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Abstract 

In paper stochastic model with discrete time of migrations in finite part of plane is considered. It is assumed 

that migrations can be from every node of integer lattice to nearest nodes only, and these migrations depend on 

numbers of individuals in the respective nodes. Population size is assumed to be constant for every sequence 

of population size measurements. It is also assumed that there are two limits D1 and D2, D1, D1< D2, of local 

population size in node when respective node is attractable for migrants (Alley effect). If local population size 

is bigger than D2 node becomes unsuitable for migrants, and all individuals try to leave the respective node. 

After a certain number of time steps local population size is determined in randomly selected nodes (it looks 

like method of “throwing of frame” or “cutting of model trees” of entomological data collection but in 

considering situation it doesn’t lead to changing of conditions for population). Dependence of standard 

deviations of samples of various sizes on fixed values of population density are analyzed. In particular, it is 

shown that well-known problem of heteroscedasticity cannot be solved in principle for the situation when 

ecological model parameters must be estimated using empirical or experimental time series. Analysis of 

dependence of number of interactions of individuals per time step (average in time and space) on total 

population size allows pointing out new ways in modification of Verhulst model. 

 

Keywords migration process; methods; biological population; data collection; stochastic mathematical model; 

Alley effect; heteroscedasticity problem.  

 

 

 

 

 

 

 

 

1 Introduction 

Estimation of model parameters using empirical time series is among of very important problems of modern 

ecological modeling (Bard, 1974; Isaev et al., 1984, 2001, 2009; McCallum, 2000; Brauer and Castillo-Chavez, 

2001; Wood, 2001; Nedorezov, 2012; Sharma and Raborn, 2011; Haidar et al., 2011 and others). Finding of 

best estimations is important as for constructing of forecasts of various lengths as for determination of optimal 

methods of population management. 
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Least square method is one of popular methods for estimating of model parameters (Bard, 1974; Bolshev 

and Smirnov, 1983; Draper and Smith, 1998; Lakin, 1990). For example, let’s assume that following equation 

describes population dynamics: 

),(1 kkk xFxx  .                                                         (1) 

In model (1) kx  is population size (or density) at moment k , ...2,1,0k ;   is a vector of unknown 

model parameters; F  is non-negative nonlinear function (birth rate). It is possible to point out a big number 

of models of (1) type which are used for approximation of entomological time series (Kostitzin, 1937; Moran, 

1950; Varley, Gradwell, Hassell, 1975; Hassell, 1975; Bellows, 1981; Berryman, 1981; Turchin, 2003; 

Nedorezov, 1986, 2012).  

Let 0x  be initial value of population size, ),,( 0 xkxx   be a solution of equation (1) for fixed values 

of model parameters   and fixed initial population size 0x , and let *
kx , Nk ,...,1,0 , be an empirical 

sample (time series). 1N  is a sample size. Best estimations of model (1) parameters can be obtained 

finding global minimum for the following expression: 
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Note, that in (2) initial population size 0x  is unknown parameter too, and amount of 0x  must be estimated 

using the same sample. Real sense of expression (2) is following: in a set of all solutions of model (1) we have 

to find nearest to considering sample trajectory.  

On a practice use of expression (2) meets with problems which have a direct relation as to finding of global 

minimum as to explanation of form of this expression. There exists one more important problem: influence of 

small values of initial sample on final results (values of model parameters) is much less than influence of big 

values. 

Every term in sum (2) ),,( 0
* xkxxe kk   is a difference between empirical stochastic value and 

theoretical value which is obtained with model (1). It is assumed that theoretical values are real amounts, and 

observed differences can be explained as results of errors in measurements, influences of external factors etc. 

