters ߙ, ,ߚ ,ߛ ,ߜ ,ߝ ߞ and initial conditions ݔ଴, ,ଵିݔ ,଴ݕ ଵିݕ  are positive real numbers. More 

precisely, we investigate the existence and uniqueness of positive equilibrium point,boundedness character, 

persistence, local asymptotic stability, global behavior and rate of convergence of unique positive equilibrium 

point of this model. Some numerical examples are given to verify our theoretical results. 

 

Keywords population models; difference equations; steady-states; boundedness; local and global character. 

 

 

 

 

 

 

 

 

1 Introduction 

In population dynamics, difference and differential equations are used in many models (Nedorezov, 2012; 

Nedorezov and Sadykov, 2012; Elena et al., 2013). Exponential difference equations have many applications 

in population dynamics. One can see the references (El-Metwally et al., 2001; Papaschinopoulos et al., 2011; 

Papaschinopoulos et al., 2012) for some interesting results related to qualitative behavior of population models. 

From Zhou and Zou (2003) and Liu (2010) it is clear that difference equations are much better as compared to 

differential equations, when the populations are of non-overlapping generations.  In literature, there are many 

papers in which discrete dynamical systems are used to study the qualitative behavior of population models 

(Ahmad, 1993; Zhou and Zou, 2003; Tang andZou, 2006; Din, 2013; Din and. Donchev, 2013; Din et al., 2013; 

Din, 2014). In case of discrete–time models one can compute mathematical results more efficiently. There are 

many research papers which are related to mathematical models in population dynamics. During the last few 

decades, many researchers are attracted by such computational models. For detail of biological models see 

(Edelstein-Keshet, 1988; Brauer and Castillo-Chavez, 2000; Allen, 2007). Nonlinear difference equations are 
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very important in application. Naturally, such equations appear as discrete approximation of differential and 

delay differential equations and these models are related to applied sciences such as ecology,biology, physics, 

chemistry, physiology, engineering, bio-chemistry and economics. We cannot find the solutions of nonlinear 

difference equations in all cases. So, one can study the behavior of solutions by local asymptotic stability of 

equilibrium points. El-Metwally et al. (2001) studied the qualitative behavior of following population 

model:ݔ௡ାଵ ൌ ߙ ൅ ௡ିଵ ݁ି௫೙ݔߚ . Papachinopoulous et al. (2011) investigated the dynamics of following 

population model:ݔ௡ାଵ ൌ ܽ ൅ ௡ାଵݕ , ௡ିଵ݁ି௬೙ݔܾ ൌ ܿ ൅  ௡ିଵ݁ି௫೙. Recently, Papachinopoulous et al. (2012)ݕ݀

study following two exponential nonlinear difference equations: ݑ௡ାଵ ൌ ଵߙ ൅ ௡ିଵ ݁ି௩೙ݑଵߚ ௡ାଵݒ,  ൌ ଵߛ ൅

௡ାଵݑ ௡ିଵ݁ି௨೙, andݑଵߜ ൌ ଵߙ ൅ ௡ାଵݑ  ,௡ିଵ݁ି௨೙ݑଵߚ ൌ ଵߛ ൅  .௡ିଵ݁ି௩೙ݑଵߜ

Our aim in this paper is to investigate existence and uniqueness of positive equilibrium point, boundedness 

character, persistence, local asymptotic stability, global behavior of unique positive equilibrium point of 

following four-dimensional discrete-time population model:         

௡ାଵݔ ൌ ߙ ൅ ௡ݔߚ ൅ ,௡ିଵ݁ି௬೙ݔߛ ௡ାଵݕ ൌ ߜ ൅ ௡ݕߝ ൅  ௡ିଵ݁ି௫೙,                                           ሺ1ሻݕߞ

where parameters ߙ, ,ߚ ,ߛ ,ߜ ,ߝ ,଴ݔ and initial conditionsߞ ,ଵିݔ ,଴ݕ  ଵ are positive real numbers. System (1) isିݕ

an extension of (Papachinopoulouset al., 2011). 

 

2 Boundedness and Persistence 

The following Theorem shows that every positive solution of (1) is bounded and persists.  

Theorem 2.1 Assume that ݁ఋߚ ൅ ݁ఋ ଶ⁄ ඥ݁ఋߚଶ ൅ ߛ4 ൏ 2݁ఋ, ݁ఈߝ ൅ ݁ఈ ଶ⁄ ඥ݁ఈߝଶ ൅ ߞ4 ൏ 2݁ఈ , then every 

positive solution {(ݔ௡,  .௡ሻ} of system (1) is bounded and persistsݕ

 

Proof. Consider the following second-order difference equations:  

ҧ௡ାଵݔ ൌ ߙ ൅ ҧ௡ݔߚ ൅ ,ҧ௡ିଵ݁ିఋݔߛ ത௡ାଵݕ ൌ ߜ ൅ ത௡ݕߝ ൅  ത௡ିଵ݁ିఈ.                      (2.1)ݕߞ

 The solutions of (2.1) are given by  

ҧ௡ݔ ൌ
ߙ

1 െ ߚ െ ݁ିఋߛ
൅ 2ି௡ ൭݁ିఋ ቆ݁ఋߚ െ ݁ఋ ଶ⁄ ට݁ఋߚଶ ൅ ቇ൱ߛ4

௡

ܿଵ

൅ 2ି௡ ൭݁ିఋ ቆ݁ఋߚ ൅ ݁ఋ ଶ⁄ ට݁ఋߚଶ ൅ ቇ൱ߛ4

௡

ܿଶ, 

ത௡ݕ ൌ
ఋ

ଵିఢି௘షഀ఍
൅ 2ି௡ ൬݁ିఈቀ݁ఈߝ െ ݁ఈ ଶ⁄ ඥ݁ఈߝଶ ൅ ቁ൰ߞ4

௡

ܿଷ ൅ 2ି௡ ൬݁ିఈቀ݁ఈߝ ൅ ݁ఈ ଶ⁄ ඥ݁ఈߝଶ ൅ ቁ൰ߞ4
௡

ܿସ, 

where ܿଵ, ܿଶ, ܿଷ, ܿସ depend on initial values ݔҧିଵ, ,ҧ଴ݔ ,തିଵݕ   .ത଴ݕ

Assume that ݁ఋߚ ൅ ݁ఋ ଶ⁄ ඥ݁ఋߚଶ ൅ ߛ4 ൏ 2݁ఋ, ݁ఈߝ ൅ ݁ఈ ଶ⁄ ඥ݁ఈߝଶ ൅ ߞ4 ൏ 2݁ఈ. Then it follows that: 

