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Abstract 

Land is becoming a scarce natural resource due to the burgeoning population growth and urbanization. 

Essentially, detecting changes in land surface is significant for understanding and assessing human impacts on 

the environment. Nowadays, land use change detection using remote sensing data provides quantitative and 

timely information for management and evaluation of natural resources. This study investigates the land use 

changes in Birjand of Iran using Landsat TM5 images between 1986 and 2010. Artificial neural network was 

used for classification of Landsat images. Five land use classes were delineated include Pasture, Irrigated 

farming Land, Dry farming lands, Barren land and Urban. Post-classification technique applied to monitor land 

use change through cross-tabulation. Visual interpretation, expert knowledge of the study area and ground 

truth in formation accumulated with field works to assess the accuracy of the classification results. Overall 

accuracy of 2010 and 1986 image classification was 89.67 (Kappa coefficient: 0.8539) and 88.78 (Kappa 

coefficient: 0.8424) respectively. The results showed considerable land use changes for the given study area. 

The greatest increase was related to Barren land class almost 378 percent. The dry farming lands reduced by 

almost 48 % during the study period. Urban class has increased drastically about 219 percent, 3% of dry 

farming  lands, 61 % of pastures lands, 4% of irrigated farming land in 1986, converted to urban and 

industrial land in 2010 and alone 31 % of urban land in 1986 had conformity to urban in 2010. Irrigated 

farming land increased about 17.16 % predominantly due to population growth. The result of this study 

revealed a successful application of the ANN approach for land use change detection. Although this model 

demonstrated high sensitivity to training samples data, it required trial and error for attainment more accurate. 

But high accuracy of classification in last two years proved that ANN was highly efficient for classification of 

Landsat images in the study area. 
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1 Introduction 

Land use change detection is one of the main approaches to expand our knowledge about the impact of human 

activities on environmental change (Dickinson, 1995; Zhang et al, 2006; Ballestores and Qiu, 2012; Prashant 

et al, 2012). Since most of land use changes are not reversible (Mertens and Lambin, 2000), evaluation of these 

changes are necessary as essential prerequisites for planners and land managers, whereas it has been 

inadequately authenticated in arid and semi-arid land use changes (Lambinet al., 2001). In recent years, plain 

of Birjand which located in dry and cold regain of Iran, has experienced a lot of land use changes, such as 

becoming the center of province in 2005, physical extension of the urban areas, increasing pressure from 

growing human population, destruction of agriculture land and shift them to urban area. So, it is important to 

know land use changes across time, while there is not a recent report about of land use change in this area. 

Whereas, the changes in land use have occurred in a wide range, fast and accurate estimates of such 

changes without using new technologies would be impossible. Nowadays, integration of GIS and remote 

sensing has been provided accurate information about land use changes (Imam, 2011; Abdullah et al., 2013). 

Various classification algorithms exist for land use change detection of satellite images (Aplin and Atkinson, 

2004; Lu et al., 2004; Singh and Khanduri, 2011), however, there is not guarantee to use the best algorithm in 

all conditions (Yang et al., 2002; Prashant, 2012). In this study, we used post classification change analysis. 

This method provides "from” to “to" transition rules (Yuan et al., 2005; White et al., 2013) and has been in 

many related studies (Abd El-Kawya et al., 2011; Singh, 1989). Post classification method also is known to be 

more appropriate method for change detection (Lilles et al., 2004). Whereas this method is depends on the 

accuracy of individual maps (Foody, 2002). In this study, artificial neural network (ANN) has been selected, 

which are widely used for the classification of remote sensed images for mapping land use change (Grekousis 

et al., 2013; Qiu and Jensen, 2004; Gomez et al., 2008). ANN has been used abundantly for supervised (Fkirin 

et al., 2009; Helmy and El-taweel, 2010; Zhang, 2007a, b; Watts, 2011; Zhang, 2010) and unsupervised remote 

sensing images classification (Sveinsson et al., 2001; Baraldi and Parmiggiani, 1995). There are three types of 

networks that have been used a lot, including multi-layer perceptron (MLP), Hopfield and Kohnen (Mostapha 

et al., 2010; Zhang, 2010). MLP has been applied in environmental science (Maier and Dandy, 2001) and 

imageclassification (Atkinson and Tatnall, 1997). The purpose of this study is to detect land use change from 

1986 to 2010 using Landsat TM5 images in the plain of Birjand located in Iran. We used ANN with back 

propagation-training algorithm to provide the land use maps in the ENVI software. 

 

2. Materials and Methods 

2.1 Study area 

The study area is located in Southern Khorasanin eastern Iran. The total area is about 995.5 km2 (Fig. 1). 