Consequently, every term in (2) is value of stochastic variable with zero average. But at the same time 

variances of these variables are different. Thus, (2) is sum of squared differences of stochastic variables ke  

with different distributions (heteroscedasticity problem; see, for example, White, 1980; Gupta, Tang, 1984; 

Tofallis, 2008 and many others). If we want to have a situation when all terms in (2) have similar influences on 

final results, first of all we have to have equal variances for all ke . This problem one tries to solve introducing 

into expression (2) non-negative “weights” }{ kw : 
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In (3) 0kw  are non-negative constants. Note, if we can find such constants it doesn’t mean that we have a 

total solution of heteroscedasticity problem – this is particular solution only, and terms '
ke , 

)),,(( 0
*' xkxxwe kkk   in (3) may have various distributions.  

Thus, particular solution of heteroscedasticity problem can be transformed into problem of finding of set of 

non-negative weights }{ kw  for expression (3). But up to current moment there are no real criterions (with 

good mathematical background) for selection process. We have the following recommendation only: we have 

to put big weights for small terms and small weights for big terms.  

The following approach to the process of selection of weights }{ kw  looks better than recommendation 
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pointed out above: all weights must be equal to variances of stochastic variables ke  to the power of minus 

one. If we can determine these weights all terms of (3) '
ke  will have zero averages and variances equal to one. 

Note, that in this situation weights }{ kw  in (3) are not equal to constants – their values depend on the 

respective theoretical amounts ),,( 0 xkx . We have to take it into account minimizing functional (3). 

Thus, in some cases heteroscedasticity problem can be deduced to the problem of analysis of dependence 

of standard deviations of empirical data on real values of population size or density. If this dependence 

corresponds to monotonic function (in ideal variant it must be linear function) we have a certain possibility to 

estimate this dependence. But if this dependence corresponds to non-monotonic function it means that in 

considering case heteroscedasticity problem cannot be solved in principle: in practice it is impossible to 

determine non-monotonic sequence of weights }{ kw  for natural conditions. If this situation is truthful it 

means that heteroscedasticity problem hasn’t a general solution. 

The problem described above can be solved in the only way. It can be solved using mathematical model of 

individual’s migrations. Below we use a model of individual migrations on a lattice (Harris, 1963; Bailey, 

1967; Hanski, 1998) with local Allee effect (Allee, 1931; Odum, 1983). Process of data collection was 

modeled in the following manner: local population size was fixed in 100 various stochastically selected points 

of a lattice (discrete uniform distribution on the respective sets of nodes; Mikhailov, 1974; Ermakov, 1975). It 

looks like direct analog of throwing of frame into a field, or shaking of model trees, or cutting of squared meter 

of forest floor in autumn. 

Within the framework of model it was assumed that total population size is constant during every separated 

set of “computer experiments” on data collection and estimating of average of population density. Dependence 

of sample variances, dependence of number of interactions between individuals, and dependence of estimation 

of probability that distribution of obtained sample corresponds to Normal on known population density are 

analyzed.  

 

2 Model 

Let’s consider a model of migrations which are organized in simplest manner. Let’s assume that all migrations 

(in finite part of plane) have stochastic nature, and transition from one part to another depends on relations of 

sizes in nearest parts of plane. Additionally, we’ll assume that total population size doesn’t change during 

certain time interval: there are no birth and death processes in population. Periodically population size is fixed 

in 100 stochastically selected points. It looks like a method of “throwing of frame” (for determination of 

density of insects on a field) or “cutting or shaking of model trees” (methods which are used in forest 

entomology; Isaev et al., 1984, 2001, 2009; Vorontsov, 1975, 1978; Dunaev, 1997).  

Let N  be a population size. We’ll assume that this amount is constant, constN  , during a certain 

time interval of providing a set of “measurements” of local population size. Let 2
nmZ  be an integer lattice on a 

plane 2R :  

}1,1:),{(2 mjnijiZ nm  . 

It will be assumed that population size is determined in points of lattice 2
nmZ  only. Let )(txij  be a number 

of individuals in node ),( ji , 2),( nmZji  , at moment t . It is naturally to assume that there are no 

migrations out of the lattice, thus the following relation is truthful for all t :   

Ntx
n

i

m

j
ij 

 1 1

)( . 