ҧ௡ݔ ൑
ఈ

ଵିఉି௘షഃఊ
൅ ܿଵ ൅ ܿଶ  and ݕത௡ ൑

ఋ

ଵିఢି௘షഀ఍
൅ ܿଷ ൅ ܿସ  for all ݊ ൌ  ҧ௡ሽݔEvidently, the sequences ሼ .ڮ,1,2

and ሼݕത௡ሽ are bounded for all ݊ ൌ  Then, by comparison we obtain .ڮ,1,2

௡ݔ ൑
ఈ

ଵିఉି௘షഃఊ
 and ݕ௡ ൑

ఋ

ଵିఢି௘షഀ఍
 for all ݊ ൌ  Hence we have .ڮ,1,2

ߙ ൑ ௡ݔ ൑
ఈ

ଵିఉି௘షഃఊ
 and ߜ ൑ ௡ݕ ൑

ఋ

ଵିఢି௘షഀ఍
 for all ݊ ൌ  .This completes the proof .ڮ,1,2

 

3 Existence of Invariant Set for Solutions 

Theorem 3.1 Let ሼሺݔ௡, ௡ሻሽݕ be a positive solution of system of (1). Then , 
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ቂߙ,
ఈ

ଵିఉି௘షഃఊ
ቃ ൈ ቂߜ,

ఋ

ଵିఌି௘షഀ఍
ቃ is invariant set for system (1). 

Proof. Let  ሼሺݔ௡, ,ଵିݔ ௡ሻሽ  be a solution of system (1) with initial conditionsݕ  ଴ݔ א ܫ ൌ ቂߙ,
ఈ

ଵିఉି௘షഃఊ
ቃ and 

,ଵିݕ ଴ݕ א ܬ ൌ ቂߜ,
ఋ

ଵିఌି௘షഀ఍
ቃ.  Then, it follows from system (1) that 

ଵݔ ൌ ߙ ൅ ଴ݔߚ ൅  ଵ݁௬బିݔߛ

൑ ߙ ൅ ߚ
ߙ

1 െ ߚ െ ݁ିఋߛ
൅ ߛ

ߙ
1 െ ߚ െ ݁ିఋߛ

݁ିఋ  ൌ
ߙ

1 െ ߚ െ ݁ିఋߛ
, 

and 

ଵݕ ൌ ߜ ൅ ଴ݕߝ ൅  ଵ݁௫బିݕߞ

൑ ߜ ൅ ߝ
ߜ

1 െ ߝ െ ݁ିఈߞ
൅ ߞ

ߜ
1 െ ߝ െ ݁ିఈߞ

ൌ  
ߜ

1 െ ߝ െ ݁ିఈߞ
. 

Hence, ݔଵ א ܫ  and ݕଵ א ݊ Suppose that result is true for .ܬ ൌ ݇ ൐ 1, i.e., ݔ௞ א ௞ݕ and ܫ א   Then, for .ܬ

݊ ൌ ݇ ൅ 1 from system (1) one has: 

௞ାଵݔ ൌ ߙ ൅ ௞ݔߚ ൅  ௞ିଵ݁ି௬ೖݔߛ

൑ ߙ ൅ ߚ
ߙ

1 െ ߚ െ ݁ିఋߛ
൅ ߛ

ߙ
1 െ ߚ െ ݁ିఋߛ

݁ିఋ ൌ
ߙ

1 െ ߚ െ ݁ିఋߛ
, 

௞ାଵݕ ൌ ߜ ൅ ௞ݕߝ ൅ ௞ିଵ݁ି௫ೖݕߞ ൑ ߜ ൅ ߝ
ߜ

1 െ ߝ െ ݁ିఈߞ
൅ ߞ

ߜ
1 െ ߝ െ ݁ିఈߞ

   ൌ  
ߜ

1 െ ߝ െ ݁ିఈߞ
 ݏ

Hence, the proof follows by induction. 

 

4 Existence and Uniqueness of Positive Equilibrium and Local Stability 

Theorem 4.1 Assume that ݁ఋߚ ൅ ݁ఋ ଶ⁄ ඥ݁ఋߚଶ ൅ ߛ4 ൏ 2݁ఋ, ݁ఈߝ ൅ ݁ఈ ଶ⁄ ඥ݁ఈߝଶ ൅ ߞ4 ൏ 2݁ఈ, 0 ൏ ,ߚ ൏א 1 and 

ߞ exp൭
ିఌఋିఋ఍ ୣ୶୮൬ି ഀ

భషഁష೐షഃം
൰

ଵିఌି఍ ୣ୶୮൬ି ഀ

భషഁష೐షഃം
൰
൱ ൏ ߛ ൏ ሺ1 െ ሻߚ exp ቀ

ఋ

ଵିఌି௘షഀ఍
ቁ. 

Then the system (1) has a unique positive equilibrium point ሺݔҧ, ҧݔ തሻ such thatݕ א ቂߙ,
ఈ

ଵିఉିఊ௘షഃ
ቃ ൌ  andܫ

തݕ א ቂߜ,
ఋ

ଵିఌି఍௘షഀ
ቃ ൌ  .ܬ

Proof. Consider the following system of equations: 

ݔ ൌ ߙ ൅ ݔߚ ൅ ,௬ି݁ݔߛ ݕ ൌ ߜ ൅ ݕߝ ൅  ௫ି݁ݕߛ

Then, one has ݔ ൌ
ఈ

ଵିఉିఊ௘ష೤
and ݕ ൌ

ఋ

ଵିఌି఍௘షೣ
. Taking ܨሺݔሻ ൌ

ఈ

ଵିఉିఊ௘೑ሺೣሻ
െ ሻݔwhere ݂ሺ ,ݔ ൌ

ఋ

ଵିఌି఍௘షೣ
 and  

ݔ א  Then, it follows that .ܫ

ሻߙሺܨ ൌ
ఈሺఉ௘೑ሺഀሻశഅሻ

ሺଵିఉሻ௘೑ሺഀሻି఍
. Now, ܨሺߙሻ ൐ 0 if and only if ሺ1 െ ሻ݁௙ሺఈሻߚ െ ߞ ൐ 0, ݅. ߞ,.݁ ൏ ሺ1 െ ሻߚ exp ቀ

ఋ

ଵିఌି఍௘షഀ
ቁ. 

