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Abstract 

The effectiveness and validity of applying variation partitioning methods in community ecology has been 

questioned. Here, using mathematical deduction and numerical simulation, we made an attempt to uncover the 

underlying mechanisms determining the effectiveness of variation partitioning techniques. The covariance 

among independent variables determines the under-fitting and over-fitting problem with the variation 

partitioning process. Ideally, it is assumed that the covariance among independent variables will be zero (no 

correlation at all), however, typically there will be some colinearities. Therefore, we analyzed the role of slight 

covariance on influencing species variation partitioning. We concluded that when the covariance between 

spatial and environmental predictors is positive, all the three components-pure environmental, spatial 

variations and mixed covariation were over-fitted, with the sign of the true covariation being negative. In 

contrast, when the covariance is negative, all the three components were under-fitted with the sign of true 

covariation being positive. Other factors, including extra noise levels, the strengths of variable coefficients and 

the patterns of landscape gradients, could reduce the fitting problems caused by the covariance of variables. 

The conventional calculation of mixed covariation is incorrect and misleading, as the true and estimated 

covariations are always sign-opposite. In conclusion, I challenge the conventional three-step procedure of 

variation partitioning, suggesting that a full regression model with all variables together is robust enough to 

correctly partition variations. 

 

Keywords variation partitioning; covariance; correlation; environmental filtering; spatial autocorrealtion. 

 

 

 

 

 

 

 

 

1 Introduction 

In ecological communities, one principal process regulates frequently and determines community structure. It 

is important to consider which kinds of ecological processes are dominant, while others auxiliary. Thus, the 

variance in response variables can be separated into several parts, and by employing statistical methods, we 
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can identify the contribution and relative importance of different ecological mechanisms. 

The characteristic of species composition influenced by environmental variables is a major topic in 

current ecological research. Redundancy analysis (suited for linear relationships between species composition 

and environmental variables) and Canonical correspondence analysis (handling nonlinear species-environment 

relationship) are the widely used methods to investigate the relationship of environmental variables and species 

diversity information. Variation partitioning can be used to test and determine the possibilities of individual 

predictors in influencing species distribution and abundance (Peres-Neto et al., 2006). Of particular importance 

in ecology is the separation of spatial (interpreted as dispersal limitation) and environmental (interpreted as 

niche limitation) effects on species compositions. Variation partitioning could help resolve this issue largely. 

Partitioned variance can be divided into four parts: pure environmental variation, pure space variation, 

mixed environmental and space variation, and unexplained variation (Borcard et al., 1992). Fig. 1 decipts the 

four parts of variance. When setting spatial descriptors as covariables and removing their effects, we can know 

the proportion of pure environmental variation. In contrast, when setting environmental variables as 

covariables, we can deduce the proportion of pure space variation. The mixed environmental and spatial 

variation can be derived from the subtraction of pure environmental variation and pure spatial variation from 

the total explained variance. This is the typical three-step variation partitioning procedure introduced in 

previous literature (Borcards et al., 1992; Legendre and Legendre, 1997). 

 

 
 

Fig. 1 A schematic map showing different components and fractions that are used in variation partitioning. [E]-pure 
environmental variation; [SE]-mixed environmental and space co-variation; [S]-pure space variation; [D]-unexplained variation. 
[S]+[SE]+[E]=[S+E] denotes the total explained variance. 

 

 

However, the variation partitioning may suffer severe fitting problems. A recent study (Gilbert and 

Bennett, 2010) used simulations to compare the power and accuracy of a variety of variation partitioning 

methods. They found that all kinds of available multivariate tools have greatly underestimated each of the 

three parts of variances. Further, there are many debates on the effectiveness of using variation partitioning to 

reconcile the contribution of niche and neutrality mechanisms in structuring ecological communities (e.g., 

Smith and Lundholm, 2010; Tuomisto et al., 2012). 

Therefore, some critical questions have become natural for us to address: can we accurately estimate the 
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variations caused by pure spatial factors, pure environmental factors and the combination of both? Under what 

kinds of conditions, we can have the correct estimation and partition of the variation? How can we avoid 

under-fitting or over-fitting problems? 

 

2 Materials and Methods 

2.1 Fitting problems in variation partitioning 

For a full simple two-variable model, we can write down the equation as, 

Y aS bE     

Here ~ (0,1)N . a andb are the real coefficients for spatial and environmental variables respectively to 

generate the response variable Y. Of course, the model can be extended to matrix form considering multiple 

variables without losing generality. 

