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Abstract 

Recently I have introduced a modelling approach (flow connectivity) to ecological connectivity that is 

alternative to circuit theory, and is able to fix the weak point of the “from-to” connectivity approach. Flow 

connectivity also holds for mountain and hilly landscapes that are not composed of source and sink habitats. 

In this paper I compare the recently-introduced flow connectivity (FC) modelling to the commonly-used least 

cost (LC) modelling. LC path analysis is an attractive technique for analysing and designing habitat corridors 

because it: 1) allows quantitative comparisons of potential movement routes over large study areas, 2) can 

incorporate simple or complex models of habitat effects on movement and 3) offers the potential to escape the 

limitations of analyses based solely on structural connectivity (i.e. designating areas as patch, matrix or 

corridor) by modelling connectivity as it might be perceived by a species on a landscape. I evidence here that 

flow connectivity has the same advantages when compared to LC modelling as with regard to circuit theory. 

Four main differences emerged. LC modelling a) is a “from-to” approach to ecological connectivity, b) it seeks 

global path optimization, c) it allows for biotic paths where the biotic effort is ascending, and d) it is 

undirected (it does not depend on the direction of the path). FC has opposite properties. Moreover, cost-

distance models are based on two biologically improbable assumptions: (1) dispersers have complete 

knowledge of their surroundings, and (2) they do select the least cost route from this information. Instead, the 

predicted path lengths and the biotic efforts predicted by both FC and LC modelling in a case study about wolf 

in the Ceno valley (Parma, Italy) resulted not significantly different, but this result is contingent upon the case 

study. 

 

Keywords biotic flows; flow connectivity; gene flow; landscape connectivity; least cost modeling; species 

dispersal. 

 

 

 

 

 

 

 

 

1 Introduction 

Landscape connectivity was initially introduced as “the degree to which the landscape facilitates or impedes 

movements among resource patches” (Taylor et al., 1993). The way in which animals disperse is pivotal for 
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the management and conservation of fragmented populations. Landscape heterogeneity and fragmentation 

affect how organisms are distributed in the landscape (Kennedy and Gray, 1997), determine the chance of a 

patch being colonized (Hanski and Ovaskainen, 2000), reduce inbreeding in small populations and maintains 

evolutionary potential (Couvet, 2002).  

The prediction of animal dispersal is an useful tool for biotic conservation planning (King and With, 2002). 

Due to the difficulty in gathering experimental results on species dispersal, simulation models have become a 

cost-effective approach to predict dispersal dynamics (Tischendorf, 1997; Tischendorf and Fahrig, 2000). 

Simulation models with spatially-explicit landscapes enable the integration of the relationships between 

species and the landscape, and provide representation of the spatial elements that promote or constrain 

dispersal.  

Several dispersal models with spatially explicit landscapes have been developed (Gustafson and Gardner, 

1996; With et al., 1997; Gardner and Gustafson, 2004). Recently, concepts and algorithms from electrical 

circuit theory have been adjusted for these purposes (McRae, 2006; McRae, 2007; McRae et al., 2008). In 

circuit theory, landscapes are represented as conductive surfaces, with resistance proportional to the easiness of 

species dispersal or gene flow. Low resistances are assigned to habitats that are most permeable to movement 

or best boost gene flow, and high resistances are given to poor dispersal habitat or to barriers. The application 

of circuit theory to ecological problems is motivated by intuitive connections between ecological and electrical 

connectivity: rigorous connections between circuit and random walk theories mean that current, voltage, and 

resistance in electrical circuits have concrete interpretations in terms of species dispersal probabilities (McRae 

et al., 2008). Circuit theory offers several advantages, including a theoretical basis in random walk theory and 

the ability to evaluate contributions of multiple dispersal pathways. For example, effective resistances 

calculated across landscapes have been shown to markedly improve predictions of gene flow for plant and 

animal species (McRae, 2007).  

Recently I have introduced a modelling approach (flow connectivity; Ferrarini, 2013a) to ecological 

connectivity that is alternative to circuit theory, and is able to fix the weak point of the “from-to” approach. 