Hence, it follows that ሻߙሺܨ ൐ 0 if and only if ߞ ൏ ሺ1 െ ሻߚ exp ቀ
ఋ

ଵିఌି఍௘షഀ
ቁ . 

Furthermore, we have 

Fቀ
ఈ

ଵିఉିఊ௘షഃ
ቁ ൌ ߙ ቌ

ଵ

ଵିఉି఍௘
ష೑ቆ

ഀ
భషഁషം೐షഃ

ቇ
െ

ଵ

ଵିఉିఊ௘షഃ
ቍ, 
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where ݂ ቀ
ఈ

ଵିఉି௘షഃఊ
ቁ ൌ

ఋ

ଵିఌି఍௘
ష

ഀ
భషഁషം೐షഃ

.  It is easy to see that ܨ ቀ
ఈ

ଵିఉିఊ௘షഃ
ቁ ൏ 0  if and only if 

݁ߞ
ି௙൬ ഀ

భషഁషം೐షഃ
൰
൏ ߞ ,.ఋ, i.eି݁ߛ exp൭

ିఌఋିఋ఍ ୣ୶୮൬ି ഀ

భషഁషം೐షഃ
൰

ଵିఌି఍ ୣ୶୮൬ି ഀ

భషഁషം೐షഃ
൰
൱ ൏  .ߛ

  It follows that ܨ ቀ
ఈ

ଵିఉି௘షഃఊ
ቁ ൏ 0, if and only if ߞ exp ൭

ିఌఋିఋ఍ ୣ୶୮൬ି ഀ

భషഁషം೐షഃ
൰

ଵିఌି఍ ୣ୶୮൬ି ഀ

భషഁషം೐షഃ
൰
൱ ൏  .ߛ

Hence, ܨሺݔሻ has positive solution in ܫ. 

  Moreover, we have that 

ܨ݀
ݔ݀

ሺݔሻ ൌ െ1 െ
݁௙ሺ௫ሻ݂ߞߙԢሺݔሻ

ሺ݁௙ሺ௫ሻሺെ1 ൅ ሻߚ ൅ ሻଶߞ
 

ൌ െ1 ൅
௘
ೣశ ೐ೣഃ

೐ೣሺషభశഄሻశഅఈఋ఍మ

ሺ௘ೣሺିଵାఌሻା఍ሻమሺିଵାఉା௘
೐ೣഃ

೐ೣሺషభశഄሻశഅ఍ሻమ
൏ 0. 

Hence,ܨሺݔሻ has a unique positive solution in ܫ. The proof is therefore completed. 

Consider a fourth-dimensional discrete dynamical system of the form: 

௡ାଵݔ ൌ ݂ሺݔ௡, ,௡ݕ ,௡ିଵݔ ௡ିଵሻݕ
௡ାଵݕ ൌ ݃ሺݔ௡, ,௡ݕ ,௡ିଵݔ ,௡ିଵሻݕ ݊ ൌ ڮ,0,1 ,

ൠ                   (4.1)                               

where ݂: ଶܫ ൈ ଶܬ ՜ :݃ and ܫ ଶܫ ൈ ଶܬ ՜ ,ܫ are continuously differentiable functions, and ܬ  .are real intervals ܬ

Furthermore, a solution ሼሺݔ௡, ,௜ݔ௡ሻሽ of system (4.1) is uniquely determined by initial conditions ሺݕ ௜ሻݕ א ܫ ൈ

݅ for ܬ א ሼെ1,0ሽ. Along with system (4.1) we consider a vector map of the formܨ ൌ ሺ݂, ݃, ,௡ݔ  ௡ሻ. A constantݕ

solution or equilibrium point (fixed-point) of (4.1) is point that satisfies: 

ҧݔ ൌ ݂ሺݔҧ, ,തݕ ,ҧݔ  ,തሻݕ

തݕ ൌ ݃ሺݔҧ, ,തݕ ,ҧݔ  .തሻݕ

The point ሺݔҧ,  .ܨ തሻ is also point called a fixed point of the vector mapݕ

Definition 4.1 Assume that ሺݔҧ,  .തሻ be aconstant solution (steady-state) of (4.1)ݕ

1. A constant solutionሺݔҧ, ߝ തሻ is called stable, if for an arbitraryݕ ൐ 0 there exists a positiveߜ such that 

for any initial condition ሺݔҧ௜, ,ത௜ሻݕ ݅ א ሼെ1, 0ሽ if צ ∑ ሺݔ௜
଴
௜ୀିଵ , ௜ሻݕ െ ሺݔҧ, തሻݕ ൏צ ߜ , then one has צ  ሺݔ௡, ௡ሻݕ െ

ሺݔҧ, തሻݕ ൏צ ݊ for all ߝ ൐ 0, where צ·צ denotes usual Euclidean norm in Թଶ. 

2. A constant solutionሺݔҧ,  .തሻ is called unstable if it did not satisfy stability conditionݕ

3. A constant solutionሺݔҧ,  such that ߟ തሻ is locally asymptotically stable, if there exists a positiveݕ

∑ צ ሺݔ௜, ௜ݕ
଴ 
௜ୀିଵ  ሻ െ ሺݔҧ, തሻݕ ൏צ ,௡ݔand ሺ ߟ ௡ሻݕ ՜ ሺݔҧ, ݊ തሻ asݕ ՜ ∞. 