The total explained variation therefore, should be, 

2 2ˆ[ ] ( ) [ ] ( ) ( ) ( ) 2 ( , )est S E real S ES E Var Y S E Var Y a Var S b Var E abCov S E          

Hence, the estimated total explained variation is identical to real total predictable variation due to the 

constraint that the response variable Y is completely bounded by S and E. 

Based on the three-step procedure of variation partitioning, the estimated coefficients for spatial and 

environmental variables are as follows (see appendix for details), 

( , )
ˆ

( )

( , )ˆ
( )

Cov S E
a a b

Var S

Cov S E
b b a

Var E

  

  


 (1) 

Therefore, when ( , ) 0Cov S E  , we will have 
ˆ

ˆ

a a

b b





; when ( , ) 0Cov S E  , we have 

ˆ

ˆ

a a

b b





. 

We can deduce the form for mixed variations under true and estimated scenarios as follows. For estimated 

models, we will have, 

2 2 2 2ˆˆ ˆ( ) [ ] ( ) ( ) ( ( ) ( ) 2 ( , ))S E estCoVar Y SE a Var S b Var E a Var S b Var E abCov S E          

However, in real scenarios, we have, 

2 2 2 2

( ) [ ]

( ) ( ) ( ( ) ( ) 2 ( , ))

2 ( , )

S E realCoVar Y SE

a Var S b Var E a Var S b Var E abCov S E

abCov S E

 

    
 

 

There, we found that, it is very hard to accurately estimate the real mixed-variance (only in special cases, e.g., 

( , ) 0Cov S E  ). 

Therefore, the mixed variance difference between real model and estimated model should be, 

2 2 2 2

2 2 2 2

ˆ( ) ( )

ˆˆ( ( ) ( )) ( ( ) ( ))

ˆˆ( ) ( ) ( ) ( )

S E S ECoVar Y CoVar Y

a Var S b Var E a Var S b Var E

a a Var S b b Var E
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when a  and b  were over-estimated (or negative) in the condition of ( , ) 0Cov S E  , the mixed 

covariation derived from S and E was over-estimated (or negative) as well ( ˆ( ) ( )S E S ECoVar Y CoVar Y  ).  

2.2 Numerical simulations 

Centralization of the sample is a necessary step for performing multivariate statistics, which is important to 

remove random effects and standardize data as the sample derived from the normal distribution with zero 

means. Therefore, without mention, all the analyses below are performed on centralized data. 

Because most of variation partitioning methods are similar, we only considered the simplest method- 

redundancy analysis (in our model of course, there is only one response variable, thus the method was reduced 

as a common linear regression). For each model, both a simple linear regression method and a general additive 

model were used. Decomposition of variance for each part of the data is shown in Appendix 1. 

For generating spatial and environmental structure of the landscape, we consider two simple forms, power 

form and sin form, which corresponds the spatial and environmental gradients respectively (hereafters,  -

related parameters denote independent White Gaussian noises).  

1( )S x x    

2( ) sin( / )E x x     

Here x denotes the locations. ( )S x  and ( )E x denotes the spatial and environmental attributes across the 

landscape. 

The species abundance (Y) across the landscape, can be assumed as the form of linear combination of 

spatial and environmental variables, thus, we can write as, 

( ) ( ) ( )Y x aS x bE x     

Because our simulation actually concerned only the variation splitting of species abundance contributed by 

spatial and environmental constraints, we thus omit the landscape parameter x from further equations. 

Y aS bE     

Here, Y, S, and E were all centralized before performing multiple regression analysis. 

The adjusted- 2R metric is employed to assess the explained variations as follows, 

2 ˆ1 ( 1) / ( 1) (1 var( ) / var( ))adjR n n p Y Y        

Here, Ŷ  denotes the estimated/fitted abundance. 

All the simulations are run under R statistical environment (R Development Core Team, 2008). Each 

simulation was run for 200 times, and the data sample size was set to 500.  

 

 

3 Results  

The impact of positive and negative covariances on changing the fitting of explained variation 

As shown in Fig. 2 and 3, by controlling the sign of covariance between spatial and environmental 

variables, we see for pure spatial and environmental variations, a over-fitting problem emerged as the sign is 

negative (Fig. 2), while an under-fitting problem happened as the covariance sign is positive (Fig. 3). The 

situations for mixed-effect amount were opposite correspondingly.  

