
Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Article

Towards the maturity model for feature oriented domain analysis

Muhammad Javed1, Muhammad Naeem1, Hafiz Abdul Wahab2
1Department of Information Technology, Hazara University, Mansehra, Pakistan
2Department of Mathematics, Hazara University, Mansehra, Pakistan

E-mail: mjavedgohar@hotmail.com, naeem@hu.edu.pk, wahabmaths@yahoo.com

Received 5 April 2014; Accepted 10 May 2014; Published online 1 September 2014

Abstract

Assessing the quality of a model has always been a challenge for researchers in academia and industry. The

quality of a feature model is a prime factor because it is used in the development of products. A degraded

feature model leads the development of low quality products. Few efforts have been made on improving the

quality of feature models. This paper is an effort to present our ongoing work i.e. development of FODA

(Feature Oriented Domain Analysis) maturity model which will help to evaluate the quality of a given feature

model. In this paper, we provide the quality levels along with their descriptions. The proposed model consists

of four levels starting from level 0 to level 3. Design of each level is based on the severity of errors, whereas

severity of errors decreases from level 0 to level 3. We elaborate each level with the help of examples. We

borrowed all examples from the material published by the research community of Software Product Lines

(SPL) for the application of our framework.

Keywords quality; feature models; maturity model; errors; dead features; invalid feature model.

1 Introduction

Producing things in large amount require standardized processes, especially for the similar products.

Companies are organizing their production in large amount of production (Benavides et al., 2010). To reuse

existing systems in a systematic way, service-oriented systems resemble supply chain where products

manufactured from supplied parts. Same case is for complex service-oriented systems, which needs third party

services (Thomas, 2008). For example, car producer offer variation on a model with variable engines,

gearboxes, audio and entertainment systems. Example of software services is online travel agency, which may

use third-party services for hotel booking, invoicing and for payment option (Naeem, 2012). Similarly,

increasing number of software systems with almost similar requirements guide us to Software Product Line

(SPL) (Böckle and Linden, 2005). SPL Engineering helps in the development within application domain by

considering their commonalities and variability. In SPL approach, products are being created by reusability

Computational Ecology and Software
ISSN 2220721X
URL: http://www.iaees.org/publications/journals/ces/onlineversion.asp
RSS: http://www.iaees.org/publications/journals/ces/rss.xml
Email: ces@iaees.org
EditorinChief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Bošković, 2011; Clements, 2001). SPL incorporating the property of similarities and variability in the family

of softwares is a new technique in the development of softwares. This helps in the development of high quality

software in a short period of time with low budget. Progress has been improved in the development by

adopting SPL (Mendonça, 1999). Features represent the aspects of these software (Kang et al., 1990). To get a

valid combination of these features we use feature model which depicts the relationships of these features and

constraints on them (Batory, 2005). Usually feature models are tree like structures describing successive

refinement of the variability in a product-line. Feature models were proposed back in 1990 as feature oriented

domain analysis (FODA) (Kang et al., 1990).

The use of high quality process ensures the good quality resulting products. Hence, it is very important to

investigate the quality of the selected model before putting it into practice. In other words, one can say that the

quality of a feature model has prime importance because it contributes towards the development of high

quality products. There are number of properties which affect the quality of a feature model. One of the agreed

deficiencies in feature models is errors in the feature model.

There are some efforts in the literature on discovering errors in feature models, but to the best of our

knowledge, no effort has been made on developing a framework based on those errors which should be able to

comment on the quality of feature models (Ahmed, 2011; Batory, 2005; Batory, 2006; Benavides, 2007;

Benavides, 2010; Thörn, 2007). So, there is a need of a technique which evaluates the feature model to

represent the quality level of a feature model. This paper is a first attempt to present the framework to judge

the quality of a given feature model, which we call Maturity Model for FODA.

