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Abstract 

In this paper, we study the qualitative behavior of following open-access anchovy fishery model: 

  1, 11   cxpyyyxdaxx v
nnnn

v
n

b
nn  , 

where  ,,,,,,, pvdcba and the initial conditions 00 , yx  are positive real numbers. More precisely, we 

investigate the necessary and sufficient condition for local asymptotic stability of the unique positive 

equilibrium point of this system. Some numerical examples are given to verify our theoretical results.  
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1 Introduction 

In this paper, we study the local asymptotic stability of an open-access anchovy fishery model which was 

proposed by Kulenovi c and Merino. This model describes the change in resource abundance and the level of 

investment or effort engaged in at the fishery. The model is given by  

  1, 11   cxpyyyxdaxx v
nnnn

v
n

b
nn                                       (1) 

where nx is the biomass of anchovy in year n and ny is the effort in year n , d is the biological discount factor,

c is the cost per unit effort, p is the price of the anchovy and  is the effort adjustment coefficient. 

For basic theory of difference equations we refer Agarwal (2000), Kulenovi c  and Ladas (2002), 

Camouzis and Ladas (2007), Elaydi (2005), Grove and Ladas (2004), Khan .,.alet (a, b, 2014) and for 

applications of difference equations we refer Keshet (1988), Sedaghat (2003), Kulenovi c and Merino (2002). 

In literature there are many papers on qualitative behavior of biological models Ahmad (1993), Tang and Zou 

(2006), Zhou and Zou (2003), Liu (2010), Din .,.alet (2013), Qureshi .,.alet  (2014), Opsomer and Conrad 

(1994). 

Our aim is to investigate the necessary and sufficient condition for local asymptotic stability of the unique 

positive equilibrium point of system (1). 
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2 Linearized Stability 

Let us consider the two-dimensional discrete dynamical system of the form: 
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(2)  

where IJIf :  and JJIg : are continuously differentiable functions and JI , are some 

intervals of real numbers. Furthermore, a solution 0),( nnn yx of system (2) is uniquely determined by the 

initial conditions JIyx ),( 00 . An equilibrium point of system (2) is a point ),( yx that satisfies 


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),(

yxgy

yxfx
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Definition 2.1. Let ),( yx be an equilibrium point of a map  ),(),,( yxgyxfF  where f and g are 

continuously differentiable functions at ),( yx . The linearized system of (2) about the equilibrium point 

),( yx  is given by 

nJnn XFXFX  )(1 , 

where 









n

n
n y

x
X  and JF is Jacobian matrix of system (2) about the equilibrium point ),( yx . 

Lemma 2.2. (Sedaghat, 2003): Consider the system )(1 nn XFX  , ,,1,0 n where X is a fixed point of

F . If all eigenvalues of the Jacobian matrix JF about X lie inside the open unit disk 1 , then X is locally 

asymptotically stable. If any of the eigenvalue has a modulus greater than one, then X  is unstable. 

Lemma 2.3. (Grove and Ladas, 2004): Consider the second-degree polynomial equation 

,02                                                                          (3) 

where and are real numbers. 

 )(i A necessary and sufficient condition for both roots of Equations (3) to lie inside the open disk 

1  is .21    In this case the locally asymptotically stable equilibrium ),( yx is also called a 

sink. 

 )(ii A necessary and sufficient condition for both roots of Equations (3) to have absolute value greater 

than one is .1,1    In this case ),( yx is a repeller.   

)(iii A necessary and sufficient condition for one root of Equations (3) to have absolute value greater 

than one and for the other to have absolute less than one is .1,042   In this case unstable 

equilibrium point ),( yx is called a saddle point. 

)(iv A necessary and sufficient condition for a root of Equations (3) to have absolute value equal to 

one is .1    In this case the equilibrium ),( yx is called a non-hyperbolic point. 

 

3 Main Results 

Let ),( yx  be equilibrium point of system (1) then 

yxdxax vb  , ).1)((  cxpyy v  
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Theorem 3.1. If  
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then, equilibrium point 
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The characteristic polynomial of )(PFJ about the equilibrium point 
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50



Computational Ecology and Software, 2015, 5(1): 48-62 

 IAEES                                                                                    www.iaees.org

.11)( 112










































   cpabcpabP b

v

b

v

                           (5) 

Let 

.11)(,)( 112










































   cpabcpabgf b

v

b

v

 

Assume that condition (4) hold true and ,1 one has 

.111)( 11 






























   cpabcpabg b

v

b

v

 

Then, by Rouche’s theorem, )(f and )()(  gf   have the same number of zeroes in an open unit disk

1 . Hence, both roots 

,
2

1411 1

2

11

1

























































 



cpabcpabcpab b

v

b

v

b

v

 

and 

,
2

1411 1

2

11

2

























































 



cpabcpabcpab b

v

b

v

b

v

 

of (5) lie in an open disk 1 , and it follows from Lemma 2.2 that equilibrium point 









  0,),( 1

1

bayxP  

of system (1) is locally asymptotically stable. 