236



Computational Ecology and Software, 2014, 4(4): 234-247 

 IAEES                                                                                    www.iaees.org

It is obvious that for all t  )(txij  and N  are integer numbers. We’ll also assume that time is discrete, 

...2,1,0t .  

Within the framework of model we’ll assume that migrations of individuals can be observed to nearest 

nodes only. Two nodes of lattice ),( 11 ji , 2
22 ),( nmZji   are nearest to each other if the following relation 

is truthful: 12121  jjii . In literature it is possible to find other variants of this definition (Harris, 

1963; Bailey, 1967).  

About migrations of individuals from point ),( ji  it will be assumed that for all )(txij  a certain quota 

of individuals  , 0 const , 1 , migrates to nearest nodes with equal probabilities. Number of 

these individuals (“crazy migrants”) is equal to )]([ txij  where ][  is integer part of number. Other 

individuals, )]([)( txtx ijij  , migrate to other nodes with probabilities which depend on local sizes in these 

points. 

It is naturally to divide all points of lattice 2
nmZ  onto three qualitative different types. It is possible to 

point out two critical levels 1D  and 2D , 21 DD  , which determine “comfortable zone” for individuals 

(local Alley effect; Allee, 1931; Odum, 1983). If local population size belongs to the respective segment,

21 )( DtxD ij  , we’ll assume that nobody wants to migrate from this comfortable zone; in such a situation 

we have “crazy migrants” only.  

If 1)( Dtxij   individuals are out of “comfortable zone”; for this situation we’ll assume that all 

individuals want to leave this point. Thus, probability for individual to stay in this node more than one time 

step is equal to zero.  

If 2)( Dtxij   population size is out of “comfortable zone” too; for this situation we’ll also assume that 

individuals want to leave this node (it can be called as “repulsion zone”). But probability for individual to stay 

in this point more than one time step is bigger than zero.  

Within the framework of model we’ll also assume that level of attractiveness for migrants of point ),( ji  

depends not on current number )(txij  but on the state of node. Let coefficient of attractiveness for migrants 

to be equal to one, 11 q , if 1)( Dtxij  . It is obvious that coefficient of attractiveness is bigger than one if 

local population size in “comfortable zone”, 12  constq  (Allee effect; Allee, 1931; Odum, 1983). If 

2)( Dtxij   coefficient of attractiveness must be less than one, 13 qq  : such kind of nodes must have 

minimal attractiveness. In natural conditions it is possible to find other types of points with other relations 

between coefficients iq  (Isaev et al., 1984, 2001, 2009). 

Denote as )(tqij  a level of attractiveness of point ),( ji  at moment t . Depending on value of )(txij  

coefficient )(tqij  can be equal to 1q , 2q  or 3q . We’ll assume that probability of individual to migrate to 

nearest node is proportional to coefficient of attractiveness of this node and inversely proportional to total sum 

of coefficients of all nodes individual can migrate to. As it was assumed above if 1)( Dtxij   all individuals 

leave point ),( ji . If this node doesn’t belong to boundary, 1i , of lattice than probability for individual to 

migrate to point ),1( ji   is determined by the following expression: 
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It is obvious that for points ),1( j , mj ,...,1 , probability (4) is equal to zero. Respective formulas can be 

presented for other three probabilities.   

For the case when 2)( Dtxij   it was assumed that probability for individual doesn’t migrate to nearest 

node is greater than zero. If this point doesn’t belong to boundary of lattice this probability is determined by 

the following formula: 
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If 1i , mj 1 , formula (5) will have the following form: 
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If 1i , 1j , formula (5) will have the form: 
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Note that amount of migration flow which is determined by formulas (4)-(7) increases at increase of 

attractiveness of node. It is necessary to note that stochastic process described above is a modification of 

processes described in modern literature (see, for example, Harris, 1963; Bailey, 1967; Hanski, 1998 and many 

others). But main goal of current publication isn’t in analysis of properties of described model but in analysis 

of properties of samples which can be generated by methods of data collection using in modern biology. 