The quality of a feature model can be analyzed from different perspectives which may includes: how

efficiently it captures a given domain by keeping the integrity of model itself. The lesser are the occurrences of

redundancies, anomalies and inconsistencies in a feature model, the more will be the integrity of a feature

model (Maßen and Horst, 2004; Rosso, 2006). Although, in the case of feature models, number of quality

improvement methods have been adopted, but there is still room to investigate the quality evaluation process

(Thörn, 2007). The rest of the paper is arranged as follows: Section 2 provides the background information,

whereas Section 3 presents the related work. Section 4 and 5 elaborates the feature model errors and explains

FODA maturity model, respectively. The Section 7 concludes the paper.

2 Background

In this section, we provide the information which is important to understand the technical contribution of this

paper.

Feature models were introduced by Kang in the form of technical report on FODA in 1990. A feature is

prominent characteristic of a product (Kang et al., 1990). Feature model is a hierarchical model that captures

the commonality and variability of SPL. The set of permissible selection of features from a feature model is

called an instance (Rosso, 2006). Types of features allowed in feature models are discussed here.

Mandatory feature: If a feature is chosen then its mandatory feature must be selected in that instance

(Benavides, 2010). It is represented by a filled circle at the end of edge. For example, Call is a mandatory

feature of Mobile Phone in Fig. 1. This can be represented in the form of propositional formulas

as ݄݈ܾ݁݊ܲ݁݅ܯ ՞ .ݏ݈݈ܽܥ

Optional feature: If a feature is selected in an instance then its optional sub-features can be selected or rejected

depending on the preferences (Benavides, 2010). It is represented by empty circle at the end of edge.

For example, GPS is an optional feature of Mobile Phone shown in Fig. 1. This can be represented by a

propositional formula as ܵܲܩ ՞ .݄݈ܾ݁݊ܲ݁݅ܯ

Alternative-group: A group of features having an alternative relevance with their parent means that exactly one

171

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

feature from this group must be selected if their parent is selected in an instance. It is represented by unfilled

arc (Benavides, 2010). For example, features occurring under Screen make an Alternative-group in

The relationship in Fig. 1 can be represented in propositional logic as

൫ሺܵܿ݊݁݁ݎ ՞ ሻܿ݅ݏܽܤ ר ~ሺݎ݈ܥ ש ሻ൯݊݅ݐݑ݈ݏܴ݄݁݃݅ܪ ר

 ൫ሺܵܿ݊݁݁ݎ ՞ ሻݎ݈ܥ ר ~ሺܿ݅ݏܽܤ ש ሻ൯݊݅ݐݑ݈ݏܴ݄݁݃݅ܪ ݊݁݁ݎ൫ሺܵܿ ר ՞ ሻ݊݅ݐݑ݈ݏܴ݄݁݃݅ܪ ר ~ሺܿ݅ݏܽܤ ש
 ሻ൯ݎ݈ܥ

Or-group: For a group of features having an Or relevance with their parent means that at least one feature from

this group must be selected, if their parent is selected in an instance (Rosso, 2006). An Or-group is shown by a

filled arc. For example, features occurring under Media are making an Or-group in Figure 1. This can be

captured by propositional formula as ൫ܽ݅݀݁ܯ ՞ ሺܽݎ݁݉ܽܥ ש 3ሻ൯ܲܯ

Apart from the parent child relationship, a feature diagram may have cross-tree constraints which are

discussed below.

Requires constraint: If a source of requires constraint is selected that its target must also be chosen in that

instance. This is represented by the dashed arrow that starts from the source and heads towards the target

feature.

 Fig. 1 A feature model of a mobile phone (Benavides, 2010).

For example, requires constraint is shown between Camera and High resolution features in Fig. 1.

Excludes Constraint: The source and target features of excludes constraint cannot be selected in an instance.

This is represented by double headed dashed arrow, as shown between Basic and GPS features in Fig. 1.