For the case of negative covariance simulations (Fig. 2), Welch T-tests suggested that the mean 
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differences between the estimated and true pure variations for both spatial and environmental descriptors are 

strongly significant (t=19.27, P<2.2e-16 and t=18.91, P<2.2e-16 respectively). Further, the same significance 

level existed for mixed-effect amount too (t=55.3934, P<2.2e-16). In contrast, the total explained variations 

between the estimated linear model and designed model are not significantly different (t=-0.4056, P=0.6853). 

The results for the case of positive covariances are Similar to those for negative covariances. 

 

 

Fig. 2 True and estimated variation comparison, in this case, the covariance among spatial and environmental gradients is set 

always larger than zero (mean ( , ) 0.08Cov S E  , minimal ( , ) 0.015Cov S E  , and maximal ( , ) 0.16Cov S E  ), 

while the noise was kept in constant ( ~ (0,1)N ). The red line indicates the points where estimated and true variation is 

consistent. In this case, the over-fitting problem for pure spatial and environmental variations emerges; correspondingly, under-

fitting problem was occurred for MEA. All used adjusted-
2R  values. Other parameters used for the simulation is 0.27  ,

10  , ~ (3,1)a N  and ~ (7,1)b N . 
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Fig. 3 True and estimated variation comparison, in this case, the covariance among spatial and environmental gradients is mostly 

negative correlated (mean ( , ) 0.08Cov S E   , minimal ( , ) 0.15Cov S E   , and maximal ( , ) 0.008Cov S E  ). 

Noise mean was kept as zero, while the standard derivation was increased gradually when simulation number increased (minimal 

S.D.=0, maximal S.D.=2). The red line indicates the points where estimated and true variation is consistent. In this case, the over-

fitting problem for pure spatial and environmental variations emerges; correspondingly, under-fitting problem was occurred for 

MEA. All used adjusted-
2R  values. Other parameters used for the simulation is 0.27  , 10  , ~ (3, 4)a U  and 

~ (7,8)b U . 

 

 

The impacts of noise propagation, the strengths of variable coefficients and patterns of 

spatial/environmental gradients on variation partitioning 

    As shown in Figs. 4-5, when varying the strengths of coefficients for spatial and environmental variables, 

there is little impact on the resultant variation explained. Analogously, increasing noise (simulated by 

increasing the standard deviation) and the generation of spatial and environmental landscapes using different 

nonlinear equations, the results are similar. 

    The arrow tracking indicated that, as noise influence level increased (Fig. 6), there is a trend that the 
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estimated explained variation for [SE] will approach the true variations (the red line). However, this situation 

does not occur in the cases for [S] and [E]. Thus, the results suggested that in real ecological surveying 

environment, high-level noise magnitude will be very suitable to extract the true co-variation information 

shared by both spatial and environmental variables. This result also suggested high noise levels in the real 

environment will not influence the over-fitting or under-fitting problem in variation partitioning. 

Conclusively, it seemed that covariance between spatial and environmental factors is the major factor 

influencing the problem of over-fitting and under-fitting. 

 

Fig. 4 Increasing the coefficient value (a) for spatial variable and its impacts on over-fitting and under-fitting problems in 

variation partitioning. For each part of variations, increasing the strength of spatial predictor will reduce the quadratic difference 

between true and estimated variations. All the decreasing trend lines are significant. The squares (red, green, blue respectively) in 

the last subplot indicated the simulations when 3a  , 4.5a   and 6a   respectively. Other parameters: 3b  ,

0.27  , 10  , and 1  . 
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Fig. 5 Increasing the generating coefficient ( ) for spatial gradient along the landscape locations and its impacts on over-fitting 

and under-fitting problems in variation partitioning. For each part of variations, increasing the strength of spatial predictor will 

reduce the quadratic difference between true and estimated variations. All the decreasing trend lines are significant. The squares 

(red, green, blue respectively) in the last subplot indicated the simulations when 0.27  , 0.4   and 0.52   

respectively. Other parameters: 3a b  , 10  , and 1  . 

 

 

4 Discussion 

What’s the mixed co-variation? 

The most interesting finding derived from our study was that, the co-variation, the overlapping of spatial and 

environmental variation in true models, is relevant to the covariance (with negative sign) between the spatial 

and environmental variables, which reads 2 ( , )abCov S E . Although in estimated models, it should have 

additional terms (but as we assume covariance is very small, the second-power terms can be omitted), this 

simple term will let us understand the impact of covariance of spatial and environmental variables on 

influencing resultant partitioning patterns. 