2.2 Data source and methods 

2.2.1 Data source 

The Landsat TM5 images used in this study were acquired from www.usgs.gov. The dataset were on 17st of 

July 2010 and 15th of June 1986, with nearly zero percent cloud cover over the region. We tried to select all 

images almost during the growing seasons for decreasing the effect of seasonal on land use change results. The 

received Landsat images were already geo-referenced at the Universal Transverse Mercator (UTM) projection 

system (zone: 40N, datum: WGS-84) with 30 m spatial resolution. Finally, the image of 1986 was 

geometrically corrected in comparison to the image of 2010 with 0.005 RMS pixels. 

2.2.2 Training site for supervise classification 

Selecting training site for supervised classification remotely sensing images is related to the effective field visit 

within the local area and collecting exact and useful information, accordingly, the field visit was done in two 

277



 IAEES  

steps in t

the area 

second st

map land

five land

Urban an

from the 

of spectr

 

 

Fig. 1 Stu
Landsat TM

 

 

 

 

            

this research.

and training 

tep, after clas

d use) with th

d use classes 

nd Barren lan

study area to

ral bands of d

dy area .The sa
M5 2010 extrac

Com

            

. At the first 

data for intro

ssification in 

he ground–tru

were determ

nd. Then for 

o identify the 

different land 

atellite image be
cted as plain of 

   

mputational Ecol

            

time, for the 

oduction to t

order to field

uth and cond

mined in the s

each defined

same pattern

uses was calc

elongs to the fa
Birjand. 

   Fig. 2 Spe

logy and Softw

            

identificatio

the software d

d validation a

duct accuracy

study area as 

d class, the il

n in the satell

culated (Fig. 

alse color comp

ectral signatures

ware, 2014, 4(4)

            

n of the area

due to the su

and compariso

 assessment. 

Irrigated farm

llustrative nu

ite imagery o

2). 

posite of the sat

s of different lan

: 276-288 

            

a, we choose 

upervised clas

on the output

According to

ming land, P

umber of pixe

of 2010 and 1

tellite imagery o

nd uses. 

          w

the present a

ssification pr

t of the softw

o the first tim

Pasture, Dry f

els was caref

1986. As well

 
of the study are

 

www.iaees.org

application of

rocess. In the

ware (the final

me field visit,

farming land,

fully selected

l, the average

ea consisting of

f 

e 

l 

, 

, 

d 

e 

f 

278



Computational Ecology and Software, 2014, 4(4): 276-288 

 IAEES                                                                                    www.iaees.org

Based on Fig. 2, in this study spectral mixing reflectance was a main problem in classification scope. 

Whereas impervious surface is considered an important component in the urban area that confused with soil 

and Pasture (Lu and Weng, 2004; Moran, 2010). Due to importance of the grow of the urban area between two 

time studied, and because of the resolution restriction of the Landsat TM data (Hasmadi and Jusoff, 2008), 

Consequently, urban area from each image was extracted and masked. 

2.3 Spectral indices and spectral separability 

The separability on sample pixels was checked. The Jeffries-Matusita and Transformed Divergence statistical 

(ENVI User’s Guide, 2009) measured based on training samples. The propose of such test was selecting the 

best training data to require acceptable land-use classification 

 

 
Table 1 Separability of the determined class training samples from the Landsat  
TM5 image at 2010. The values are calculated with the Jeffries-Matusita and  
Divergence transformed test. 

Divergence 

trans formed 

Jeffries-

Matusit
Land use class 

2.00 1.83 Irrigated farming land 

Pasture 1.60 1.99 Dry farming land 

1.99 1.53 Barren land 

1.07 1.90 Barren land 

Dry farming land  
2.00 1.83 Irrigatedfarming land 

1.99 1.63 Irrigatedfarming land Barren land 

 

 

Table 1 provides the separability results achieved for the training classes of the 2010 Image. A good 

separation was represented by a value ranging from 1.9 to 2 and a very low separation was described with 

values less than 1. According to Table 1 Pasture and Dry farming land have Minimum value and Irrigated 

farming land with another class has maximum value. 

2.4 ANN classification method 

2.4.1 Network architecture 

Multi-Layer Perceptron (MLP) has advantages to other types of ANN models from ANN can be trained using 

supervised and unsupervised learning algorithms (Zhang, 2010). In supervised learning, ANNs fit a model to 

data based on the relationship between the input and the output. Conversely, in unsupervised learning, data are 

classified to different classes based on the similarity between input data. MLP uses a supervised learning 

algorithm which can estimate a function between input-output pairs without knowledge of the form of the 

function (Tayyebi and Pijanowski, 2014). MLP uses data in at least two periods of time to train the networks. 