Thus the feature diagram shown in Fig. 1 captures the following instances1:

ሼܲܯ, ,ܽܥ ܵܿ, ,ܲܯሽ, ሼܽܤ ,ܽܥ ܵܿ, ,ܲܯሽ, ሼ݈ܥ ,ܽܥ ܵܿ, ,ܲܯሽ, ሼݎܪ ,ܽܥ ,ܵܲܩ ܵܿ, ,ܲܯሽ, ሼ݈ܥ ,ܽܥ ,ܵܲܩ ܵܿ, ,ሽݎܪ

ሼܲܯ, ,ܽܥ ܵܿ, ,݁ܯ,ݎܪ ,ܲܯሽ, ሼ݉ܽܥ ,ܽܥ ܵܿ, ,ܲܯ3ሽ, ሼܲܯ,݁ܯ,ܽܤ ,ܽܥ ܵܿ, ,3ሽܲܯ,݁ܯ,݈ܥ

ሼܲܯ, ,ܽܥ ܵܿ, ,ܲܯ3ሽ, ሼܲܯ,݁ܯ,ݎܪ ,ܽܥ ܵܿ, ,݁ܯ,ݎܪ ,ܲܯ3ሽ, ሼܲܯ,݉ܽܥ ,ܽܥ ,ܵܲܩ ܵܿ, ,3ሽܲܯ,݁ܯ,݈ܥ

ሼܲܯ, ,ܽܥ ,ܵܲܩ ܵܿ, ,ܲܯ3ሽ, ሼܲܯ,݁ܯ,ݎܪ ,ܽܥ ,ܵܲܩ ܵܿ, ,݁ܯ,ݎܪ ,ܲܯሽ, ሼ݉ܽܥ ,ܽܥ ,ܵܲܩ ܵܿ, ,݁ܯ,ݎܪ 3ሽܲܯ,݉ܽܥ

More formally: a feature diagram and its instance can be defined as:

Definition 1

1For brevity, we use underlined characters to represent features in the instances and further in the logical formulas

172

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Feature Model and Instance – adapted from (Rubin and Chechik, 2012)

Given a universe of elements ॲ that represent features, a feature model ࣠ࣧ ൌ ا ࣠,߶ is a set of features ب

࣠ ߳ 2ॲ and a propositional formula ߶ defined over the features from ࣠. An instance ࣣःऄ of ࣠ࣧ is a set

of selected features from ࣠ that respect ߶ (i.e., ߶ evaluates to true when each variable ݂ of ߶ is

substituted by true if ݂ ߳ ࣣःऄ and by false otherwise.)

On the basis of above definition the propositional formula ϕ of feature model ࣠ࣧ shown in Figure 1

can be stated as

ሺܲܯ ՞ ሻܽܥ ר ሺܵܲܩ ՜ ר ሻܲܯ ~ሺܵܲܩ ר ሻܽܤ ܽܤ൫ሺ ר ՞ ܵܿሻ ר ~ሺ݈ܥ ש ሻ൯ݎܪ

ר ൫ሺ݈ܥ ՞ ܵܿሻ ר ~ሺܽܤ ש ሻ൯ݎܪ ݎܪ൫ሺ ר ՞ ܵܿሻ ר ~ሺܽܤ ש ሻ൯݈ܥ ר ሺ݁ܯ ՜ ሻܲܯ

݁ܯ൫ ר ՞ ሺ݉ܽܥ 3ሻ൯ܲܯש ݉ܽܥሺ ר ՜ ሻݎܪ

Valuations for which this formula is true characterise the valid instances. Here, a possible instance ࣣःऄ is the

valuation that assigns true to ሼܲܯ, ,ܽܥ ܵܿ, ,݁ܯ,ݎܪ ,ܵܲܩሽ and false to ሼ݉ܽܥ ,ܽܤ .3ሽܲܯ,݈ܥ

3 Related Work

3.1 A quality model for evaluating feature models (FMQ)

The FMQ is based on the quality factors, quality attributes, indicators and metrics related to feature models

and their development (Thörn, 2010).

FMQ has iterative nature and consists of two iterations. The first iteration is based on the feasibility study

of existing quality models while this quality model is used in second iteration for validation and modification

(Thörn, 2010).

Qualities factors and attributes: The initial proposed model for feature model quality contains six top-level

quality factors, with 25 attributes effecting quality factors (Thörn, 2010). This quality model is based on the

following quality factors and their attributes.

 Table 1 Quality factors and attributes.