4. A constant solution(ݔҧ, ,௡ݔത) is said to be global   attracter if ሺݕ ௡ሻݕ ՜ ሺݔҧ, ݊ തሻ asݕ ՜ ∞. 

5. A constant solution (ݔҧ,  .ത) is said to be asymptotically global attractor if it is global attractor and stableݕ

Assume thatሺݔҧ, ,ሺ݂=ܨ തሻ be a fixed-point of map defined byݕ ,௡ݔ ݃,  ௡ሻ, where ݂ and ݃ are continuouslyݕ

differentiable functions about (ݔҧ, ,ҧݔ) തሻ. The linearized system of (4.1)about the fixed-pointݕ  :ത) is given byݕ

ܺ௡ାଵ ൌ ሺܺ௡ሻܨ ൌ  , ௃ܺ௡ܨ

where ܺ௡ ൌ ቌ

௡ݔ
௡ݕ
௡ିଵݔ
௡ିଵݕ

ቍ  and ܨ௃ is a Jacobain matrix of (4.1) about the fixed-point ሺݔҧ,  .തሻݕ

Lemma 4.1 (Sedaghat, 2003) Consider the discrete dynamical system of the form ܺ௡ାଵ ൌ ,ሺܺ௡ሻܨ ݊ ൌ  ,ڮ,0,1

such that തܺ be an equilibrium point of (4.1). Then following statements are true: 

(i) If all eigenvalues of Jacobian ܬி at തܺ lie inside an open unit disc |ߣ| ൏ 1, then the fixed-point തܺ is 
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locally asymptotically stable.  

(ii) If one of the eigenvalue of Jacobian matrix ܬி  has an absolute value greater than one, then തܺ is unstable. 

To construct corresponding linearized form of system (1) we consider the following transformation:  

൫ݔ௡, ,௡ݕ ,,௡ିଵݔ ௡ିଵ൯ݕ ฽ ሺ݂, ݃, ଵ݂, ݃ଵሻ,                             (4.2) 

where݂ ൌ ,௡ାଵݔ ݃ ൌ ,௡ାଵݕ ଵ݂ ൌ ௡and ݃ଵݔ ൌ ,ҧݔ௡. The Jacobian matrix about the fixed point ሺݕ  തሻ of (1)ݕ

under the transformation (4.2) is given by 

,ҧݔ௃ሺܨ തሻݕ ൌ ൮

ߚ െݔߛҧ݁ି௬ത ௬തି݁ߛ  0
െݕߞത݁ି௫ҧ  ߝ 0 ௫ҧି݁ߞ      

1
0

0
1

0
0

     0
     0

൲. 

Theorem 4.2The unique positive equilibrium point ሺݔҧ,  തሻ of system (1) is locally asymptotically stable if theݕ

following condition is satisfied:  

ߚ ൅ ߳ ൅ ߳ߚ ൅ ሺ1ߞ ൅ ሻ݁ିఈߚ ൅ ሺ1ߛ ൅ ߳ሻ݁ିఋ ൅ ఈିఋି݁ߞߛ ൬1 ൅
ఈఋ

൫ଵିఉି௘షഃఊ൯ሺଵିఌି௘షഀ఍ሻ
൰ ൏ 1.   (4.3) 

Proof. The characteristic polynomial of Jacobain matrix ܨ௃ሺݔҧ, ,ҧݔതሻ about ሺݕ  തሻ is given byݕ

ܲሺߣሻ ൌ ସߣ െ ሺߚ ൅ ߳ሻߣଷ െ ଶߣܣ ൅ ߣܤ ൅ ௫ҧି௬തି݁ߞߛ ,                  (4.4) 

 

where ܣ ൌ ௫ҧି݁ߞ ൅ ௬തି݁ߛ ൅ ത݁ି௫ҧି௬തݕҧݔߞߛ െ ܤ and ߳ߚ ൌ ௫ҧି݁ߞߚ ൅ ௬തି݁߳ߛ . 

Let ߶ሺߣሻ ൌ ሻߣସand ߰ሺߣ ൌ ሺߚ ൅ ߳ሻߣଷ ൅ ଶߣܣ െ ߣܤ െ ௫ҧି௬തି݁ߞߛ . 

Assume that condition (4.3) is satisfied and |ߣ| ൌ 1, then one has 

|߰ሺߣሻ| ൏ ߚ ൅ ߳ ൅ |ܣ| ൅ ܤ ൅ ௫ҧି௬തି݁ߞߛ  

ൌ ߚ ൅ ߳ ൅ ௫ҧି݁ߞ| ൅ ௬തି݁ߛ ൅ ത݁ି௫ҧି௬തݕҧݔߞߛ െ  |߳ߚ

൅ ି݁ߞߚ௫ҧ ൅ ௬തି݁߳ߛ ൅ ௫ҧି௬തି݁ߞߛ  

൏ ߚ ൅ ߳ ൅ ௫ҧି݁ߞ ൅ ௬തି݁ߛ ൅ ത݁ି௫ҧି௬തݕҧݔߞߛ ൅  ߳ߚ

൅ ି݁ߞߚ௫ҧ ൅ ௬തି݁߳ߛ ൅ ௫ҧି௬തି݁ߞߛ  

൏ ߚ ൅ ߳ ൅ ߳ߚ ൅ ሺ1ߞ ൅ ሻ݁ିఈߚ ൅ ሺ1ߛ ൅ ߳ሻ݁ିఋ 

൅ି݁ߞߛఈିఋ ൬1 ൅
ఈఋ

൫ଵିఉି௘షഃఊ൯ሺଵିఌି௘షഀ఍ሻ
൰ ൏ 1. 

