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Abstract 

In paper continuous-discrete model of parasite-host system dynamics is analyzed. Within the framework of 

model it is assumed that appearance of individuals of new generations of both populations is realized at fixed 

time moments hktk  , 00 t , ,...2,1k , 0 consth ; it means that several processes are 

compressed together: producing of eggs by hosts, attack of eggs by parasites (with respective transformation of 

host’s eggs into parasite’s eggs), staying of hosts and parasites in phase “egg”, and appearance of new 

individuals. It is also assumed that death process of individuals has a continuous nature, but developments of 

both populations are realized independently between fixed time moments. Dynamic regimes of model are 

analyzed. In particular, it was obtained that with simplest assumptions about birth process in host population 

and numbers of attacked hosts regime with two non-trivial stable attractors in phase space of system can be 

realized. 
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1 Introduction 

Dynamics of parasite-host system is analyzed in a lot of various publications (Nicholson and Bailey, 1935; 

Kostitzin, 1937; Maynard, 1968, 1974; Beddington et al., 1975; Isaev et al., 1984, 2001, 2009; Kot, 2001; 

Brauer and Castillo-Chavez, 2001; Nedorezov, 1986, 1997, 2012; Elhassanein, 2014; Nedorezo and Sadykov, 

2012; Elsadany et al., 2012; Ivanchikov and Nedorezov, 2012 and many others). Dynamics of this system can 

be described with the help of ordinary differential equations or recurrence equations, and in most cases there 

are no differences between parasite-host and predator-prey systems. It depends on the level of generality of 

description of a process of interaction between species. But in the case of use of continuous-discrete models 

(Kostitzin, 1937; Nedorezov, 1986, 1997, 2012) we have to divide between these qualitatively different cases.  

As it was demonstrated in our previous publications (Nedorezov, 2012; Nedorezov and Utyupin, 2011) rather 
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realistic description of predator-prey system dynamics leads to necessity in introduction of one more variable 

into model which corresponds to volume of consumed food or level of saturation of predators. Productivity 

process in population of predators may depend on average of level of saturation during a certain time interval. 

At the same time for some particular cases (for example, for forest insects with one-year generations in boreal 

zone; Isaev et al., 1984, 2001, 2009) process of interaction between species is realized during short time 

interval, and it can be described as a “jump” of model trajectory. Between these time moments (moments of 

“jumps”) there are no interactions between species, and their dynamics can be described independently. It 

allows integrating of differential equations and deducing of model to system of recurrence equations.  

 

2 Model 

Let )(tx  and )(ty  be the numbers of hosts and parasites respectively at time t . We’ll assume that 

developments of both populations are realized in one-year generations at fixed time moments hktk  , 

...2,1,0k , 0 consth . Respectively, appearance of individuals of new generation correlates with 

death of all individuals of previous generation. Let )0( ktx  be a number of hosts survived to moment t k , 

and )0( kty  be a number of parasites at the same time moment.  

We will also assume that at moments t k  survived hosts produce eggs with a certain rate. Let Y  be an 

average of number of eggs produced by one survived host. Thus number of produced eggs kE  will be 

determined by the following expression:  

)0(  kk tYxE . 

Below we’ll analyze a situation when 1 constY . It is obvious if the inverse inequality is truthful both 

populations extinct for all initial values of populations.  

Let’s also assume that at moments kt  parasites attack host’s eggs, and denote as P  a quota of infected 

eggs. Thus, PtYx k )0(   is equal to total number of infected eggs. Additional assumption is following: 

every infected egg was attacked by only parasite, and every infected egg can be transformed into one parasite 

at moment kt . 

We have to assume that P  is determined on numbers of hosts and parasites survived to moment t k : 

),( vuPP   where )0(  ktxu , )0(  ktyv . Following the biological sense of function P  next 

conditions must be truthful: 

1. For fixed value of hosts increase of number of parasites )0(  ktyv  leads to monotonic increase of 

function P , and P  is equal to one asymptotically: 

0
dv

dP
, 1),(lim 


vuP

v
. 

2. If 0)0( kty  quota of infected hosts P  is equal to zero too: 

0)0,( uP . 

3. For fixed number of parasites increase of number of hosts leads to monotonic decreasing of quota of 

infected hosts P , and under unlimited growth of amount u  function P  converges to zero asymptotically. 

At these conditions number of infected hosts is determined by a number of survived parasites and their 

potential activity: 

0
du

dP
, 0),(lim 


vuP

u
, vvuYuP

u



),(lim . 

Parameter 1  describes potential possibilities of parasites to infection of host’s eggs, and it is equal to 

maximum number of eggs which can be infected by one parasite. It is obvious, if 1  for all values of 
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other model parameters number of parasites converges to zero asymptotically for all initial values of 

populations.  

In simplest case P  can be presented in the following form: 

vYuq

v
vuP





),( . 

Amount of parameter 0 constq  depends on conditions for parasites in their search of host’s eggs. 

Increase of value of this parameter q  leads to decrease of number of attacked hosts.  

We have to note that assumption about monotonic behavior of function P  isn’t obligatory. In general 

case we have to assume that for every fixed number of hosts it is possible to point out a certain number of 

parasites when function P  has its maximum. Further increasing of parasites leads to decrease of this function 

that can be explained as a result of influence of over-infection effect.  