Factors Attributes

Changeability Adaptability, Extensibility,

Stability

Reusability Modularity, Self-containedness

Formalness Analyzability, Conformance,

Consistency, Testability

Veracity

Accuracy

Redundancy, Completeness,

Reliability, Robustness

Mobility Installability, Interoperability,

Portability

Usability

Complexity,

Understandability,

Learnability, Structuredness,

Acceptability, Accessibility,

Communicativeness, Visibility

173

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

3.2 A business maturity model of SPLE

The purpose of business maturity model of software product lines is to create a strategy for the assessment of

the business elements of software product line process (Ahmed and Fernando, 2011).

Reactive (Level-1): The “reactive” stage of the business represents the organization not having a stable and

organized environment for software product line.

Awareness (Level-2): In the beginning of this level, the organization is not keeping with the business practices

of product line engineering, however willing to follow rules in coming stages.

Extrapolate (Level-3): The organization is ready to gather and circularize market info. The organization makes

product line as a region of formal business coming up with.

Proactive (Level-4): An organization at this level has been able to establish coordination between business

ways and therefore the software product line.

Strategic (Level-5): The market size of the product line has increased over a period of time and organization

has established and maintained a position as a solution provider in the consumer market.

The difference between the discussed techniques with ours is that we focus on the presence of errors in feature

models. Our framework will help designers of SPL to judge the level of individual feature models rather than

the whole SPLE process.

4 Feature Model Errors

We categorize feature model errors into three groups: inconsistencies, anomalies, and redundancies.

4.1 Inconsistencies

Inconsistency arises due to the conflicting information in a feature model. It is impossible to obtain any valid

instance from inconsistent feature models. So, inconsistencies are characterized as critical error (Maßen and

Horst, 2004). Following are the inconsistency based errors.

1. Void feature models: A void feature model defines no instance, i.e., no feature can be selected. This means

that each feature is dead including the root. Thus we say that a void feature model is the one whose root is a

dead feature (Trinidad et al., 2008). In Fig. 2, some of the void feature models are presented.

 Fig. 2 Examples of void feature model (Danilo, 2008).

2. Invalid Product: Invalid product means that invalid instance of a feature model (Benavides, 2010). Invalid

instance misses at least one required feature, e.g., mandatory feature of a feature model (Segura et al., 2010).

In Fig. 3, a mandatory feature E cannot be chosen due to the presence of implies constraint on multiple

features that depicted under one alternative set.

174

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

 Fig. 3 Feature model with invalid products (Trinidad et al., 2008).

4.2 Anomalies

Anomalies cause improper configuration of instances from a feature model. Anomaly based errors arise due to

unrealistic modeled information and this unrealistic information is caused by wrongly captured domain.

Variable features are normally selectable, but due to anomalies it might be difficult to select variable features

(Maßen and Horst, 2004). Following errors can be categorized as anomalies.

1. Dead Feature: A dead feature is a feature that does not appear in any of the instance of the feature model

(Benavides, 2007; Trinidad et al, 2008). In Fig. 4, the most commonly occurring cases of dead features are

being depicted.

 Fig. 4 Examples of dead features (Segura et al., 2010).

2. False Variable Feature: A variable feature is false variable feature, if it has to be chosen whenever its parent

is selected in an instance (Trinidad et al., 2008; Zhang and Lin 2011). False variable feature normally found

together with dead features (Trinidad et al., 2008). False variable features are also referred as full-mandatory

feature (Trinidad et al., 2008). In Fig. 5, most commonly occurring cases of false variable features are shown.

 Fig. 5 Examples of false variable features (Trinidad et al, 2008).

175

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

3. Conditionally Dead Features: If a feature becomes dead due to the selection or rejection of another feature,

it is said to be conditionally dead feature (Hemakumar, 2008) In Fig. 6, an example of conditionally dead

feature is depicted.

 Fig. 6 Examples of conditionally dead features.

4.3 Redundancy

A feature model contains redundancy based errors, if the information in a model is depicted in multiple ways.

Developers can interpret a redundantly modelled feature model in multiple ways so, redundancy is considered

to be less severe issue (Maßen and Horst, 2004). Normally, redundancies are considered collectively, but here

we have defined most commonly occurring redundancies separately which can affect the quality of a feature

model. Following errors are considered as redundancy based errors.