Then, by Rouche’s theorem ߶ሺߣሻ and ߶ሺߣሻ െ ߰ሺߣሻ have same number of zeroes in an open unit disc 

|ߣ| ൏ 1. Hence, all the roots of (4.3) satisfies |ߣ| ൏ 1, and it follows from Lemma 4.1 that the unique positive 

equilibrium point ሺݔҧ,  .തሻ of system (1) is locally asymptotically stableݕ

 

5 Global Stability 

Theorem 5.1 The unique positive equilibrium point ሺݔҧ,  .തሻ of system (1) is globally asymptotically stableݕ

Proof. Letሼሺݔ௡, ௡ሻሽ be an arbitrary positive solution of system (1) and let 0ݕ ൏ Ιଵ ൌ lim௡՜∞݂݅݊ ௡ݔ , 0 ൏ Ιଶ ൌ

lim௡՜∞݂݅݊ ,௡ݕ Sଵ ൌ lim௡՜∞݌ݑݏ ௡ݔ ൏ ∞ , Sଶ ൌ lim௡՜∞݌ݑݏ ௡ݕ ൏ ∞. Then, from (1) one has: 

Ιଵ ൒ ߙ ൅ Ιଵߚ ൅  Ιଵ݁ିௌమߛ

Ιଶ ൒ ߙ ൅ Ιଶߚ ൅  Ιଶ݁ିௌభߛ

Sଵ ൑ ߙ ൅ Sଵߚ ൅  Sଵ݁ିΙమߛ

Sଶ ൑ ߙ ൅ Sଶߚ ൅  Sଶ݁ିΙభߛ

Furthermore,  

Ιଵ ൒
ߙ

1 െ ߚ െ ௌమି݁ߛ
, 

Ιଶ ൒
ߜ

1 െ ߳ െ ௌభି݁ߞ
, 
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Sଵ ൑
ߙ

1 െ ߚ െ Ιమି݁ߛ
, 

Sଶ ൑
ߜ

1 െ ߳ െ Ιభି݁ߞ
. 

Then, it follows that: 

Ιଵܵଶ ൒
ଶܵߙ

1 െ ߚ െ ௌమି݁ߛ
, 

ΙଶSଵ ൒
Sଵߜ

1 െ ߳ െ ௌభି݁ߞ
, 

ΙଶSଵ ൑
Ιଶߙ

1 െ ߚ െ Ιమି݁ߛ
,  

ΙଵSଶ ൑
Ιଵߜ

1 െ ߳ െ Ιభି݁ߞ
. 

Hence one has 
ఈௌమ

ଵିఉିఊ௘షೄమ
൑

ఋΙభ
ଵିఢି఍௘షΙభ

and
ఋSభ

ଵିఢି఍௘షೄభ
൑

ఈΙమ
ଵିఉିఊ௘షΙమ

. Now consider the following functions: 

݂ሺݔሻ ൌ
ݔߜ

1 െ ߳ െ ௫ି݁ߞ
ܽ݊݀݃ሺݕሻ ൌ

ݕߙ
1 െ ߚ െ ௬ି݁ߛ

, ,Ι߳ݔ y ϵ J. 

Moreover, for every ሺݔ, ሻ߳Ιݕ ൈ  :ܬ

݂݀
ݔ݀

ሺݔሻ ൌ െ
݁ି௫ߞߜݔ

ሺ1 െ ߳ െ ݁ି௫ߞሻଶ
൅

ߜ
ሺ1 െ ߳ െ ݁ି௫ߞሻ

൐ 0,  

݀݃
ݕ݀

ሺݕሻ ൌ െ
݁ି௬ߛߙݕ

ሺ1 െ ߚ െ ݁ି௬ߛሻଶ
൅

ߜ
ሺ1 െ ߚ െ ݁ି௬ߛሻ

൐ 0. 

Hence, Ιଵ ൌ ଵܵ and  Ιଶ ൌ ܵଶ. 

 

6 Existence of Unbounded Solutions 

Theorem 6.1 Let ߚ, ߳ א ሺ0,1ሻ and {(ݔ௡,  :௡ሻሽ be a positive solution of system (3.1) Then following are trueݕ

ሺ݅ሻ If ߛ ൐ ݁
ഃ

భషച, ௡ݔ ݄݊݁ݐ ՜ ∞, ௡ݕ ՜ ߜ ൅ ݊ ݏሻܽߛሺ݊ܫ߳ ՜ ∞. 

(ii) If ߞ ൐ ݁
ഀ

భషം, ௡ݔ ݄݊݁ݐ ՜ ߙ ൅ ,ሻߞሺ݊ܫߚ ௡ݕ ՜ ݊ ݏܽ ∞ ՜ ∞. 

Proof. ሺ݅ሻ  Let ߛ ൐ ݁
ഃ

భషച.  Choosing the initial conditions ݔ଴, ,ଵିݔ ,଴ݕ ଵିݕ  for the system (1) such that 

,଴ݔ ଵିݔ ൐ ܽ and ݕ଴, ଵିݕ ൏ ܾ with ൌ ݊ܫ
௕఍

௕ିఋିఢ௕
, ܾ ൌ  :Then from system (1) one has .ߛ݊ܫ

ଵݕ ൌ ߜ ൅ ଴ݕଵ߳ݕ ൅ ଵ݁ି௫బିݕߞ ൏ ߜ ൅ ܾ߳ ൅ ௔ିܾ݁ߞ ൌ ܾ, 

and 

ଵݔ ൌ ߙ ൅ ଴ݔߚ ൅ ଵ݁௬బିݔߛ ൐ ߙ ൅ ܽߚ ൅ ௕ି݁ܽߛ ൌ ߙ ൅ ߚܽ ൅ ܽ ൐ ܽ. 

Suppose that result is true for ݊ ൌ ݇ ൐ 1, i.e., ݔ௞ ൐ ܽand ݕ௞ ൏ ܾ. Then for ݊ ൌ ݇ ൅ 1 from system (1) 

one has: 

௞ାଵݔ ൌ ߙ ൅ ௞ݔߚ ൅ ௞ିଵ݁ି௬ೖݔߛ ൐ ߙ ൅ ܽߚ ൅ ௕ି݁ܽߛ ൌ ߙ ൅ ߚܽ ൅ ܽ ൐ ܽ, 
and 

௞ାଵݕ ൌ ߜ ൅ ௞ݕ߳ ൅ ௞ିଵ݁ି௫ೖݕߞ ൏ ߜ ൅ ܾ߳ ൅ ௔ିܾ݁ߞ ൌ ܾ. 

