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Abstract 

In this paper, we consider a classical discrete-time food chain model describing predators-prey interaction. The 

Holling type I functional response is used as the uptake for both predators. The existence and local stability of 

fixed points of the discrete dynamical system are analyzed algebraically. Using growth rate of prey as the 

bifurcation parameter, it is shown that the system undergoes a flip and Hopf bifurcations around planer or 

interior fixed point.  It has been found that the dynamical behavior of the model is very sensitive to the 

parameter values and the initial conditions. Numerical simulations not only illustrate the key points of 

analytical findings but also exhibit complex dynamical behaviors of the model, such as the phase portraits, 

cascade of period-doubling bifurcation and determine the effects of operating parameters of the model on its 

dynamics. The Lyapunov exponents are numerically computed to characterize the asymptotic stability of the 

system dynamic response and estimate the amount of chaos in the system. 
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1 Introduction 

The dynamics of predator-prey interaction is the starting point for many variations (food chain, food web etc.) 

that yield more realistic biological and mathematical problems in population ecology. Predation is a direct 

interaction which occurs when individuals from one population derive their nourishment by capturing and 

ingesting individuals from another population. There are many articles devoted to the study of predator-prey 

interaction both from the experimental and the modeling point of view. It is well known the Lotka-Voltera 

predator-prey model is one of the fundamental population models, a predator-prey interaction has been 

described firstly by two pioneers Lotka (1924) and Voltera (1926) in two independent works. After them, more 

realistic prey-predator model were introduced by Holling suggesting three types of functional responses for 

different species to model the phenomena of predation (Holling, 1965).  

Qualitative analyses of prey-predator models describe by set of differential equations were studied by 
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many authors (Brauer and Castillo, 2001; Chauvet et al., 2002; Hastings and Powell, 1991; Klebanoff and 

Hastings, 1994; May, 1974; Murray, 1998; Zhu et al., 2002).  Another possible way to understand a 

prey-predator interaction is by using discrete-time models. These models are more reasonable than the 

continuous time models when populations have non-overlapping generations (Brauer and Castillo, 2001; 

Murray, 1998) and lead to unpredictable dynamic behaviors from a biological point of view. This suggests the 

possibility that the governing laws of ecological systems may be relatively simple and therefore discoverable. 

The author (May, 1975, 1976) had clearly documented the rich array of dynamic behavior possible in simple 

discrete-time models. Recently, there is a growing evidence showing that the dynamics of the discrete-time 

prey-predator models can present a much richer set of patterns than those observed in continuous-time models 

(Agiza et al., 2009; Danca et al., 1997; Elsadany, 2012; Hasan et al., 2012; He and Lai, 2011; Ivanchikov, 2012; 

Jing et al., 2002, 2004, 2006; Li, 1975; Liu, 2007; Zengyun, 2011; He and Li, 2014; He, 2011). However, there 

are few articles discussing the dynamical behaviors of predator-prey models, which include bifurcations and 

chaos phenomena for the discrete-time models. The authors (He, 2011; Jing, 2006; Liu, 2007; Zengyun, 2011) 

obtained the flip bifurcation by using the center manifold theorem and bifurcation theory. But in (Agiza et al., 

2009; Danca et al., 1997; Elsadany, 2012), the authors only showed the flip bifurcation and Hopf bifurcation 

by using numerical simulations. The dynamics of a tri-trophic discrete-time food chain models that incorporate 

Holling type response functions have more complex behaviors. A simple discrete-time food chain model had 

been examined by (Elsadany, 2012) which was the extended works in (Danca et al., 1997). They showed the 

system with two predators and one prey exhibit that the predator feeds exclusively on the prey, the top predator 

feeds on the predator and the prey is of logistic growth. Several studies used bifurcation analysis to find out if 

coexistence of all trophic levels is possible. In this paper, we are going to examine the dynamics of a 

discrete-time food chain where the top predator feeds exclusively on the prey and on the predator, the predator 

consumes the prey and the prey grows logistically in the absence of predators. The Holling type I functional 

response is used for both predators. In this work, we confine our interest to present, by using both analytic and 

numerical methods, the domains of the values of the parameters under which the system predicts that the 

populations will be able to persist at a steady state, the conditions for flip and/or Hopf bifurcations and the 

domain for the presence of chaos in the system by measuring the maximum Lyapunov exponents.  