Landscape connectivity as estimated by circuit theory relies on a strong assumption that is possibly untrue, 

unproven or very challenging to be demonstrated: species dispersals are “from-to” movements, i.e. from 

source points (patches) of the landscape to sink ones. Source and sinks are suitable areas present within a 

matrix that is partially or completely hostile to the species. Two aspects of this approach are questionable. 

Firstly, a source-sink habitats model can be suitable to describe lowland landscapes where few suitable patches 

(e.g. protected areas) are surrounded by a dominant, hostile (or semi-hostile) anthropogenic landscape. By the 

way, mountain and hilly landscapes are not composed of source and sink habitats, instead they’re a continuum 

with a natural matrix where the source-sink habitats model loses its rationale. Second, assuming that a species 

aims to go from “patch A” to “patch B” means that such species is supposed to plan such dispersal path (i.e. 

global optimization). This could be true for short-range dispersals where the final point is visible from the 

starting one, but for wide-range movements, and for plant species in particular, the dispersal model postulated 

by circuit theory is unsuitable. 

In addition, I’ve introduced “reverse flow connectivity” (Ferrarini, 2014a) that couples evolutionary 

algorithms to partial differential equations in order to fix the problem of subjectivity in the attribution of 

friction values to landscape categories. Reverse flow connectivity prevents from the risk of using expert 

opinions on an arbitrary scale. I’ve also showed that flow connectivity can be used to predict biotic movements 

happened in the past (backward flow connectivity; Ferrarini, 2014b), and to detect landscape barriers and 

facilities to species movements (Ferrarini, 2014c). 

In this paper, I compare flow connectivity to another commonly-used tool for connectivity modelling: least 
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cost modeling (Dijkstra, 1959). Least-cost path analysis (LaRue and Nielsen, 2008; Phillips et al., 2008) is an 

attractive technique for analysing and designing habitat corridors because it: 1) allows quantitative 

comparisons of potential movement routes over large study areas, 2) can incorporate simple or complex 

models of habitat effects on movement and 3) offers the potential to escape the limitations of analyses based 

solely on structural connectivity (i.e. designating areas as patch, matrix or corridor) by modelling connectivity 

as it might be perceived by a species on a landscape.  

I show here that flow connectivity has the same advantages when compared to least cost modelling as with 

regard to circuit theory.  

 

2 Frictional Landscape: Mathematical Formulation 

Let ( , , , )L x y z t  be a real 3D landscape at generic time t, where [1,..., ]L n . In other words, L is a generic 

(categorical) landcover (or land-use) map with n classes. At time T0,  

0 0( , , , )L L x y z t           (1) 

Let  be the landscape friction (i.e. how much each land parcel is unfavourable) to the species under 

study. In other words, ( )L is a function that associates a friction value to each pixel of L.  At time T0,  

0 0( )L            (2) 

Let ( , , ( ))sL x y L be a landscape where, for each pixel, the z-value is equal to the friction for the species 

under study. In other words, Ls is a 3D fictional landscape with the same coordinates and geographic 

projection as L, but with pixel-by-pixel friction values in place of real z-values. Higher elevations represents 

areas with elevated friction to the species due to whatever reason (unsuitable landcover, human disturbance 

etc), while lower altitudes represent the opposite. At time T0, 

        (3) 

 

3 Least-cost Modelling: Mathematical Formulation 

Least cost (LC) modelling is an algorithm that computes a deterministic trajectory (also termed least cost path; 

LCP hereafter) between a start and an end point moving along a frictional landscape.  

A LCP minimises the sum of frictions of all pixels along the path, being the sum of the overall friction cost 

(OFC from now on).  

Thus LCP is the path having the minimum OFC calculated as: 

min ( , , ( )) min ( , , ( ))
i

s s

LCP path

OFC L x y L dp L x y L dxdy        (4) 

where the symbol dp may be intuitively interpreted as an elementary path length with dx and dy components. 

Each LCP is described by its length (in m), its OFC (unitless) and its per-km OFC (in km-1). Recent 

applications of least-cost modelling involve measures of landscape connectivity (Drielsma et al., 2007), 

tracking of animal migration routes (Epps et al., 2007), planning of optimal paths within protected areas 

(Ferrarini et al., 2008). 