 

3 Data CollectioniIn Model 

Initial population condition was modeled by the following way: every individual with equal probabilities could 

appear in one of nodes of lattice 2
nmZ . After that migration process was started (in correspondence of 

formulas (4)-(7)), and model worked free during T  time steps; after that we had new distribution of 

individuals on the plane which is determined by basic laws (4)-(7) only. Computer experiments had been 

provided with 1000T . 

After T  time steps data collection process was provided: in 100 various stochastically selected points of 

lattice local population size was fixed. It looks like direct analog of “throwing of frame into a field”, or 

“shaking of model trees”, or “cutting of squared meter of forest floor in autumn”. After fixation of local 

population sizes model worked free again during T  time steps. After that the similar procedure of data 

collection was organized again. It was repeated 100 times for every selected values of total population size N . 

 

4 Results of Calculations 

For calculated datasets various problems were solved. In particular, dependence of standard deviation s  on 

mnN /  (the local population size averaged over the lattice of habitats) was analyzed for various 

numbers of sample sizes: 
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In (8) **
kx  are terms of sample (averages for all independent samples of the length M ); K  is a number of 

samples of the length M . For 100 nm  and 3M  we had 3300K , for 4M  - 

2500K , for 5M  - 2000K , for 6M  - 1600K , for 7M  - 1400K , for 

10M  - 1000K , for 20M  - 500K , and for 40M  - 200K . Thus, sample’s sizes 

are rather big for obtaining “good estimations” for standard deviations s  (8) for various values of M .  

 

238



Computational Ecology and Software, 2014, 4(4): 234-247 

 IAEES                                                                                    www.iaees.org

4.1 Non-monotonic behavior of standard deviation 

For the next values of model parameters 100 nm , 101 D , 302 D , 1.0 , 11 q , 102 q , 

2.03 q , “typical picture” of changing of standard deviations s  was observed. We are talking about 

“comfortable zone” because similar results were obtained for some other sets of parameters. When population 

density is rather small, ]5.1,1.0[ , changing of standard deviation (Fig. 1) for various sample sizes 

40,20,10,7,5,4,3M  can be effectively described by linear function ( ]9739.0,9579.0[2 R ). 

 

 

 

Fig. 1 Changing of values of standard deviation on population density   ( 5.11.0   ) and sample size 
40,20,10,7,5,4,3M . 

 

 

 

On the segment [1.5,1.6] there is a transition through any threshold value – after intersection sharp 

increasing of s  is observed and type of dependence of standard deviation on population density has 

different nature (Fig. 2). If ]31,8.1[  changing of standard deviation s  can be effectively described by 

parabolic function with ]963.0,926.0[2 R . Note that maximum value of standard deviation is observed 

near mid point of “comfortable zone”.  
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Fig. 2 Changing of values of standard deviation on population density   ( 312.0   ) and sample size 
40,20,10,5,4,3M . 

 

 

Thus, we can conditionally select at least two critical points on the curve of changing of standard deviation. 

First point is 6.1 : after this value rather strong influence of “comfortable zones” on migrations is 

observed. The second point is 20 : after intersection of this level decreasing of standard deviation is 

observed (fig. 2). Important question is following: can we find these critical points for real populations in real 

conditions? If yes, we have a principle possibility to solve heteroscedasticity problem and find optimal weights 

for expression (3). If not, heteroscedasticity problem hasn’t a solution.  

Taking into account that in real conditions problems can arise with estimation of population density, 

estimation of boundaries of comfortable zone becomes unsolvable problem. Thus, we can conclude that at 

present time heteroscedasticity problem cannot be solved in principle. Finally, we can also conclude that using 

in (3) monotonic increasing or decreasing weights cannot lead to better results in estimating of model 

parameters. Close results were obtained for similar models with other laws of migrations (Nedorezov, 2012, 

2013). 