Our results in this paper are extension to those in (Danca et al., 1997; Elsadany, 2012). This paper is 

organized as follows. In Section 2, the classical discrete-time food chain model with Holling type I functional 

response is described. In section 3, we discuss the existence and local stability of fixed points for system (1) in 
3
R . In section 4, we present the numerical simulations which not only illustrate our results with theoretical 

analysis but also exhibit complex dynamical behaviors such as the cascade periodic-doubling bifurcation in 

periods 2, 4 and 8 and quasi-periodic orbits and chaotic sets. Finally a short discussion is given in Section 5.  

 

2 The Model 

In ecology, many species have no overlap between successive generations, and thus their population evolves in 

discrete-time steps (Murray, 1998). Such a population dynamics is described by difference equation. The 

discrete-time food chain we analyze in this paper consists of prey, predator and top predator. Let nx  denotes the 

number of prey population, ny  the number of predator population and nz  the number of top predator 

population in the n th generation. Our model is described by the following system of nonlinear difference 

equations in non-dimensional form:  
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In the system (1), the prey, x  grows logistically with intrinsic growth rate r  and carrying capacity one 

in the absence of predation. The predator, y  consumes the prey, x  and the top predator, z  consumes both 

the prey, x  and predator, y with functional responses Holling type I. All parameters 212121 ,,,,,, ccbbaar  

have positive values. From mathematical and biological point of view, we will pay attention on the dynamical 

behaviors of (1) in the first octant 3
R . When all the species are present, the system is a simple food chain. In 

our model, when predator or top predator is omitted, the system reduces to a simple predator-prey interaction 

(Danca, 1997) and when the predation of top predator on prey is absent, it reduces to model (Elsadany 2012). 

Starting with initial population size  000 ,, zyx , the iteration of system (1) is uniquely determined a 

trajectory of the states of population output in the following form 

   000 ,,,, zyxHzyx n
nnn  , where ,2,1,0n . 

 

3 The Fixed Points: Existence and Local Stability 

In this section, we shall first discuss the existence of fixed points for (1), then study the stability of the fixed point 

by the eigenvalues for the Jacobian matrix of (1) at the fixed point. 

It is clear that the system (1) has the following fixed points in the form ),,( zyxE : 

 0,0,00E : extinction of all populations. 
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To discuss the existence of fixed points, we say that fixed points will not exist if any one of its components is 
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negative. The fixed point 0E  always exists. The existence condition for 1E  is 1r  and similarly 
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feasibility condition for the interior fixed point *E is  
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In the next step, we will investigate the local stability of these fixed points by finding the modules of 

eigenvalues of the associated Jacobian matrices. The Jacobian matrix due to the linearization of (1) about an 

arbitrary fixed point 3),,(  RzyxE  is given by 
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It is straightforward to compute the eigenvalues of  0EJ  and  1EJ and we can obtain the following 

propositions showing the local dynamics of 0E  and 1E  if they exist. 

Proposition 1. The fixed point 0E  is a sink if 1r , 0E  is a saddle if 1r , and 0E  is non-hyperbolic 

if 1r . 

Proposition 2. The fixed point 1E  exists if 1r  and there are at least four different topological types of 

1E  for all permissible values of parameters. 

(i) 1E  is a sink if 
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(iii) 1E is non-hyperbolic if  
11

3
2

2

2

2




b

b
or

a

a
rorr ; 

(iv) 1E is a saddle for the other values of parameters except those values in (i)–(iii). 

We can easily see that for a fixed point 1E  if  
1212121 ,,,,,, EFBccbbaar   where 
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then one of the eigenvalues of  1EJ  is 1  and the others are neither 1 nor 1 . Therefore, there may be 

flip bifurcation of the fixed point 1E  if r  varies in the small neighborhood 3r and 

 
1212121 ,,,,,, EFBccbbaar  . 

When 2E  exists, the Jacobian matrix at 2E  is given by 
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Therefore, the eigenvalues of  2EJ  are  
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It is easy to see that 2,1  satisfy the equation  
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Using Jury’s criterion (Elaydi, 1996), we have necessary and sufficient condition for local stability of the 

fixed point 2E  which are given in the following proposition. 