Theorem 3.2. The equilibrium point 









  0,),( 1

1

bayxP  of system (1) is locally asymptotically stable if 

and only if b

v

b

v

pacpa   11 2 


 . 

Proof. The zeroes of characteristic polynomial of )(PFJ about the equilibrium point 









  0,),( 1

1

bayxP  

are b1 and  









  cpa b

v

1
2 1 . As 11  b and 11 1

2 









   cpa b

v

if and only 

if b

v

b

v

pacpa   11 2 


 . Hence by Lemma 2.2, equilibrium point 









  0,),( 1

1

bayxP  of system (1) 

51



Computational Ecology and Software, 2015, 5(1): 48-62 

 IAEES                                                                                    www.iaees.org

is locally asymptotically stable. 
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 of system (1) is locally asymptotically stable. 

The following theorem shows necessary and sufficient condition for local asymptotic stability of the unique 

positive equilibrium point of system (1). 

Theorem 3.4. The unique positive equilibrium point 





















































v
v

b

v

d

c

p

c

p
a

c

p
yxQ

1
1

1

1

,),(





 of 

53



Computational Ecology and Software, 2015, 5(1): 48-62 

 IAEES                                                                                    www.iaees.org

system (1) is locally asymptotically stable if and only if 
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of 

system (1) is locally asymptotically stable if and only if
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4 Examples 

In order to verify our theoretical results we consider three interesting numerical examples. These examples 

represent different types of qualitative behavior of system (1). First two examples show that the unique 
positive equilibrium point of system (1) is locally asymptotically stable, .,.ei condition (8) of Theorem 3.4 is 

satisfied. Meanwhile, last example shows that the unique positive equilibrium point of system (1) is unstable,
.,.ei condition (8) of Theorem 3.4 does not hold. 

 

Example 1. Let 2.0,05.0,5.2,4.2,7.3,9.2,999.0,9.1  vpdcba .Then, system (1) 

can be written as 

  19.205.04.22.0,05.07.39.1 5.2
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5.2999.0
1   nnnnnnn xyyyxxx ,                 (9) 

with initial conditions 6.0,9.3 00  yx . 
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condition (8) of Theorem 3.4 is satisfied. The unique positive equilibrium of system (9) is given by
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. Moreover, in Figure 1 the plot of nx  is 

shown in Fig. 1a, the plot of ny  is shown in Fig. 1b and an attractor of system (9) is shown in Fig. 1c. 

 

(a) Plot of nx for system (9) 
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(b) Plot of ny for system (9) 

 

 
(c) An attractor for system (9) 

Fig. 1 Plots for system (9). 
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Example 2. Let 2.0,06.0,7.2,5.4,2.4,1.3,999.0,2.2  vpdcba .Then, system (1) 

can be written as 

  11.306.05.42.0,06.02.42.2 7.2
1

7.2999.0
1   nnnnnnn xyyyxxx ,                    (10) 

with initial conditions 9.0,84.2 00  yx . 

In this case
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condition (8) of Theorem 3.4 is satisfied. The unique positive equilibrium of system (10) is given by
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. Moreover, in Figure 2 the plot of nx  is 

shown in Fig. 2a, the plot of ny  is shown in Fig. 2b and an attractor of system (10) is shown in Fig. 2c. 

 

(a) Plot of nx for system (10) 
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(b) Plot of ny for system (10) 

 

 
(c) An attractor for system (10) 

Fig. 2 Plots for system (10). 
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Example 3. Let 2.0,06.0,5.2,1.3,66.4,0.3,999.0,6.2  vpdcba .Then, system (1) 

can be written as 

  10.306.01.32.0,06.066.46.2 5.2
1

5.2999.0
1   nnnnnnn xyyyxxx ,                   (11) 

with initial conditions 89.0,999.2 00  yx . 

In this case
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.,.ei condition (8) of Theorem 3.4 is satisfied. The unique positive equilibrium of system (11) is unstable. 

Moreover, in Figure 3 the plot of nx  is shown in Fig. 3a, the plot of ny  is shown in Fig. 3b and Phase 

portrait of system (11) is shown in Fig. 3c. 

 

 

(a) Plot of nx for system (11) 
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(b) Plot of ny for system (11) 

 

 

(c) Phase portrait for system (11) 

Fig. 3 Plots for system (11). 
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5 Conclusion  

This work is related to the qualitative behavior of an open-access anchovy fishery model. We prove that 

system (1) have two equilibrium points, which are locally asymptotically stable. The method of linearization is 

used to prove the local asymptotic stability of unique positive equilibrium point. We prove that equilibrium 
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 of system (1) is locally asymptotically stable if and only 

if condition (8) of Theorem 3.4 is satisfied, .,.ei
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. Some numerical examples are 

provided to support our theoretical results. These examples are experimental verification of theoretical 

discussion. The global behavior of system (1) will be next our aim to study. 
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