Hence, ݔ௡ ൐ ܽ, ௡ݕ ൏ ܾ for all ݊ ൌ .ڮ,1,2 Furthermore, ௡ାଵݔ ൌ ߙ ൅ ௡ݔߚ ൅ ௡ିଵ݁ି௬೙ݔߛ ൐ ߙ ൅ ௡ݔߚ ൅

௡ିଵ݁ି௕ݔߛ ൌ ߙ ൅ ௡ݔߚ ൅ ௡ାଵݖ ௡ିଵ. Letݔ ൌ ߙ ൅ ௡ݖߚ ൅ ,ଵିݖ ௡ିଵ with initial conditionsݖ ௡ݖ,଴. Thenݖ ൌ െ
ఈ

ఉ
൅
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2ି௡ሺߚ െ ඥ4 ൅ ଴ݖଶሻ௡ߚ ൅ 2ି௡ሺߚ ൅ ඥ4 ൅ ௡ݔ ଵ. Hence by comparisonିݖଶሻ௡ߚ ൐ ௡ݖ ௡. Butݖ ՜ ݊ݏܽ∞ ՜ ∞, so 

lim௡՜∞ ௡ݔ ൌ ∞. Moreover, ߜ ൑ ௡ାଵݕ ൌ ߜ ൅ ௡ݕ߳ ൅ ௡ିଵ݁ି௫೙ݕߞ ൏ ߜ ൅ ܾ߳ ൅ ∞௫೙. Hence, lim௡՜ିܾ݁ߞ ௡ݕ ൌ ߜ ൅

 .ሻߛሺ݊ܫ߳
ሺ݅݅ሻ The proof of ሺ݅݅ሻ is similar, therefore it is omitted. 

 

7 Rate of Convergence 

To discuss the rate of convergence of discrete dynamical system, we consider the following system:  

ܼ௡ାଵ ൌ ൫ܭ ൅  ሺ݊ሻ൯ܼ௡,                                           (7.1)ܮ

where ܼ௡ is a ݇-dimensional vector, ܭ א :ܮ ௞ൈ௞ is a constant matrix, andܥ Ժା ՜  ௞ൈ௞ is a matrix functionܥ

such that: 

ԡܮሺ݊ሻԡ ՜ 0,                                                     (7.2) 

as݊ ՜ ∞, where ԡ. ԡ denotes a matrix norm which associated with the vector norm of the form: 

ԡሺݑ, ሻԡݒ ൌ ଶݑ√ ൅  .ଶݒ

Lemma 7.1 (Perron’s theorem) (Pituk, 2002) Assume that the condition (7.2) holds true. If ܼ௡ be a solution 

of (7.1) then either ܼ௡ ൌ 0 for all݊ ՜ ∞, or 

߬ ൌ lim
௡՜∞

ሺԡܼ௡ԡሻ
ଵ ௡ൗ  

is defined and it is equal to the absolute value of one of the eigenvalues of matrix ܭ. 

Lemma 7.2 (Pituk, 2002) Assume that condition (7.2) holds. If ܼ௡ is a solution of (7.1), then either ܼ௡ ൌ 0 

for all݊ ՜ ∞, or 

߬ ൌ lim
௡՜ஶ

ԡ௓೙శభԡ

ԡ௓೙ԡ
, 

is defined and is equal to the absolute value of one the eigenvalues of matrix ܭ. 

Let ሼሺݔ௡, ௡ሻሽ be any solution of the system (1) such that limݕ
௡՜∞

௡ݔ ൌ ҧ and  limݔ
௡՜∞

௡ݕ ൌ  ത, whereݕ

ҧݔ א ቂߙ,
ఈ

ଵିఉିఊ௘షഃ
ቃ and ݕത א ቂߜ,

ఋ

ଵିఉିఊ௘షഃ
ቃ. To find the error terms, one has from the system (1) 

௡ାଵݔ െ ҧݔ ൌ ௡ݔߚ ൅ ௡ିଵ݁ି௬೙ݔߛ െ ҧݔߚ െ  ҧ݁ି௬തݔߛ

ൌ ௡ݔሺߚ െ ҧሻݔ ൅
ҧሺ݁ି௬೙ݔߛ െ ݁ି௬തሻ

௡ݕ െ തݕ
ሺݕ௡ െ തሻݕ ൅ ௡ିଵݔ௬೙ሺି݁ߛ െ  ,ҧሻݔ

and 

௡ାଵݕ െ തݕ ൌ ௡ݕ߳ ൅  ௡ିଵ݁ି௫೙ݕߞ െ തݕ߳ െ ത݁ି௫ҧݕߞ  

ൌ
఍௬ത൫௘ೣ೙ି௘ഥೣ൯

௫೙ି௫ҧ
ሺݔ௡ െ ҧሻݔ ൅ ߳ሺݕ௡ െ തሻݕ ൅ ௡ିଵݕ௫೙ሺି݁ߞ െ  .തሻݕ

Let ݁௡ଵ ൌ ௡ݔ െ ҧ, and ݁௡ଶݔ ൌ ௡ݕ െ  ത, then one hasݕ

݁௡ାଵ
ଵ ൌ ܽ௡݁௡ଵ ൅ ܾ௡݁௡ଶ ൅ ܿ௡݁௡ିଵ

ଵ ൅ ݀௡݁௡ିଵ
ଶ , 

and 

݁௡ାଵ
ଶ ൌ ௡݂݁௡ଵ ൅ ݃௡݁௡ଶ ൅ ݄௡݁௡ିଵ

ଵ ൅ ݇௡݁௡ିଵ
ଶ , 

where 
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ܽ௡ ൌ ,ߚ ܾ௡ ൌ
ҧሺ݁ି௬೙ݔߛ െ ݁ି௬തሻ

௡ݕ െ തݕ
, ܿ௡ ൌ ,௬೙ି݁ߛ ݀௡ ൌ 0, ௡݂ ൌ

ത൫݁ି௫೙ݕߞ െ ݁ି௫ҧሖ ൯
௡ݔ െ ҧݔ

, ݃௡ ൌ ,௫೙ି݁ߞ

݄௡ ൌ 0,    ݇௡ ൌ ߳. 

Moreover, 

݈݅݉
௡՜∞

ܽ௡ ൌ ߚ , ݈݅݉
௡՜∞

ܾ௡ ൌ െݔߛҧ݁ି௬ത, ݈݅݉
௡՜∞

ܿ௡ ൌ ௬തି݁ߛ , ݈݅݉
௡՜∞

݀௡ ൌ 0 , ݈݅݉
௡՜∞ ௡݂ ൌ െݕߞത݁ି௫ҧ , 

݈݅݉௡՜∞ ݃௡ ൌ ߳, ݈݅݉௡՜∞ ݄௡ ൌ 0, ݈݅݉௡՜∞ ݇௡ ൌ ௫ҧି݁ߞ . 