1. Multiple Exclusions

In multiple exclusions a feature will be excluded by multiple features. In Fig. 7, an optional feature is excluded

by multiple mandatory features.

Fig. 7 Examples of multiple exclusions on a feature (Maßen and Horst, 2004).

2. Duplicate Feature

A duplicate feature is a feature appearing multiple times in a feature model.

3. Multiple Implications

In multiple implications, a feature will be implied by multiple features. For example, an optional feature is

implied by multiple mandatory features, as shown in Fig. 8.

 Fig. 8 Examples of multiple implications on a feature (Maßen and Horst, 2004).

176

 IAEES

4. Implie

A manda

feature, i

5 FODA

In this se

5.1 Leve

In this se

Each lev

their sev

from the

qualify fo

Mat

mentione

Step 1:

Step 2:

to be at a

Step 3:

each leve

ed Mandatory

atory feature

it will result i

A Maturity M

ection, we dis

els of Maturi

ection, we dis

vel contains s

erity. A featu

e errors listed

for that level.

turity model

ed in Fig. 10

Definition o

Pre-requisit

a certain lev

Explanation

el. It is worth

Com

y Feature

appears in a

in redundancy

 Fig. 9 Ex

Model

scuss the deta

ty Model

scuss the deta

some errors o

ure model wil

d on the prev

for feature

in the follow

of level which

te of this leve

vel

n by using ex

h mentioning t

mputational Ecol

all instances

y. Fig. 9 cont

xamples of imp

ails about the

ails about the

of feature mo

ll be of certa

vious levels.

oriented dom

ing way:

h contains dis

el. We discus

xample. In thi

that these exa

 F

logy and Softw

of a feature

tains some ex

plied mandatory

levels of mat

e levels of m

odel. The arr

in quality, if

Each level

main analysi

scussion abou

ss the errors w

is step, we us

amples are ta

Fig. 10 Maturity

ware, 2014, 4(3)

model. If a m

xamples of im

y feature (Maße

turity model f

aturity mode

angement of

it contains th

has prerequi

is is shown

ut the errors i

which should

se examples t

ken from the

y model for FOD

: 170-182

mandatory fe

mplied mandat

en and Horst, 20

for feature or

l for feature

f errors on di

he errors defi

site which sh

in Figure 10

it contains

not exist in a

to check the

published ar

DA.

 w

eature implie

tory features.

004).

riented domai

oriented dom

fferent levels

ined on that l

hould be me

0. We discus

a feature mod

above discus

rticles.

www.iaees.org

d by another

.

in analysis.

main analysis.

s depends on

evel and free

et in-order to

ss the levels

del to be able

ssed steps for

r

.

n

e

o

s

e

r

177

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Let us now discuss the levels.

1. Instanceable (Level – 0)

The basic property of a feature model is to produce at least one instance. If a feature model cannot generate

any instance is said to be a void feature model (Batory et al., 2006; Trinidad et al., 2008). It is inconsistency

based error and most severe among all errors. The quality of feature model will be of level-0 if it is void as

mentioned in the maturity model shown in Fig. 10. No product can be developed by Level-0 feature models as

a result these models should not be considered for any system.

Normally, first step in feature modelling is to find features and represent them in a tree like structure and

secondly, depict cross tree constraints if required. These kinds of errors occur due to the wrong cross tree

constraints and contradictory information (Maßen and Horst, 2004).

Prerequisite: As this is the basic level so there are no preconditions for this.

Example:

 Fig. 11 Example of void feature model (Felfernig et al., 2013).

In Fig. 11, features texteditor, bash and gui could not be chosen due to the presence of exclusion

constraints between them, whereas the feature games will never get selected because of implies constraint with

gui. On the other hand vi, gedit, kde, gnome, gnuchess and glchess are not selected because the selection of

their respective parent features is not made. Only one feature, i.e., ubuntu can only be selected in the instance,

this shows that this model is void feature model so; it lies at level-0.