( )L

0 0( , , ( ))s sL L x y L
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4 Flow Connectivity: Mathematical Formulation 

Flow connectivity (FC) modelling starts with the assignment of true-to-life coefficients to Ls. 

True-to-life coefficients for can be calculated in flow connectivity as depicted in Ferrarini (2014a), 

where I defined P as the predicted path for the species over the fictional landscape Ls, and P* the real path 

followed by the species (as detected by GPS data-loggers or in situ observations). The bias B between P and 

P* is hence calculated as 

*mod( )B Pdx P dx            (5) 

where the function mod indicates the module of the difference.  

Hence: 

* *

* *

        where >
 

        where >

Pdx P dx P P
B

P dx Pdx P P

  


 
 

      (6) 

Now, true-to-life coefficients for landscape friction can be calculated by optimizing B, as follows: 

set B to 0           (7) 

or, at least, 

minimize B          (8) 

The optimization of ( )L can be properly achieved using genetic algorithms (GAs; Holland, 1975). GAs are 

powerful evolutionary models with wide potential applications in ecology and biology, such as optimization of 

protected areas (Parolo et al., 2009), optimal sampling (Ferrarini, 2012a; Ferrarini, 2012b), optimal detection 

of landscape units (Rossi et al., 2014) and networks control (Ferrarini, 2011a; Ferrarini, 2013b; Ferrarini, 

2013c; Ferrarini, 2013d; Ferrarini, 2013e; Ferrarini, 2014d).      

      

Now FC simulates the biotic flow over the frictional landscape Ls as follows (Ferrarini 2013) 

 

( , , )
div 

S x y t S S
S S

t x y

  
  

             (9) 

with initial conditions 0S  at time T0. The symbol of derivative used in eq. (9) is a notation for a differential 

or a difference partial equation depending on the kind of landscape under study. For a high-resolution 

frictional landscape, it represents a differential operator that simulates continuos movements over such 

landscape. Conversely, for a low resolution landsape it describes discrete movements both in space and time. It 

results clear that flow connectivity resembles in some way the motion characteristic of fluids over a surface. In 

fact, FC predicts species dispersal by minimizing at each time step the potential energy due to fictional gravity 

force over a frictional 3D landscape. At any position in the frictional landscape, a movement is possible only 

in the direction that mostly lowers the friction to the species. 

As showed in Ferrarini (2013a), the resulting biotic flow is as follows: 

( )L
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FC assumes that the species dispersal ends at a stability point, if exists, where: 

( , , )
0

S x y t
S

t




            (11) 

Now, if we define P as the predicted path for the species over the fictional landscape Ls, and under the 

hypothesis that Ls remains equal to LS0 due to the short time-period considered, the species effort (i.e., work) E 

for going through such path can be computed as: 

0( , , ( ))s s

P P

E L x y L dp L dxdy         (12) 

where the symbol dp represents an elementary path length with dx and dy components. E is thus the result of a 

local (pixel-by-pixel) path optimization. In other words, the model assumes a greedy, local effort-minimization 

for the species dispersal that do not necessarily corresponds to the global minimization. In order to apply flow 

connectivity modelling to real landscapes, I wrote the ad hoc software Connectivity Lab (Ferrarini, 2013f). 

 

5 A Comparative Example 

The Ceno valley is a 35,038 ha wide valley situated in the Province of Parma, Northern Italy. It has been 

mapped at 1:25,000 scale (Ferrarini, 2005; Ferrarini et al., 2010) using the CORINE Biotopes classification 

system. The landscape structure of the Ceno Valley has been widely analysed (Ferrarini and Tomaselli, 2010; 

Ferrarini, 2011b; Ferrarini, 2012c; Ferrarini, 2012d). From an ecological viewpoint, the most interesting event 

registered in the last years is the shift of wolf populations from the montane belt to the lowland. Several 

populations have been recently observed in situ by life-watchers, environmental associations and local 

administrations.  

I have applied both FC and LC modelling to a portion of the Ceno valley above 1000 m a.s.l. close to the 

municipality of Bardi (Fig. 1). The area is a square of about 20 km * 20 km. Optimized friction values 

to wolf presence are borrowed from Ferrarini (2012e).  