Now the limiting system of error terms can be written as 

ۏ
ێ
ێ
ێ
ۍ
݁௡ାଵ
ଵ

݁௡ାଵ
ଶ

݁௡ଵ

݁௡ଶ ے
ۑ
ۑ
ۑ
ې
ൌ ൮

ߚ െݔߛҧ݁ି௬ത ௬തି݁ߛ  0
െݕߞത݁ି௫ҧ  ߝ 0 ௫ҧି݁ߞ      

1
0

0
1

0
0

     0
     0

൲

ۏ
ێ
ێ
ێ
ۍ
݁௡ଵ

݁௡ଶ

݁௡ିଵ
ଵ

݁௡ିଵ
ଶ ے

ۑ
ۑ
ۑ
ې
, 

which is similar to linearized system of (1) about the equilibrium point ሺݔҧ,  .തሻݕ

Using Lemma 7.1 one has the following result. 

Theorem 7.1 Assume that ሼሺݔ௡, ∞௡ሻሽ be a solution of (1) such that lim௡՜ݕ ௡ݔ ൌ ∞ҧ, lim௡՜ݔ ௡ݕ ൌ  ത, whereݕ

ሺݔҧ, ௡ܧ തሻ be unique equilibrium point of (1), then the error vectorݕ ൌ

ۏ
ێ
ێ
ێ
ۍ
݁௡ାଵ
ଵ

݁௡ଵ

݁௡ାଵ
ଶ

݁௡ଶ ے
ۑ
ۑ
ۑ
ې
 of every solution of system (1) 

satisfies both of the following asymptotic relations: 

lim௡՜∞ሺԡܧ௡ԡሻ
ଵ ௡ൗ ൌ หߣଵ,ଶ,ଷ,ସܨ௃ሺݔҧ,  ,തሻหݕ

lim
௡՜∞

ԡܧ௡ାଵԡ
ԡܧ௡ԡ

ൌ หߣଵ,ଶ,ଷ,ସܨ௃ሺݔҧ,  ,തሻหݕ

where ߣଵ,ଶ,ଷ,ସܨ௃ሺݔҧ, ,ҧݔ௃ሺܨതሻ are the characteristic roots of the Jacobian matrixݕ    .തሻݕ

 

8 Examples 

In this section, we consider the following numerical examples. 

Example 8.1 Let ߙ ൌ 1.1, ߚ ൌ 0.01, ߛ ൌ 2.9, ߜ ൌ 1.2, ߳ ൌ 0.02, ߞ ൌ 2.304.Then, system (1) can be written 

as 

௡ାଵݔ ൌ 1.1 ൅ ௡ݔ0.01 ൅ ,௡ିଵ݁ି௬೙ݔ2.9 ௡ାଵݕ ൌ 1.2 ൅ ௡ݕ0.02 ൅  ௡ିଵ݁ି௫೙(8.1)ݕ2.9

with initial conditions ିݔଵ ൌ 1.3, ଴ݔ ൌ 1.2, ଵିݕ ൌ 1.3, ଴ݕ ൌ 1.5. 

In this case the unique positive equilibrium point of the system (8.1)is given by 

ሺݔҧ, തሻݕ ൌ ሺ7.93981,1.22552ሻ. Moreover, in Fig. 8.1 the plot of ݔ௡ is shown in Fig. 8.1a, the plot of  ݕ௡ is 

shown in Fig. 8.1b, and an attractor of the system is shown in Fig. 8.1c.  
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(8.1a) Plot of ݔ௡ for the system (8.1) 

 

 

(8.1b) Plot of ݕ௡ for the system (8.1) 
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(8.1c) An attractor of the system (8.1) 

Fig. 8.1 Plots for the system (8.1). 

 

 

Example 8.2 Let ߙ ൌ 1.5, ߚ ൌ 0.026, ߛ ൌ 3.14, ߜ ൌ 1.67, ߳ ൌ 0.0096, ߞ ൌ 2.6. Then, system (1) can be 

written as 

௡ାଵݔ ൌ 1.5 ൅ ௡ݔ0.026 ൅  ,௡ିଵ݁ି௬೙ݔ3.14

௡ାଵݕ ൌ 1.67 ൅ ௡ݕ0.0096 ൅  ௡ିଵ݁ି௫೙    (8.2)ݕ2.6

with initial conditions ିݔଵ ൌ 2.2, ଴ݔ ൌ 2.1, ଵିݕ ൌ 2.35, ଴ݕ ൌ 2.25. 

In this case the unique positive equilibrium point of the system (8.2) is given by 

ሺݔҧ, തሻݕ ൌ ሺ2.16435,2.41379ሻ.  Moreover, in Fig. 8.2  the plot of ݔ௡ is shown in Fig. 8.2a, the plot of  ݕ௡ is 

shown in Fig. 8.2b, and an attractor of the system is shown in Fig. 8.2c. 

 

(8.2a) Plot of ݔ௡ for the system (8.2) 
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(8.2b) Plot of ݕ௡ for the system (8.2) 

 
(8.2c) An attractor of the system (8.2) 

Fig.8.2 Plots for the system (8.2) 

 

 

Example 8.3 Let ߙ ൌ 1.5, ߚ ൌ 0.0001, ߛ ൌ 3.5, ߜ ൌ 1.67, ߳ ൌ 0.00002, ߞ ൌ 2.77. Then, system (1) can be 

written as 

௡ାଵݔ ൌ 2.3 ൅ ௡ݔ0.0001 ൅  ௡ିଵ݁ି௬೙ݔ3.5

௡ାଵݕ                                                                 ൌ 1.67 ൅ ௡ݕ0.00002 ൅  ௡ିଵ݁ି௫೙    (8.3)ݕ2.77

with initial conditions ିݔଵ ൌ 2.25, ଴ݔ ൌ 2.15, ଵିݕ ൌ 2.36, ଴ݕ ൌ 2.27.  In this case the unique positive 

equilibrium point of the system (8.3) is given by ሺݔҧ, തሻݕ ൌ ሺ1.71494,3.33035ሻ. 
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Moreover, in Fig. 8.3 the plot of ݔ௡ is shown in Fig. 8.3a, the plot of  ݕ௡ is shown in Fig. 8.3b, and an 

attractor of the system is shown in Fig. 8.3c. 