2. Acceptable (Level-1)

After finding that a given feature model is void feature model or not, the next step is to check that whether the

instances generated by a feature model leads to valid products or not. A valid product of a feature model

should contain all mandatory features (Benavides, 2010). The quality of feature model is said to be of level-1

of it constrains invalid product error as per maturity model in Fig. 10.

This is also inconsistency based error which is caused by the use of wrong cross tree constraints and

contradictory information. Due to inconsistency, invalid product error also has higher severity level so, placed

at this level.

Prerequisite: In-order to qualify for acceptable level a feature model should not be a void feature model. A

given feature model should produce instances regardless of any errors.

Example:

178

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

 Fig. 12 Feature model with invalid product (Benavides, 2010).

Feature model shown in Fig. 12 is not a void feature model, but contains the error of invalid product

because two mandatory features GPS and Media can not be selected due to exclusion constraint between them.

To get a valid product all mandatory features should be chosen in an instance. As the feature model shown in

Fig. 11 produces invalid product; hence it has level-1 quality.

3. Managed (Level-2)

The severity level of anomaly based error is less than inconsistency and higher than redundancy based errors

(Maßen and Horst, 2004). So, anomaly based errors placed on this middle level. The maturity level of a feature

model will be managed if it contains any of the anomaly based error mentioned in maturity model of Fig. 10.

Anomaly based errors includes dead feature, conditionaly dead feature and false variable feature. Most of

the time false variable feature (full-mandatory feature) appears with dead feature (Trinidad et al., 2008) that is

why false variable feature error is also considered at this level along with dead features.

Prerequisite: To qualify for quality level-2 (Managed) a feature model should not be void and also generate

valid instance (all mandatory features should be instantiated).

Example:

 Fig. 13 Feature model with dead, false variable features and Conditionally dead features (Segura et al., 2010).

The quality of feature model depicted in Fig. 13 is of level-2 because it contains a dead feature Medium, a

false variable feature High and a conditionally dead feature Mobile. The feature High is false variable feature

because of implies constraint by a mandatory feature Payment and simultaneously feature Medium will not be

selected due to this implies constraint and also both High and Medium lies under same alternative set.

179

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Note that the feature High is variable, but behaves like mandatory (a false variable feature) due to the

presence of implies constraint by Payment (a mandatory feature).

In Fig. 13, if the feature Banners is selected then Mobile will become a dead feature, this error is based on

the selection or rejection of an optional feature Banners so, it is called conditionally dead feature as a result

this feature model on maturity level-2 (quality wise).

4. Consistency (Level - 3)

After inconsistency and anomaly the next severity level is of redundancy. Redundancy based errors have low

severity level (Thörn, 2010). Redundancy based error leads to misinterpretation for the developers and as a

result low quality product. Most commonly occurring redundancy based errors are multiple exclusions,

duplicate feature, multiple implications and implied mandatory feature. A feature model will be on this

maturity level (consistent), if it contains redundancy based errors as per maturity level depicted in Fig. 10.

Prerequisite: To qualify for this level, a feature model should be free from all errors mentioned in the previous

levels i.e. instanceable, acceptable and managed.

Examples:

 Fig. 14 Feature model with multiple exclusions, multiple implications & implied mandatory (Zhang and Lin, 2011).

In Fig. 14, the feature Position Detection implied by two mandatory features Route Search and

Authentication that results in multiple implication error (Maßen and Horst, 2004). While a feature Mobile is

excluded by two mandatory features Authentication and Encryption, which causes multiple exclusions error

(Maßen and Horst, 2004). Similarly, a mandatory feature Devices is implied by another feature Authentication

which results in implied mandatory feature error (Maßen and Horst, 2004). Feature model depicted in Fig. 14

contains redundancy based errors hence; its maturity level is consistent.

Feature model of Fig. 15 contains two features with the same name Java Support results in duplicate

feature error that is causing confusions for developers while referring to these duplicate features. Due to

redundancy this feature model is at consistent level.

180

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

 Fig. 15 Feature model with duplicate features (Segura, 2011).

6 Conclusion and Future Work

In this paper, we have shown a framework to measure the quality of feature models. In our framework, we

have provided five different levels which are based on the errors in feature models. Our framework will help

developers to know the quality level of feature models. We have described all the levels with the help of

different examples.