Proposition 3. When
12
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(i.2) 01  ,  122
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(ii) it is a source if one of the following conditions holds: 
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(iii) it is non-hyperbolic if one of the following conditions holds: 
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(iv) it is a saddle for the other values of parameters except those values in (i)–(iii). 

 

Following Jury’s criterion, we can see that one of the eigenvalues of  2EJ  is 1  and the others are 

neither 1 nor 1  if the term (iii.1) of Proposition 3 holds. Therefore, there may be flip bifurcation of the 

fixed point 2E  if r  varies in the small neighborhood of 
2EFB  where 

    .0,,,,,,1,0,
1

,
3

3
:,,,,,, 2121211

22

222121

2

2
2121212
















 ccbbaar
ac

cabaaa
r

a

a
rccbbaarFBE

 

Also when the term (iii.2) of Proposition 3 holds, we can obtain that the eigenvalues of  2EJ  are a pair 

of conjugate complex numbers with module one. The conditions in the term (iii.2) of Proposition 3 can be 

written as the following set: 
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and if the parameter r  varies in the small neighborhood of 
2EHB ; then the Hopf bifurcation will appear. 

Similar algebraic computation for the fixed point 3E  shows the local behavior of system (1) around 3E  

which has been stated in the next proposition 

Proposition 4. When
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(i) it is a sink if one of the following conditions holds: 
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(iv)  it is a saddle for the other values of parameters except those values in (i)–(iii). 

 

Following Jury’s criterion, we can see that one of the eigenvalues of  3EJ  is 1  and the others are 

neither 1 nor 1  if the term (iii.1) of Proposition 4 holds. Therefore, there may be flip bifurcation of the 

fixed point 3E  if r  varies in the small neighborhood of 
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Also when the term (iii.2) of Proposition 4 holds, we can obtain that the eigenvalues of  3EJ  are a pair 

of conjugate complex numbers with module one. The conditions in the term (iii.2) of Proposition 4 can be 

written as the following set: 
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and if the parameter r  varies in the small neighborhood of 
3EHB ; then the Hopf bifurcation will appear. 

When the interior fixed point 4E  exists, the Jacobian matrix due to linearization of (1) about 4E  yields  

34



Computational Ecology and Software, 2015, 5(1): 28-47 

  IAEES                                                                                     www.iaees.org

 

















333231

232221

131211

4

jjj

jjj

jjj

EJ  

where 

rcccbacba

rcccccacbrcbacba
j

21212121

2
21211121212121

11

)2(




 ; 
rcccbacba

rcccccbcaa
j

21212121

212121111
12

)(




 ;  

rcccbacba

rcccccbcab
j

21212121

212121111
13

)(




 ; 
rcccbacba

rcbrccbbbbaa
j

21212121

1211221122
21

)(




 ; 122 j ;  

rcccbacba

rcbrccbbbbac
j

21212121

1211221121
23

)(




 ; 
rcccbacba

rcarccabaaab
j

21212121

2222221212
31

)(




 ;   

rcccbacba

rcarccabaaac
j

21212121

2222221212
32

)(




 ; 133 j ;  

and that the eigenvalues of  4EJ  satisfy the equation  

032
2

1
3                   (2) 

where  

    

   33221133211232231132211331231231221343

3113331132233322211222112

33221141

det jjjjjjjjjjjjjjjjjjEJ

jjjjjjjjjjjj

jjjEJtrace










  (3) 

The conditions for asymptotic stability (the roots of (2) satisfy 1 ) of the interior fixed point 4E  are 

obtained in the following proposition. 

Proposition 5. If 
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Otherwise, 4E  will be either source or saddle or non-hyperbolic and therefore, the system (1) can 

undergo a flip or Hopf bifurcation around it.  