4.2 Confidence interval and density   

For obtained datasets quotas of errors were estimated for various sample sizes M  and density  . It was 

assumed that we have an error when density   was out of the limits of confidence interval when its 

boundaries were determined using standard formula: )05.0,1(  Mts . In this expression   is 

estimation of density (average) for respective sample, s  is standard deviation for sample, and 

)05.0,1( Mt  is respective value of Student’s distribution for 1M  degrees of freedom and significance 

level 0.05 (Lakin, 1990). 
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Fig. 3 Changing of values of quota of errors on population density   ( 312.0   ) for sample sizes 
40,10,6,4,3M . 

 

 

When population density   is rather small (Fig. 3), 2.0 , we may have errors in 55% of all cases. If 

1.0  and 3M  we may have errors in 74% cases. It means that results of data analysis provided with 

standard methods have no relations to reality with big probability. Increase of population density initially leads 

to decrease of quotas of errors; but after an intersection of critical level (fig. 3) quotas of errors increase, and 

local maximums can be rather big. Even when sample size is very big, 40M , maximum of errors is equal 

to 34%.  

Increase of sample size M  leads to changing of points where maximums of errors are observed: it moves 

toward smaller values of population density (Fig. 3). It is interesting to note that observed situation is rather 

paradoxical one. With probability 0.95 real value of population density must belong to confidence interval but 

with probability 0.74 ( 1.0 , 3M ) it is out of this interval. And this result has no relation to (possible) 

problems of providing of computer experiments (for example, with appearance of any dependencies in 

obtained samples): for every selected value of population density all values of stochastic variables modeled 

independently.  

Note that appeared situation cannot be explained by the small number of “free” working of model 

( 1000T ) between measurements of local population size: similar behavior was observed when T  was 

increased in ten times. In our opinion non-monotonic behavior of quotas of errors can be explained by non-

homogeneity of nodes of lattice, and existence of “comfortable zones” and “repulsion zones”. Partly it can be 

explained by basic properties of samples – with big probabilities samples are not Normal (see next Chapter of 

manuscript).  

Taking into account that for natural populations “comfortable zones” and “repulsion zones” exist we can 

conclude that to analysis of considering situation (and similar situations) some of standard statistical methods 

cannot be applied. 
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4.3 About Normality of initial samples 

For application of parametric methods of statistics to analysis of existing samples elements of these samples 

must have Normal distribution (or distribution which is close to Normal). For testing of Normality of existing 

sample Kolmogorov – Smirnov test, Lilliefors test, and Shapiro – Wolk test were used  (Bolshev and 

Smirnov, 1983; Lilliefors, 1967; Shapiro et al., 1968). Results of application of these tests to 100 independent 

samples with 6M  are presented on Fig. 4. On this picture quota of rejected hypotheses (in %) of 

Normality for 100 samples are presented for 5% significance level.  

 

 

Fig. 4 Quota (in percentages) of situations when hypothesis about Normality of a sample with. 

 

 

As we can see on this picture when population density is rather small ( ]3.0,1.0[ ), Null hypothesis 

was rejected in about 100% cases (Shapiro – Wilk test and Lilliefors test). Iven for situations when population 

density is big, 33.0   , these tests allow rejecting of Null hypothesis in (about or more) 20% of cases. 

Kolmogorov – Smirnov test isn’t so strong like Shapiro – Wilk’ and Lilliefors’ tests but its use shows that we 

have to reject Null hypothesis in 20% or more cases when population density is small, ]3.0,1.0[  (Fig. 4).  

It is important to note that when hypothesis about Normality cannot be rejected, it doesn’t mean that we 

have to accept this hypothesis. It means that used tests don’t allow rejecting. Thus, like in previous case, we 

have to conclude that use of parametric statistical methods for estimating of population density when its 

amount is rather small, hasn’t a good background. 