 Future work will mainly focus on the development of the algorithms for each level. Our plan is to

automatically check the quality level of a given feature model.

References

Ahmed F, Fernando C. 2011. A business maturity model of software product line engineering. Information

Systems Frontiers, 13(4): 543-560

Batory D, Benavides D, Antonio R. 2006. Automated analysis of feature models: challenges

ahead. Communications of the ACM, 49(12): 45-47

Batory D. 2005. Feature models, grammars, and propositional formulas. Springer, Berlin, Heidelberg, 1: 7-20

Benavides D, Segura S, Ruiz-Cortés A. 2010. Automated analysis of feature models 20 years later: A literature

review. Information Systems, 35(6): 615-636

Benavides D. 2007. On the Automated Analysis of Software Product Lines Using Feature Models. Dissertation,

Universidad de Sevilla, Spain

Böckle G, Van Der Linden F. 2005. Software Product Line Engineering (Pohl K, ed) (Vol. 10). Heidelberg,

Springer

Clements P. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA

Felfernig A, David B, Galindo J, Reinfrank F. 2013. Towards Anomaly Explanations in Feature Models.

In: Proceedings of the Proceedings of the 15th International Configuration Workshop (ConfWS-2013).

117-124

Hemakumar, A. (2008, September). Finding Contradictions in Feature Models. In: Proceeding of Workshop on

Analyses of Software Product Lines (ASPL 2008), collocated with 2008 International Software product

Line Conference (SPLC 2008). 183-190

Kang K, et al. 1990. Feature-oriented Domain Analysis (FODA) Feasibility Study. Technical Report,

181

Computational Ecology and Software, 2014, 4(3): 170-182

 IAEES www.iaees.org

Carnegie-Mellon University Pittsburg, SEI, USA

Maßen T and Horst L. 2004. Deficiencies in feature models. In: Proceedings of the Workshop on Software

Variability Management for Product Derivation - Towards Tool Support, collocated with the 3rd

International Software Product Line Conference (SPLC'04) (Vol 3154)). 331, Springer, Berlin, Heidelberg

Mendonça M. 2009. Efficient reasoning techniques for large scale feature models. Diss. University of

Waterloo, Canada

Naeem M. 2012. Matching of Service Feature Diagrams based on Linear Logic. Dissertation, Department of

Computer Science, University of Leicester, UK

Rosso, CD. 2006. Experiences of performance tuning software product family architectures using a scenario-

driven approach. In Proceedings of the 10th International Conference on Evaluation and Assessment in

Software Engineering (EASE 2006): 30~39

Rubin J, Chechik M. 2012. Combining related products into product lines. In Proceedings of the 15th

international conference on Fundamental Approaches to Software Engineering (FASE'12) (Lara J, Zisman

A, eds). 285-300, Springer-Verlag, Berlin, Heidelberg

Segura S, Benavides D, Ruiz-Cortés A. 2010. FaMa Test Suite v1.2. Technical Report ISA-10-TR-0. 1-52,

Applied Software Engineering Research Group, University of Seville, Spain

Segura S. 2011. Extended Support for the Automated Treatment of Feature Models. Dissertation, University of

Sevilla, Spain

Thomas E. 2008. SOA: Principles of Service Design (Vol 1). Prentice Hall, Upper Saddle River, USA

Thörn, C. 2007. A Quality Model for Evaluating Feature Models. In Proceedings of second volume

(Workshops) of the 11th International Software Product Lines Conference. 184-190, Kindai Kagaku Sha

Co. Ltd., Tokyo, Japan

Thörn C. 2010. On the Quality of Feature Models. Dissertation, Department of Computer and Information

Science, Linköping University, Sweden

Trinidad P, et al. 2008. Automated error analysis for the agilization of feature modeling. Journal of Systems

and Software, 81(6): 883-896

Zhang G, Ye H, Lin Y. 2011. Feature model validation: A constraint propagation-based approach. In: 10th

International Conference on Software Engineering Reaserch and Practice. Las Vegas, USA

182