We’ll also assume that sojourn time of individuals in phase “egg” and “infected egg” is rather small, and 

there is no necessity to consider respective processes in model. Thus, we’ll assume that transformation of eggs 

into adults of new generation is realized at moment t k . Finally, we’ll assume that at moments t k  we have 

following relations for adults for hosts and parasites:  

)))0(),0((1)(0(  kkkk tytxPtYxx , 

))0(),0(()0(  kkkk tytxPtcYxy .                               (1) 

In (1) coefficient c , 10  c , is equal to quota of successfully transformed eggs from all infected host’s 

eggs.  

It is naturally to assume that between selected time moments tk  there are no interactions between hosts 

and parasites: this is one of basic differences between parasite-host and predator-prey systems. Moreover, on 

time intervals [ , )t tk k1  we can observe monotonic decreasing of population’s sizes which we’ll correspond 

to Verhulst’ law (Verhulst, 1838): 

2
11 xx

dt

dx   ; 

2
22 yy

dt

dy   .                                                (2) 

Conditions (1) are initial values for system (2) for every interval [ , )t tk k1 . Integration of system (2) on 

interval [ , )t tk k1  with initial conditions (1), x t xk k( )  , y t yk k( )  , gives the following results:  

x t
x

a b xk
k

k

( ) ,  
1

1 1

0  
k

k
k yba

y
ty

22
1 )0(


 . 

New parameters are determined by the following relations:  

h
i

iea  , )1(  h

i

i
i

ieb 




. 

Taking into account expressions (1) and expression for function P  we obtain the following system of 

recurrence equations:  
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)()())(( 1122221111
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yxY

xba

Yx
x
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
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(3) 

 

3 Properties of Model 

3.1 For non-negative and finite initial values of populations 0x  and 0y  trajectories of model (3) are non-

negative and bounded.  

3.2 If initial number of parasites is equal to zero, 00 y , number of hosts changes with respect to Kostitzin’ 

law (Kostitzin, 1937): if 00 x  and 1aY   population size stabilizes at non-zero level 11 /)( baY  ; if 

1aY   then population extinct for all initial values of population size. Note, if inequality 1aY   is truthful 

origin is global stable equilibrium of system (3).  

3.3 If inequality 1aY   is truthful system (3) has stationary state on x -line )0,(D  where D can be found 

from equation 

Dba

YD
D

11 
 . 

Thus 11 /)( baYD  . Jacobi matrix calculated for point )0,(D  has the following form:  























)(
0

)(
)0,(

2

2

1

Dqa

Dc
Dqa

D

Y

a

DJ 



. 

Eigenvalues of matrix )0,(DJ  are following:  

Y

a1
1  , 

)(2
2 Dqa

Dc




 . 

Consequently, 11  . If the following inequality is truthful )0,(D  is stable stationary state: 

)(2 DqaDc  . 

If the inverse inequality is truthful in last expression there are one or three non-trivial stationary states in phase 

space of system (3). 

3.4 Numerical analysis of model (3) shows that in spite of simplest assumptions about self-regulations, birth 

processes, and interaction between populations complicated dynamic regimes can be realized. On figure 1 

bifurcation diagram calculated for 921 a , 1.11 b , 2.12 a , 82 b , 100 , 5.0c , 

01.0q  (ordinate line corresponds to coordinates of stable attractors for number of hosts; before printing of 

200 points model had 1500 steps of free work) is presented. 
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Fig. 1 Bifurcation diagram for model (3): 921 a , 1.11 b , 2.12 a , 82 b , 100 , 5.0c , 

01.0q .  

 

 

Scale on Fig. 1 doesn’t allow seeing part of bifurcation diagram (see Fig. 2) corresponding to rather small 

values of stable attractors. As we can see on these pictures 1 and 2 increase of productivity of hosts Y  can 

lead to appearance in phase space one more stable attractor – trigger regime. It corresponds to situation when 

productivity Y becomes bigger than threshold level, and under these condition parasites can lose their 

regulative role. It is also determined by initial values of population sizes. Such effects are observed for some 

species of forest insects (Isaev et al., 1984, 2001, 2009). 

Numerical analysis of structure of lower attractor (1500000000 steps of free work of model) for the same 

model parameters shows (see Fig. 3) that in this part of phase plane we observe periodic fluctuations of 

populations. It is interesting to note that this attractor looks like stable cycle for two-dimensional system of 

ordinary differential equations. In a result of it down part of bifurcation diagram has specific structure (black 

color only). Values of autocorrelation function (calculated for 20000 steps) are close to one (but these values 

don’t equal to one), and maximum values are observed after 21-23 steps of function argument. 
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  Fig. 2 Part of bifurcation diagram obtained for the same values of model parameters. 

 

 

 

Fig. 3 Cyclic fluctuations of both populations on plane ),( yx . Step along abscissa is equal to 
17100.5  . Step along 

ordinate line is equal to 
1810 

. On picture there are 20000 points of model trajectory. 
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4 Conclusion 

Analysis of model shows that influence of parasites can lead to realization of complicated dynamic regimes in 

phase space which can contain, for example, two stable attractors. Realization of these dynamic regimes is a 

result of influence of parasites: if initial number of parasites is equal to zero number of hosts stabilizes 

monotonously at determined finite level. It is very important to note that realization of these dynamic regimes 

was observed under very simple assumptions about acting of self-regulative mechanisms in both population, 

about productivity of hosts (it was assumed to be a constant), and process of interaction between species. We 

have also to note that close dynamic regimes are observed for some species of forest insects in boreal zone 

(Isaev et al., 1984, 2001). 
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