Thus, in true models without estimation when ( , ) 0Cov S E  , the estimated mixed co-variation should 

be positive, while the real co-variation negative. When ( , )Cov S E <0, the estimated mixed co-variation 
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should be negative and the real one positive (Here we always assumed that the coefficients a  andb  0, see 

Appendix I Theorem 3 for details). As it is not possible to allow negative variance, but it occurs in the 

variation partitioning, therefore, we suggested the terms “mixed-effect scalar amount”, or “mixed covariation”, 

instead of “mixed variance” in the whole text. Here for consistence, we used “covariation” for the whole text. 

This part of covariation has some interesting behaviors. As shown in right-bottom subplots of Figs 2-5, the 

covariation changed in a way quite different from other parts of variations (e.g., pure environmental/spatial 

variations). The changing track seemed orthogonal to the red line (y=x). This pattern was not changed when 

we relaxed the setting of parameters and  . So, why did it show this line-shifting pattern?  

 

Fig. 6 Increasing the white noise level ( ) and its impacts on over-fitting and under-fitting problems in variation partitioning. 

For each part of variations, increasing the strength of spatial predictor will reduce the quadratic difference between true and 

estimated variations. All the decreasing green trend lines are significant (T-test of coefficients). The squares (red, green, blue 

respectively) in the last subplot indicated the simulations when 0.1SD  , 2SD   and 4SD   respectively. Other 

parameters: 3a b  , 0.27  , and 10  . 
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This orthogonal pattern demonstrated an important result about the true co-variation and estimated co-

variation. They are negatively proportional in principle, especially when the covariance between variables is 

much lower than the self-variance of each variable. Their relationship is [ ] [ ]real estSE SE  (Theorem 3). 

When true covariation is increased in the full model from negative to positive, the estimated covariation will 

be decreased correspondingly from positive to negative, and vice versa. Appendix I provided the analytical 

solution of this argument.  

Therefore, in all previous literature, the co-variation was never correctly calculated and explained. As 

showed in Theorem 3, the signs for estimated covariation and the observed/real covariation are completely 

opposite. Therefore, the conventional three-step calculation of mixed-covariation should be adjusted by adding 

a sign ahead the estimated covariation. 

This pattern can be further verified in Fig. 6. Increasing noise levels will make the inference of mixed 

covariance being highly accurate. 

 
Fig. 7 Full congruence between analytical mixed covariation and numerically simulated mixed covariation. 

 

 

Can we accurately estimate the variations explained by sole spatial or environmental factors? 

The answer is yes, but we don’t need to follow the three-step procedure completely, as it will cause over-fitting 

or under-fitting problem. As we have illustrated in the Appendix 1, as long as there is a covariance among 

independent variables, the fitted coefficients for each variables will depart from the true ones.  

To take into account the impact of covariance on over-fitting and under-fitting, I propose an adjusted 

method for performing variance partitioning, here is the solution, we have to only consider the full model as 

follows: 

Y aS bE     

As the data are large enough, then, 

Y aS bE   

Thus, 

2 2( ) ( ) ( ) 2 ( , )Var Y a Var S b Var E abCov S E    
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The variance explained by spatial factor S and environmental factor E respectivley, thus is, 

2ˆ( ) ( )SVar Y a Var S  

2ˆ( ) ( )EVar Y b Var E  

The mixed variance explained by both factors is, 

( ) 2 ( , )S EMixVar Y abCov S E    

Thus, it seems not necessary at all to perform three-step methods to partition variations for spatial and 

environmental variables; instead, one step is enough. The merit of this single regression analysis is that the 

total explained variation is almost identical to the true total explained variation (e.g., the left-bottom subplot in 

Figs. 2-4) 

 

5 Conclusions 

Here by using numerical simulations and mathematical deduction, we addressed the issue that why variation 

partitioning methods can’t accurately predict the true variations contributed by each group of independent 

variables. We found that three-step variation partitioning methods have the inherent problems to fit the true 

model, due to the covariance of environmental and spatial variables. This phenomenon will occur for any kind 

of partial regressions. To correct over-fitting and under-fitting problems, I propose that a full regression 

analysis is enough to obtain all the three-part variations, or it might be not necessary to introduce the mixed-

variation as it was directly influenced by the estimation bias of variations for each part of independent 

variables.  
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Appendix 1 Mathematical deduction of overfitting and underfitting problems in three-step variation 

partitioning methods 

The full model when both spatial and environmental descriptors are necessary predictors should be, 

Y aS bE     

Here ~ (0,1)N . ,a b are the real coefficients, and we always set 0a  and 0b   in the present paper 

(if not satisfied, we can simply change the signs of S and/or E) for spatial and environmental variables 

respectively to generate the response variable Y. 