In order to obtain the desired Hopf bifurcation for *rr   (using r  as a bifurcation real parameter) 

around 4E , the equation (2) must have a pair of conjugate complex root with module one. Clearly (2) will 

have two pure imaginary roots if and only if 
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2a  which correspond to the conditions analytically established for the existence and stability of fixed point 

2E  and for flip or Hopf bifurcations. We note that the values of the other parameter determine only the 

position of the fixed point in the phase plane. The curve )1/(2  rra  represents the inferior limit of the 

domain of parameters for which the fixed point 2E  exists. The regions III and IV correspond to the 

asymptotic stability of 2E  only. The values of parameters r  and 2a  on the separation curve 

)3/(32  rra  between regions III and V (on the curve )1/(22  rra  between regions IV and VII) for 

9r  shows that the system (1) undergoes a flip bifurcation (Hopf bifurcation). For 4r  and arbitrary 

2a , the phase trajectories of the system (1) may become infinite due to sensitivity of the choice of the initial 

conditions. Details of reduced system (1) when 0z , we refer (Danca et al., 1997). 

 Now we choose the parameter values in the following two cases: 

Case (i): 15.0,5.2,5.1,8.0,13/21,3.2 212121  ccbbaa  fixing and varying r  in range 

45.2  r .  

Case (ii): 15.0,5.2,5.1,8.0,3.3,3.2 212121  ccbbaa  fixing and varying r  in range 

9.32.2  r .  

For case (i). The bifurcation diagrams of system (1) in ( yxr  ) space and in ( xr  ) pane are given in 

Fig. 2(a-b). After calculation for the fixed point 2E  of map (1), the flip bifurcation emerges from the fixed 

point  0,69/10,21/13  at 2/7r and  
2212121 ,,,,, EFBccbbaa  .  It shows the correctness of 

proposition 3. From Fig. 2(b), we see that the fixed point 2E  is stable for 2/7r  and loses its stability at 

the flip bifurcation parameter value 2/7r , we also observe that there is a cascade of bifurcations for 

2/7r . The maximum Lyapunov exponents corresponding to Fig. 2(b) are computed and plotted in Fig. 

2(c), confirming the existence of the chaotic regions and period orbits in the parametric space. 

For case (ii). The bifurcation diagrams of system (1) in the ( yxr  ) space, the ( xr  ) plane and the 

( yr  ) plane are given in Fig. 3(a-b-c). After calculation for the fixed point 2E  of map (1), the Hopf 

bifurcation emerges from the fixed point  0,33/10,299/100  at 13/33r and

 
2212121 ,,,,, EHBccbbaa  .  It shows the correctness of proposition 3. From Fig. 3(b-c), we observe that 

the fixed point 2E  of map (1) is stable for 13/33r  and loses its stability at 13/33r  and an 

invariant circle appears when the parameter r exceeds 13/33 , we also observe that there are 

period-doubling phenomenons. The maximum Lyapunov exponents corresponding to Fig. 3(b-c) are computed 

and plotted in Fig. 3(d), confirming the existence of the chaotic regions and period orbits in the parametric 

space. From Fig. 3(d), we observe that some Lyapunov exponents are bigger than 0, some are smaller than 0, 

so there exist stable fixed points or stable period windows in the chaotic region. In general the positive 

Lyapunov exponent is considered to be one of the characteristics implying the existence of chaos. The 

bifurcation diagrams for x  and y  together with maximum Lyapunov exponents is presented in Fig. 3(e). 

Fig. 3(f) is the local amplification corresponding to Fig. 3(b) for ]594.3,203.3[r .  

The phase portraits which are associated with Fig. 3(a) are disposed in Fig. 4, which clearly depicts the 

process of how a smooth invariant circle bifurcates from the stable fixed point  0,299/100,33/10 . When 

r  exceeds 13/33  there appears a circular curve enclosing the fixed point 2E , and its radius becomes 

larger with respect to the growth of r . When r  increases at certain values, for example, at 2268.3r , the 

circle disappears and a period-6orbits appears, and some cascades of period doubling bifurcations lead to chaos. 