 

 

 

(8.3a) Plot of ݔ௡ for the system (8.3) 

 

 

 

(8.3b) Plot of ݕ௡ for the system (8.3) 
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(8.3c) An attractor of the system (8.3) 

Fig. 8.3 Plots for the system (8.3). 

 

Example 8.4 Let ߙ ൌ 2.3, ߚ ൌ 0.0009, ߛ ൌ 4.5, ߜ ൌ 2.09, ߳ ൌ 0.0008, ߞ ൌ 6.35. Then system (1) can be 

written as: 

௡ାଵݔ ൌ 2.3 ൅ ௡ݔ0.0009 ൅  ,௡ିଵ݁ି௬೙ݔ4.5

௡ାଵݕ                                                                 ൌ 2.09 ൅ ௡ݕ0.0008 ൅  ௡ିଵ݁ି௫೙    (8.4)ݕ6.35

with initial conditions ିݔଵ ൌ 2.1, ଴ݔ ൌ 2.2, ଵିݕ ൌ 1.1, ଴ݕ ൌ 1.5. In this case the unique positive equilibrium 

point of the system (8.4) is given by ሺݔҧ, തሻݕ ൌ ሺ2.3581,5.24482ሻ. Moreover, in Fig. 8.4 the plot of ݔ௡ is 

shown in Fig. 8.4a,the plot of ݕ௡ is shown in Fig. 8.4b,and an attractor of the system (8.4) is shown in Fig. 

8.4c. 

 

(8.4a) Plot of ݔ௡ for the system (8.4) 
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(8.4b) Plot of ݕ௡ for the system (8.4) 

 

(8.4c) An attractor of the system (8.4) 

Fig. 8.4 Plots for the system (8.4). 

 

 

9 Conclusion 

This work is related to qualitative behavior of a four-dimensional exponential discrete population model. We 

prove that system (1) has a unique positive equilibrium point which is globally asymptotically stable. Usually, 

biologists believe that a globally asymptotically stable equilibrium point is very important in ecological point 

of view. Method of linearization is used for local asymptotic stability of steady-state of (1). Furthermore, we 

prove the boundedness and persistence of positive solutions of (1), and an invariant set for its solutions is 
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investigated. We prove the rate of convergence of positive solutions of system (1) which converge to its 

unique positive equilibrium point. 

 

 

References  

Ahmad S. 1993. On the nonautonomous Lotka-Volterra competition equation. Proceedings of the American 

Mathematical Society, 117: 199-204 

Allen LJS. 2007. An Introduction to Mathematical Biology. Prentice Hall, USA 

Brauer F, Castillo-Chavez C. 2000.Mathematical Models in Population Biology and Epidemiology. Springer  

Din Q. 2013.Dynamics of a discrete Lotka-Volterra model. Advances in DifferenceEquations, 1: 1-13 

Din Q. 2014.Global stability of a population model. Chaos, Soliton and Fractals, 59: 119-128. 

Din Q, Donchev T. 2013.Global character of a host-parasite model. Chaos, Soliton and Fractals, 54: 1-7 

Din Q, Khan AQ, Qureshi MN. 2013. Qualitative behavior of a host-pathogen model. Advances in Difference 

Equations, 1: 263 

Edelstein-Keshet L. 1988. Mathematical Models in Biology. McGraw-Hill, USA 

Elaydi S. 2005. An Introduction to Difference Equations (3rd ed). Springer-Verlag, New York, USA 

Elena E, Grammauro M, Venturino E. 2013. Predator’s alternative food sources do not support ecoepidemics 

with two strains-diseased prey. Network Biology, 3(1): 29-44 

El-Metwally E, Grove EA, Ladas G, et al. 2001.On the difference equation ݔ௡ାଵ ൌ ߙ ൅  .௡ିଵ ݁ି௫೙ݔߚ

Nonlinear Analysis, 47: 4623-4634 

Grove EA, Ladas G. 2004. Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, 

Boca Raton, USA 

Liu X. 2010. A note on the existence of periodic solution in discrete predator-prey models. Applied 

Mathematical Modelling, 34: 2477-2483 

Nedorezov LV. 2012. Continuous-discrete model of population dynamics with time lag in a reaction of intra-

population self-regulative mechanisms. Network Biology, 2(4):139-147 

Nedorezov LV, Sadykov AM. 2012. About a modification of Rogers model of parasite-host system dynamics. 

Proceedings of the International Academy of Ecology and Environmental Sciences, 2(1): 41-49 

Papaschinopoulos G, Radin MA, Schinas CJ. 2011. On the system of two difference equations of exponential 

form: ݔ௡ାଵ ൌ ܽ ൅ ௡ିଵ݁ି௬೙ݔܾ ௡ାଵݕ ,  ൌ ܿ ൅ ௡ିଵ݁ି௫೙ݕ݀ . Mathematical and Computer Modelling, 54: 

2969-2977 

Papaschinopoulos G, Schinas CJ. 2012. On the dynamics of two exponential type systems of difference 

equations. Computers & Mathematics with Applications, 64(7): 2326-2334 

Pituk M. 2002.More on Poincare’s and Perron’s theorems for difference equations. Journal of Difference 

Equations and Applications, 8: 201-216 

Sedaghat H. 2003. Nonlinear difference equations: Theory with applications to social science models. Kluwer 

Academic Publishers, Dordrecht, Netherlands 

Tang X, Zou X. 2006.On positive periodic solutions of Lotka-Volterra competition systems withdeviating 

arguments. Proceedings of the American Mathematical Society, 134: 2967-2974 

Zhou Z, Zou X. 2003. Stable periodic solutions in a discrete periodic logistic equation. Applied Mathematics 

Letters, 16(2): 165-171 

 

103