The full model has the total variance as, 

2 2( ) ( ) ( ) 2 ( , ) 1Var Y a Var S b Var E abCov S E     

If we use only environmental or spatial factor as predictors, then we have, 

ˆ ˆ

ˆˆ

Y aS

Y bE




 

Thereby, 

2ˆ ˆ( ) ( )SVar Y a Var S  

2ˆˆ( ) ( )EVar Y b Var E  

Here, ˆˆ,a b are partial coefficients respectively for using sole spatial and environmental predictors respectively. 

 

Theorem 1: 

If ( , ) 0Cov S E  , we must have, 
ˆ

ˆ

a a

b b





. 

In contrast,  

if ( , ) 0Cov S E  , we must have, 
ˆ

ˆ

a a

b b





. 

 

Proof: 

If we only want to use spatial descriptor S as the sole predictor, we have, 

ˆ ˆ (2)Y aS  

Our target is to find a suitable coefficient â  to minimize the quadratic difference between original Y and 

predicted Ŷ (derived from S, E and  ), 
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2

ˆ

ˆ

2 2

ˆ

2

ˆmin[( ) ]

ˆmin[ (( ) )]

ˆmin[ ( ) ( ) ( )

ˆ2( ) ( , )

ˆ2( ) ( , ) 2 ( , )]

a

a

a

Arg Y Y

Arg Var a a S bE

Arg a a Var S b Var E

a a bCov S E

a a Cov S bCov E




 



   

   

  
 

 

If we write ˆa a x   and ( ) [ ]L x Var xS bE     

Then, for minimizing L(x), we can take the first derivative of L(x) against x, so we get, 

2 ( ) 2 ( , ) 2 ( , ) 0
dL

xVar S bCov S E Cov S
dx

     

So, 

( , ) ( , )

( )

bCov S E Cov S
x

Var S

 
  

Leading to, 

( , ) ( , )
ˆ

( ) ( )

Cov S E Cov S
a a b

Var S Var S


    

Analogously, for using environmental variable E as the only predictor, we can solve the coefficient as, 

( , ) ( , )ˆ
( ) ( )

Cov S E Cov E
b b a

Var E Var E


    

As we assumed that the random variable is independent to observed variables E and S respectively, then we 

have, 

( , )
ˆ

( )

( , )ˆ
( )

Cov S E
a a b

Var S

Cov S E
b b a

Var E

  

  


                                                 (3) 

Thus, when ( , ) 0Cov S E  , we have 
ˆ

ˆ

a a

b b





; when ( , ) 0Cov S E  , we have 

ˆ

ˆ

a a

b b





. 

For the mixed co-variation co-contributed by both spatial and environmental variables, based on the 

formulation in previous work (e.g., Peres-Neto et al., 2006), it could be written as, 

ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( )S E S E S ECoVar Y Var Y Var Y Var Y     

We used the term CoVar  indicated that the mixed covariation can be negative or positive, and different 

from separated variations for each independent group of variables. 

Thus, the above equation characterized the true mixed variance explained by both spatial and 

environmental variables. 
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In practice, in full regression analysis, the true total explained variance must be, 

2 2ˆ[ ] ( ) ( ) ( ) ( ) 2 ( , )S E S ES E Var Y Var Y a Var S b Var E abCov S E        

In partial regression analysis, since only spatial or environmental descriptor is used for regression, thus, 

the solution in equation (2) for â  and b̂  is used here, then, we can deduce the equation for mixed variance 

as follows, 

2 2 2 2

2 2 2 2

ˆˆ ˆ[ ] ( ) ( ) ( ) ( ( ) ( ) 2 ( , ))

( , ) ( , )
2 ( , )

( ) ( )

est S ESE CoVar Y a Var S b Var E a Var S b Var E abCov S E

a Cov S E b Cov S E
abCov S E

Var S Var E

     

  
   (4) 

However, in real case, we don’t know the influence of another variable, then we should have, 