From Fig. 4, we observe that as r  increases there are period-6, period-11, period-9, quasi-periodic orbits and 

attracting chaotic sets. See that for 8966.3&8796.3r , where the system is chaotic, is the value of 
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maximal Lyapunov exponent positive that confirm the existence of the chaotic sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around 2E . (a) Flip bifurcation diagram of system 

(1) in ( yxr  ) space, the initial value is    01.0,145.0,619.0,, 000 zyx (b) Flip bifurcation diagram in ( xr  ) plane (c)  

Maximum Lyapunov exponents corresponding to (b) and (d) Maximum Lyapunov exponents are superimposed on Flip 

bifurcation diagram. 
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Fig. 3 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around 2E . (a) Hopf bifurcation diagram of 

system (1) in ( yxr  ) space  (b-c) Hopf bifurcation diagrams in ( xr  ) and ( yr  ) planes (d)  Maximum Lyapunov 

exponents corresponding to (b-c) (e) Maximum Lyapunov exponents are superimposed  on bifurcation diagrams (f) Local 

amplification corresponding to (a) for ]594.3,203.3[r . The initial value is    12.0,334.0,303.0,, 000 zyx . 
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   Fig. 4 Phase portraits for various values of r  corresponding to Fig. 3(a). 

 

 

In order to observe the complex dynamics, we can vary one more parameters of system (1). Since the 

values of Lyapunov exponents quantify the chaotic behavior of discrete system or at least sensitive dependence 

on initial conditions, so we compute maximum Lyapunov exponents of system (1) and study the dependence of 

these Lyapunov exponents on two real parameters r and 2a . The maximum Lyapunov exponents of system 

(1) for parameters  9.3,2.2r  and  3.3,6.12 a and fixing other parameters as in case (ii) is given in Fig. 

5(a). In Fig. 5(b) is plotted the sign of the maximal Lyapunov exponent of map (1). Blue color represents 

negative Lyapunov exponent and red color represents positive Lyapunov exponent. Here it is easy to see for 

which choice of parameters the system (1) is showing chaotic motion, and for which one is the system (1) 

exhibiting periodic or quasi periodic movement. E.g. the chaotic situation is on Fig. 4 for values of parameters 

3.3&8966.3 2  ar  and the non-chaotic situation is for values of parameters 

3.3&2268.3 2  ar  which are consistent with signs in Fig. 5(b). 
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Fig. 5 Sign of maximum Lyapunov exponent for system (1) around 2E . (a) Maximum Lyapunov exponents of system (1) 

covering  9.3,2.2r  and  3.3,6.12 a (b) Sign of Maximum Lyapunov exponents corresponding to (a) (red‘*’ = positive, 

blue‘o’ = negative). The initial value is    01.0,145.0,619.0,, 000 zyx . 

 

4B Dynamics of system (1) around 4E  

The dynamic behaviors of the discrete system (1) around 4E  are very complex. To observe the dynamics, the 

parameters are considered in the following ways: 

Case (iii): 0.3,5.3,33.1,8.1,0.2,2.3 212121  ccbbaa  fixing and varying r  in range 

9.33.3  r .  

Case (iv): 8.3,5.3,03.0,09.0,0.3,7.3 212121  ccbbaa  fixing and varying r  in range 

278.45.1  r .  
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Fig. 6 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around 4E . (a-c) Flip bifurcation diagram of 

system (1) with r  covering ]9.3,3.3[ , the initial value is    076.0,052.0,63.0,, 000 zyx (d) Maximum Lyapunov exponents 

corresponding to (a-c) (e) Maximum Lyapunov exponents are superimposed  on bifurcation diagrams (f) Local amplification 

corresponding to (a) for ]641.3,54.3[r . 

 

 

For case (iii). The bifurcation diagrams of system (1) in the ( xr  ), ( yr  ) and ( zr  ) planes are given 

in Fig. 6 (a-b-c). After calculation for the fixed point 4E  of map (1), the flip bifurcation emerges from the 

fixed point  0.0705,0.057,0.6234 at 3.476252r .  From Fig. 6(a-b-c), we observe that the fixed 

point 4E  of map (1) loses its stability through a discrete flip bifurcation for  479.3,43.3r  and further 

increasing the parameter r , we see that there is a cascade of bifurcations. The maximum Lyapunov exponents 

corresponding to Fig. 6 (a-b-c) are computed and plotted in Fig. 6(d). The positive and negative values of 

Lyapunov exponents imply that there exist stable fixed points or stable period windows in the chaotic region. 

The combination of bifurcation diagrams with maximum Lyapunov exponents is presented in Fig. 6(e). Fig. 6(f) 

is the local amplification corresponding to Fig. 6(a) for ]641.3,54.3[r . 
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   Fig. 7 Phase portraits for various values of r  corresponding to Fig. 6(a-b-c). 