MLP has been applied successfully in image classification (Atkinson and Tatnall, 1997). For this purpose, 

three-layer structure has more application (Paola and Schowengerdt, 1995). Three layers consist of one input 

layer, one output layer and one hidden layer. In the structure of MLP usually one hidden layer must be 
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 Fig. 6 Classification image for the Plain of Birjand, 1986 (a); 2010 (b) respectively. 

 

 

2.5 Accuracy assessment 

The most common way to present the accuracy of the classification results is using an error matrix (Foody, 

2002). Error matrix has known as a standardized and very effective method to expose accuracy of 

classification remote sensing data results (Congalton, 1991; Foody, 2002). 
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In this study, the error matrix was generated by comparing the classification results against reference 

dataset. This reference dataset consists of 300 points randomly placed over all classified images. for the 2010 

images, the reference points was controlled with more detailed images from the author’s previous knowledge 

of the area and grand truth extracted field work we used 30 GPS points acquired randomly during a field work 

in the growth season (through the second time field work). For the 1986 images, reference data controlled base 

on visual interpretation on the false colored 1968 Landsat TM. Table 2 indicates Overall accuracy and Kappa 

coefficient statistics for two classification image.  

 

 
Table 2 Overall accuracy and Kappa coefficient statistics achieved for the  
investigating Ann classification method. 

Overall Accuracy (%) Kappa Coefficient Classified Image  

88.78 0.8424 1986 

89.67 0.8539 2010 

 

 

2.6 Change detection 

Change detection was done through the post classification by using the gained maps by the help of ANN 

method. For this propose the tabulate area order was used in GIS software as confusion matrix. This provides 

"from” to “to" transition among defined land use classes (Table 3). 

 

 
Table 3 Confusion matrix for the changes obtained from the LULC change analysis between the initial state (classification image 
at 1986) and the final state (classification image at 2010). 

classes 2010 

1986 
Urban Dry  Farming Irrigated  Farming Barren land Pasture Total

(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%) (Km2)

Urban 14.70 31.3 0 0 0 0 0 0 0 0 14.70

Barren land 0.41 0.89 0.99 2.39 2.14 4.53 17.44 13.46 0.82 6.05 27.04

Irrigated  

Farming  
1.68 3.57 2.20 5.34 19.74 41.84 4.53 3.49 1.65 12.10 40.26

Dry farming  1.37 2.92 15.72 38.02 5.18 10.99 32.99 25.48 3.42 25.02 80.3 

Pasture 28.78 61.28 22.42 54.23 20.10 42.67 74.53 57.55 94.08 687.05 832.89

Total (Km2) 46.96 100 41.34 100 47.18 100 129.50 100 100 730.23 995 

 

 

3 Results 

The classified maps for 1986 and 2010 images have been presented in Fig. 6. The results showed a 

fundamental change in the study areas. According to Table 3 and Fig. 7, the greatest increase was in Barren 

land about 378.8 %, as this class has been increased of 27.04 km2 in initial year (1986) to 129.50 km2 in final 

year (2010). Because 4.5 km 2 of irrigated farming land class, 32.99 km2 of dry farming land and 74.53 km2 of 

pasture in initial year (1986) have been converted to Barren lands in the final year (2010). 17.44 km2 of “barren 

land” in initial year remained the same in the final year. 

Urban class to last 24 years (from 1986 to 2010) has increased about 219 %, 3% of dry farming land, 61 % 
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5 Conclusions 

This research presented an analytical approach to describe land use changes of the environmentally sensitive of 

Birjand. For this purpose, remotely sensed data obtained from Landsat TM5 satellite that is one of the the most 

common data source for land use classification (Moran, 2010), from 1986 and 2010 were used. After pre-

processing the two Landsat images, the separated training sample have been selected for determined land use 

class of the study area. ANN classification method used to classify satellite images. Post-classification 

technique applied to monitor from- to land use change through cross-tabulation. An integration of visual 

interpretation, expert knowledge of the study area and ground truth in formation accumulated with field works 

was applied to assess the accuracy of the classification results. 

The result of accuracy assessment indicated the overall accuracy of 2010 and 1986 image classification 

was 89.67 and 88.78 respectively. The kappa coefficient of 2010 and 1986 image was 0.8539 and 0.8424 

respectively. It is concluded that ANN method can provided acceptable classification accuracy values in this 

study. 

Whereas arid and semi-arid region are recognized as fragile ecosystem, reliable land use detection are 

essential prerequisites and essential tools to planning in these areas. Plain of Birjand is a representative 

example of arid and semi-arid areas, hence the urbanization and the industrialization in this area are required 

incessant monitoring. It is recommended for future studies to achieve an accurate results with advanced 

precision should be used higher-resolution images and shorter time intervals. 
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