4.4 Interaction between individuals, and new mechanistic model 

For description of isolated population dynamics Verhulst’ model and some other models of the respective class 

are used (Verhulst, 1838; Gompertz, 1825; Kostitzin, 1937; Odum, 1983; Brauer and Castillo-Chavez, 2001; 

Nedorezov, 1986, 2012; Nedorezov and Utyupin, 2011 and others). In particular, Verhulst model has the 

following form: 

2xx
dt

dx   .                                                            (9) 
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In model (9)   is intrinsic rate of natural increase;   is positive parameter of self-regulation; )(tx  is 

population size (or density) at time moment t .  

Within the framework of model (9) it is assumed that influence of self-regulative mechanisms is 

proportional to number of interaction between individuals (it has influence on spread of diseases in population; 

it corresponds to level of competition between individuals for food etc.). It is also assumed that number of 

interaction between individuals is proportional to current population size squared. Within frameworks of some 

other models it is assumed that speed of interactions between individuals is proportional to xx ln  and 1x , 

where   is positive parameter (Gompertz, 1825; Brauer and Castillo-Chavez, 2001; Nedorezov and Utyupin, 

2011). All these models were compared with real time series and allowed obtaining interesting results (Gause, 

1934; Pielou, 1977; Nedorezov, 2011, 2012 and others).  

But what does it mean “number of interactions between individuals”? How can we calculate it within the 

framework of model (4)-(7) considering in current publication? These questions are very important because 

these questions are about backgrounds for classic models.  

Let’s assume that we have homogeneous space (points of lattice) and homogeneous scale for local 

population sizes (i.e. there are no “comfortable zones”). Respectively, we have to assume that migration 

processes must be organized like in model (4)-(7) when local population size is bigger than upper level 2D . 

In this situation every individual can migrate to nearest points and probability to stay in current point is 

positive. Results of modeling are presented on Fig. 5. 

 

 

Fig. 5 Dependence of number of interaction between individuals on population density for homogenous space and scale of 
population size. 

 

 

Number of (average) interactions was calculated by the following way. At the beginning model (4)-(7) 

worked free during 20000 time steps. For every of the next 20000 time steps average value of number of 

interactions was calculated: it was determined for all nodes of lattice. If in any point ),( ji  at moment t  we 

had )(txij  individuals it was assumed that every individual has interactions with all other individuals in this 
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node. Thus, it was assumed that number of “paired” interactions in point ),( ji  is equal to 

2/)1)()(( txtx ijij . For every time moment t  these amounts were summarized for all nodes of lattice and 

divided on mn  (average number of interaction for fixed time moment). For this new sample – it contained 

20000 values, - mean value was calculated too. Finally we got average (in space and time) number of 

interactions. It was provided for 100 various values of population density presented on Fig. 5. The same 

procedures were realized for situations when we had “comfortable zones” for individuals. 

As we can see on this picture (Fig. 5) in considering case number of interactions can be effectively 

described by the function 2xz  . For the same values of model parameters: 100 nm , 11 q , 

102 q , 2.03 q , - minimum of function Q  (2) is equal to 0.17987, parameter 499291.0  with 

standard error 0.000094, and 99999607.0R . It allows concluding that Verhulst model (9) has 

background and can be used, in particular, for population dynamics description in situations when population 

size is rather small and, respectively, far from “comfortable zones” (in situations when these zones haven’t 

strong influence on behavior of individuals).   

Computer experiments when “comfortable zones” exist, showed that attraction of “comfortable zones” can 

qualitatively change behavior of individuals and their distribution on the plane. For small values of population 

size ( 1 ) computer experiments were provided with step on density 01.0h . Approximation of dataset 

using the function 2cxz   showed that final value of squared deviations (function Q  (2)) is equal to 

0.00000265 with 99999943.0R ; parameter 501264.0c  with standard error 0.000036. Thus, we 

have the same situation like in previous case.  

For bigger values of population density, 1 , we have situation presented on Fig. 6. Analysis of the 

dependence of number of interactions on   shows that at the beginning we have “quadratic phase of growth” 

like on Fig. 5. After that we have “linear phase of growth”. On segment ]2.23,5.2[  changing of number 

of interactions can be approximated by linear function 7648.3156153.20  z  with 999919.02 R .  