 

 

The phase portraits which are associated with Fig. 6(a-b-c) are revealed in Fig. 7. We see that the fixed 

point 4E  loses its stability at the flip bifurcation parameter value 3.476252r . For  5652.3,54.3r , 

there is a cascade of bifurcations. When r  increases at certain values, for example, at 5652.3r , two 

independent invariant circles appear and increasing the value of r , the circles breakdown and some cascades 

of bifurcations lead to chaos. When 9.3&85.3r , we can see attracting chaotic sets. The maximum 

Lyapunov exponents corresponding to 9.3&85.3r are larger than 0  that confirm the existence of the 

chaotic sets. 
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Fig. 8 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around 4E . (a-b-c) Hopf bifurcation diagrams of 

system (1) with r  covering ]278.4,5.1[ , the initial value is    05.0,23.0,33.0,, 000 zyx (d) Maximum Lyapunov 

exponents corresponding to (a-b-c) (e) Maximum Lyapunov exponents are superimposed  on bifurcation diagrams  (f) Local 

amplification corresponding to (a) for ]2.3,9.2[r . 
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Fig. 9 Phase portraits for various values of r  corresponding to Fig. 8 (a-b-c). 

 

 

For case (iv). The bifurcation diagrams of system (1) in the ( xr  ), ( yr  ) and ( zr  ) planes are drawn 

in Fig. 8(a-b-c). After calculation for the fixed point 4E  of map (1), the Hopf bifurcation emerges from the 

fixed point  0.012,0.26,0.347  at 0102.3r and  
4212121 ,,,,, EHBccbbaa  .  From Fig. 8, we 

observe that the fixed point 4E  of map (1) is stable for 0102.3r ; and loses its stability at 0102.3r  

and an invariant circle appears when the parameter r  exceeds 0102.3 . The maximum Lyapunov exponents 

corresponding to Fig. 8(a-b-c) are computed and plotted in Fig. 8(d), confirming the existence of the chaotic 

regions and period orbits in the parametric space.For  5628.3,98.2r , some Lyapunov exponents are 

bigger than 0, some are smaller than 0, which imply that there is a cascade of discrete Hopf bifurcations. For 
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9113.3r , the positive sign of maximum Lyapunov exponents indicate the presence of chaos of map (1). 

The phase portraits of various r  corresponding to Fig. 8(a-b-c) are disposed in Fig. 9, which clearly 

depicts the sequence of discrete Hopf bifurcation as the parameter r  varies. When 0102.3r , the first 

invariant circle appears at 05.3r  enclosing the fixed point 4E . As r  increases, the invariant circle 

breakdown and the map (1) enters into a discrete Hopf bifurcation around 4E at 3.48605r . For 

3.48605r , the fixed point of map (1) is stable again and it loses its stability at 3.8613r . When r  

exceeds 8613.3  there appears a second invariant circle enclosing the fixed point 4E , and its radius 

becomes larger with respect to the growth of r . As r  increases the phase trajectories become irregular 

which lead to attracting chaotic sets. At 278.4r , we see that the system (1) is chaotic. The positive sign of 

maximal Lyapunov exponent corresponding to 278.4r  confirms the existence of the chaotic sets. 

 

5 Discussion 

In this paper, we considered a classical discrete-time food chain model with Holling type I functional 

responses where the prey grows logistically in the absence of predators, the predator feeds on prey and the top 

predator feeds on both prey and predator. We performed a detailed computational analysis of the system (1) 

and showed that it has a complex dynamics in 3
R . As certain parameters increase or decrease further away, 

we found that the fixed points (planer or interior) loses its stability and oscillatory solutions appear which is to 

be the results of flip bifurcation and/or Hopf bifurcation. Moreover, system (1) displayed much interesting 

dynamical behaviors, including period-6, 11, 9 orbits, invariant cycle, cascade of period-doubling, 

quasi-periodic orbits and the chaotic sets, which imply that the predators and prey can coexist in the stable 

period-n orbits and invariant cycle. Finally, simulation works showed that in certain regions of the parameter 

space, the model (1) had a great sensitivity to the choice of initial conditions and parameter values. 
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