FC modelling provides the results depicted in Fig. 2. Red lines represent the predicted biotic flows, while 

blue triangles are the detected stability points. I have then repeated the simulations via LC modelling (Fig. 3) 

using the starting points of Fig. 1 and the stopping points individuated by FC modelling. 

( )L
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Fig. 1 The frictional landscape Ls has been built for wolf upon a portion (20 km * 20 km) of the Ceno valley (province of Parma, 

Italy) that represents here the real landscape L(x,y,z,t). The elevation represents for each pixel the landscape friction for 

the species under study: the higher the elevation, the higher the friction to the species. Blue flags represent sites where the species 

is simulated to be present (S0=1). 

 

 

Fig. 2 Starting points (flags), predicted paths (red lines) and predicted stopping points (triangles) of biotic shifts using flow 
connectivity modelling over the frictional landscape of Fig. 1. 

 

( )L
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I have then calculated the path lengths and the shift efforts predicted by both FC and LC modelling (Fig. 4 

and Fig. 5). It resulted that path lengths are always higher (although not in a significant way: t-test, p>0.05) for 

FC than for LC modelling. The reason is clear: as FC is a greedy, local effort minimization of species dispersal, 

it produces predicted biotic shifts that are much more complex than those produced by LC modelling (that 

instead seeks global optimization). As a logic consequence, also shift efforts are higher for FC than for LC 

modelling (although not in a significant way: t-test, p>0.05).  

 

 
Fig. 3 Starting points (flags), predicted paths (black lines) and stopping points (triangles) of biotic shifts using least cost 
modelling over the frictional landscape of Fig. 1. 

 

 
Fig. 4 For each of the 7 predicted paths, the length in meters of each biotic shift is given both for flow connectivity paths (in 
green) and least cost ones (in red).  
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Fig. 5 For each of the 7 predicted paths, the effort of each biotic shifts is given both for flow connectivity paths (in green) and 
least cost ones (in red).  

 

 

 
 
Fig. 6 For one of the 7 predicted paths, the 3D profile of the biotic shift over the frictional landscape predicted by flow 
connectivity (top) and least cost modelling (bottom) is given.  

 

 

Last, for one of the predicted paths I have extracted the 3D profile over the frictional landscape (that 

represents the effort that the species sustains at each single point along the predicted shift; Fig. 6). It is clear a 
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further fundamental difference between FC and LC modelling: in FC the predicted path always presents 

descending efforts (Fig. 6a), as the species locally optimizes its movements towards fitter areas. Instead, in LC 

modelling (and in circuit theory) the species can choose a path where effort is also ascending (Fig. 6b) because 

the species only seeks global optimization. 

There’s a further difference between FC and LC: FC has a precise direction (directed movement), i.e. it 

depends on the direction of the path. Instead LC modelling has not a direction, in fact if one inverts the starting 

with the stopping point he achieves the same LCP (undirected movement). It should be clear that undirected 

movements are not very realistic, in fact it’s not plausible that the biotic shift of Fig. 6b has the same 

probability to happen both in a direction (from left to right) and in the other (from right to left). In fact in the 

latter case, the shift would be from low-friction areas to high-friction ones, i.e. an ecological nonsense. 

 

6 Conclusions 

In this paper I have compared the recent flow connectivity modelling to the commonly-used least cost one. 

I have showed here that flow connectivity has the same advantages when compared to least-cost modelling as 

with regard to circuit theory. Least cost modelling a) is a “from-to” approach to ecological connectivity, b) it 

seeks global path optimization, c) it allows for biotic paths where the effort is also ascending, and d) it is 

undirected. Flow connectivity has opposite properties. Moreover, cost-distance models are based on two 

biologically improbable assumptions: (1) dispersers have complete knowledge of their surroundings, and (2) 

they select the least cost route from this information. 

Instead, the path lengths and the biotic efforts predicted by both FC and LC modelling in this comparative 

case study about wolf in the Ceno valley (Parma, Italy) resulted not significantly different, by the way this 

result is contingent upon the case study. 
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