2 2 2 2[ ] ( ) ( ) ( ) ( ( ) ( ) 2 ( , ))

2 ( , )
real S ESE CoVar Y a Var S b Var E a Var S b Var E abCov S E

abCov S E
     


(5) 

There, we found that, (1) it is very hard to correctly estimate the real mixed-covariation ( ( )S ECoVar Y   

or [ ]realSE ) as well (only in special cases, e.g., ( , ) 0Cov S E  ); (2) more importantly, the true and 

estimated covariations are totally sign-opposite (equations (3) and (4)). This conclusion therefore was arranged 

as a theorem in Appendix II. The reason for that should be due to the over/under-fitting problems in the tree-

step calculation procedure as seemed below. 

 

Theorem 2:  

Positive covariance/correlation between independent spatial and environmental variables will lead to the 

situation that real covariation was negative, but the estimated covariation was positive. In contrast, negative 

covariance between the variables will lead to positive real covariation, but the sign of estimated covariation is 

unknown. 

 

Proof: 

From equations (3) and (4), it is therefore straightforward to have, 

[ ] ( ) 2 ( , )real S ESE CoVar Y abCov S E   (5) 

2 2 2 2( , ) ( , )
[ ] 2 ( , )

( ) ( )est

a Cov S E b Cov S E
SE abCov S E

Var S Var E
   (6) 

When ( , )Cov S E >0, then [ ] 0realSE   and [ ] 0estSE  , ture covariaton was over-fitted; when 

( , ) 0Cov S E  , then [ ] 0realSE   and the sign of [ ]estSE depends on the three terms on the right-hand side. 

And the fitting status is unknown. 

So, let’s we look at the difference between the true and estimated covariation between the two equations 

(3) and (4), we have, 
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2 2 2 2

2 2 2 2

ˆ( ) ( )

ˆˆ( ( ) ( )) ( ( ) ( ))

ˆˆ( ) ( ) ( ) ( )

S E S ECoVar Y CoVar Y

a Var S b Var E a Var S b Var E

a a Var S b b Var E

 

   

   

(7) 

When a  and b  is over-estimated (i.e., ( , ) 0Cov S E  ; from the theorem in Appendix I) then, the 

mixed covariation derived from S and E is over-estimated as well ( ˆ( ) ( ) 0S E S ECoVar Y CoVar Y   ).The 

signs  Correspondingly, when the pure spatial/environmental variations were under-estimated 

( ( , ) 0Cov S E  ), true ( )S ECoVar Y   was under-fitted accordingly 

( ˆ( ) ( ) 0S E S ECoVar Y CoVar Y   ).As ( )S ECoVar Y   or [ ] 0realSE  , therefore the sign for [ ]estSE  

can be either positive or negative. The fitting status can be explicitly understood, leaving the sign unknown. 

However, as in our study, we assumed that the covariance between independent variables was greatly 

smaller than self variances for each independent group of variables; therefore, the contribution of second-

power terms can be omitted, leading to[ ] 2 ( , )estSE abCov S E . So, in reality for many cases, the sign for 

estimated covariation [ ]estSE  should be negative (when ( , ) 0Cov S E  ).  

 

Theorem 3:  

The signs between true covariation and estimated covariation are totally opposite. And their relationship can be 

indicated as: 

[ ] [ ]real estSE SE  (8) 

Sampling bias will not influence this equality basically, the most appealing conclusion is the estimated 

covariation identified by Borcard and Legendre’s method (1992) could not be used as the estimation of ture 

covariation directly. Our finding showed that a negative sign must be added ahead the estimated covariation 

value! 

 

 

 

Appendix II True and estimated variation comparison under more parameter-relaxed case  

The covariance among spatial and environmental gradients is mostly negative correlated (mean

( , ) 5.89Cov S E   , minimal ( , ) 68.67Cov S E   , and maximal ( , ) 16.72Cov S E  ). Noise mean was 

kept as zero, while the standard derivation was increased gradually when simulation number increased 

(minimal S.D.=0, maximal S.D.=2). The red line indicates the points where estimated and true variation is 

consistent. In this case, the over-fitting problem for pure spatial and environmental variations emerges; 

correspondingly, under-fitting problem was occurred for co-variation. All used adjusted- 2R  values. Other 

parameters used for the simulation is ~ (0.27,1.27)U , ~ (10, 20)U , ~ (3, 4)a U  and ~ (7,8)b U . 
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