 

Fig. 6 Dependence of number of interaction between individuals on population density for the situation when 1 . 
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When influence of zones where local population size is bigger than 2D , becomes rather strong we have 

“transition period” (fig. 6) without obvious dependence of number of interactions on density  . We have to 

note that this interval of changing of   is characterized by very big values of standard deviations (Fig. 6). 

When   belongs to segment [30, 36] dataset can also be approximated by linear function with other 

parameters: 688.34330781.27  z  with 980903.02 R .  

Consequently, we have to conclude that for description of population dynamics with Allee effect functions 

of (9) type are not suitable, and we have to use other functions. In particular, function )(xg  may have the 

following form: 


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(10) 

In (10) jb , 5,...,1j , are constants, 1b , 2b , 4b >0; ],[ 1jj   are segments corresponding to various 

types of changing of function )(xg ; )(xr  is sub-function corresponding to “transition period” (Fig. 6). In 

modification of model (9) with function (10) we have to put 4b ; if this inequality is truthful it is possible 

to point out upper limit of population size K . It is obvious that parameters of function (10) are not 

independent, and we have the following relations: 

312
2
11 bbb   , 3222 )( bbr   , 5343 )( bbr   . 

The second, for modification of model (9) with function (10) it is easy to point out conditions for 

parameters when in phase space we can observe two stable attractors. It is important that realization of this 

dynamic regime (trigger regime, or fixed outbreak; Isaev et al., 1984, 2001, 2009) can be explained by the 

specific organization of self-regulative mechanisms only. And, finally, questions about possible backgrounds 

for various well-known models (Gompertz, 1825; Kostitzin, 1937; Brauer and Castillo-Chavez, 2001; 

Nedorezov, 1986, 2012; Nedorezov and Utyupin, 2011 and others) are open now.  

 

5 Discussion 

Analysis of dependence of standard deviations (from “real values of densities) on population density shows 

that changing of these deviations (for various sample sizes) isn’t linear or monotonic function. On some short 

intervals it can be approximated by linear function but in general it has non-monotonic character (Fig. 2). In 

reality situations are more difficult, and respectively there are no possibilities to estimate critical values of 

population density when derivatives change their signs. Moreover, for real situations we have no possibility to 

find real values of density – every time we work with estimations of this amount only. It means that practically 

we have no chance to choose a system of weights for expression (3) for estimation of model parameters: we 

cannot find weights which transform expression (2), and all elements of minimizing functional form have 

similar influence onto final estimations of model parameters.  

If we follow the principle “to put bigger values of weights for smaller values of sample” every time we will 

have a situation when we put bigger value instead of smaller one (in a result of non-monotonic behavior of 

standard deviations). It means the following of pointed out principle can lead to unpredictable results in 

estimation of model parameters. Thus, introduction of weights into formula (2) of minimizing functional form 

must be avowed as untenable method. Additionally, heteroscedasticity problem must be avowed as unsolvable 

problem at estimation of non-linear ecological model parameters. 

Analysis of results of computer experiments with very simple stochastic model of migrations showed also 
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that there is no background for application of parametric statistical methods for analysis of datasets when 

population density is rather small. It has a direct relation to various methods of entomological data collection 

and, in particular, to methods of “cutting of squared meter of forest floor in autumn” or “shaking of model 

trees”. Use of these methods when population density is small leads to obtaining of non-Normal samples. 

Calculation of average (in space and time) of number of interactions of individuals for every fixed value of 

population density within the framework of stochastic model allowed presenting of background for Verhulst 

model (Verhulst, 1838). In particular, number of interactions can be described by quadratic law when 

population density is rather small, or when influence of attracting zones in space isn’t strong. For other well-

known models of the same class questions about kind of functions describing influence of self-regulative 

mechanisms are open. When influence of attracting zones onto behavior of individuals is rather strong kind of 

function can be difficult (10). 
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