
Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Article

Semantics of the maturity model for feature oriented domain analysis

M. Javed1, M. Naeem1, H. A. Wahab2
1Department of Information Technology, Hazara University, Mansehra, Pakistan
2Department of Mathematics, Hazara University, Mansehra, Pakistan

E-mail: mjavedgohar@hotmail.com, naeem@hu.edu.pk, wahabmaths@yahoo.com

Received 6 July 2014; Accepted 10 August 2014; Published online 1 March 2015

Abstract

Assessing the quality of a model has always been a challenge for researchers in academia and industry. The

quality of a feature model is a prime factor in software development because it is used in the development of

products. This paper elaborates on our previous work where, we have motivated the need of the maturity

model along with the description of such model for feature oriented domain analysis. Here, we provide the

semantics of such maturity model. Furthermore, in this extended version, we present an algorithmic technique

for the detection of quality level for a given feature model.

Keywords quality of feature models; maturity model; errors; inconsistencies; dead features; invalid feature

model.

1 Introduction

Producing things in large amount require standardized processes, especially for the similar products.

Companies are organizing their production in large amount of production (Benavides, 2010). To reuse existing

systems in a systematic way, service-oriented systems resemble supply chain where products manufactured

from supplied parts. Same case is for complex service-oriented systems, which needs third party services

(Thomas, 2008). For example, car producer offer variation on a model with variable engines, gearboxes, audio

and entertainment systems. Example of software services is online travel agency, which may use third-party

services for hotel booking, invoicing and for payment option (Naeem, 2012). Similarly, increasing number of

software systems with almost similar requirements guide us to Software Product Line (SPL) (Böckle, 2005).

SPL Engineering helps in the development within application domain by considering their commonalities and

variability. In SPL approach, products are being created by reusability (Clements and Linda, 2002).

SPL incorporating the property of similarities and variability in the family of software is a new technique

in the development of software. This helps in the development of high quality software in a short period of

time with low budget. Progress has been improved in the development by adopting SPL (Mendonça, 1999).

Computational Ecology and Software
ISSN 2220­721X
URL: http://www.iaees.org/publications/journals/ces/online­version.asp
RSS: http://www.iaees.org/publications/journals/ces/rss.xml
E­mail: ces@iaees.org
Editor­in­Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Features represent the aspects of these software (Kang et al., 1990). To get a valid combination of these

features we use feature model which depicts the relationships of these features and constraints on them (Batory,

2005). Usually feature models are tree like structures describing successive refinement of the variability in a

product-line. Feature models were proposed back in 1990 as feature oriented domain analysis (FODA) (Kang

et al., 1990).

The use of high quality process ensures the good quality resulting products. Hence, it is very important to

investigate the quality of the selected model before putting it into practice. In other words, one can say that the

quality of a feature model has prime importance because it contributes towards the development of high

quality products. There are number of properties which affect the quality of a feature model. One of the agreed

deficiencies in feature models is errors in the feature model.

The quality of a feature model can be analyzed from different perspectives which may includes: how

efficiently it captures a given domain by keeping the integrity of model itself. The lesser are the occurrences of

redundancies, anomalies and inconsistencies in a feature model, the more will be the integrity of a feature

model (Maßen and Horst, 2004; Rosso, 2006; Javed et al., 2014).

In our work in (Javed et al., 2014), we presented the first step for the development of the framework to

judge the quality of a given feature model, which we call Maturity Model for FODA. In the current paper, we

present the semantics of that maturity model. These semantics are based on algorithms. These algorithms get

input the feature model and provide the quality level after judging the errors existing in that feature model.

The rest of the paper is arranged as follows: Sections 2 and 3 consist of the discussion of background and

related work, respectively. Section 4 provides semantics of the proposed model. Section 5 concludes the paper

and highlights the future directions independently. It allows integrating of differential equations and deducing

of model to system of recurrence equations.

2 Background

Feature models were introduced by Kang in the form of technical report on FODA in 1990. A feature is

prominent characteristic of a product (Kang et al., 1990). Feature model is a hierarchical model that captures

the commonality and variability of SPL. The set of permissible selection of features from a feature model is

called an instance (Rosso, 2006). Semantics of a valid instance may include: 1) If a feature is chosen then its

mandatory feature must be selected in that instance; 2) If a feature is selected in an instance then its optional

sub-features can be selected or rejected depending on the preferences; 3) if a feature is selected then exactly

one feature from its alternative group must also be selected; 4) Is a feature is selected then at least one feature

from its Or-group must also be selected.

Apart from these constraints, a feature diagram may have: Requires constraint) If a source of requires

constraint is selected that its target must also be chosen in that instance; Excludes Constraint) Source and

target features of excludes constraint cannot be selected in an instance. Thus ሼܲܯ, ,ܽܥ ܵܿ, ሽ is the validܽܤ

instance of a feature diagram shown in Fig. 1. More formally: a feature model and its instance can be defined

as:

Definition 1 (Feature Model and Instance – adapted from Rubin and Chechik (2012)):

Given a universe of elements ॲ that represent features, a feature model ࣠ࣧ ൌ ا ࣠,߶ is a set of features ب

࣠ ߳ 2ॲ and a propositional formula ߶ defined over the features from ࣠. An instance ࣣःऄ of ࣠ࣧ is a set

of selected features from ࣠ that respect ߶ (i.e., ߶ evaluates to true when each variable ݂ of ߶ is

substituted by true if ݂ ߳ ࣣःऄ and by false otherwise.)

78

 IAEES

On

be stated

"ሺܲܯ ՞

ሻݎܪ

Valuation

valuation

Fea

constrain

keep the

interested

3 Relate

To the b

the quali

need of s

quality m

Thörn (2

quality fa

Ahm

motivatio

product l

feature m

feature m

4 Seman

Semantic

feature m

contradic

discussed

Step 1. A

the basis of a

d as:

՞ ר ሻܽܥ ሺܲܩ

ሻ ሻ ר ሺሺݎܪ ՞

ns for which

n that assigns

ture models m

nts. For exam

attention of

d readers to h

d Work

est of our kn

ity of a given

such maturity

models for fe

2010) has pro

actors, quality

med and Fern

on of their at

line process.

model. Our fr

models rather

ntics of Matu

cs of the matu

model. Our a

ction; 3) find

d in three step

Algorithm: It

Com

Fig. 1

above definiti

ܲܵ ՜ ר ሻܲܯ

՞ ܵܿሻ ר ~ሺܽܤ

h this formul

 true to ሼMP

may also suf

mple, use of e

reader on se

have a look to

nowledge ther

n feature mod

y model for fe

eature models

vided a quali

y attributes, i

nando in (201

ttempt was to

Again, we fo

ramework wi

than the who

urity Model

urity model a

algorithms ar

s the selectab

ps:

t contains the

mputational Eco

1 A feature mod

ion the propo

ܵܲܩሺ~ ר ר ܤ

ܽ ש ሻ ሻ݈݋ܥ ר

la is true cha

, Ca, Sc, Hr,M

ffer from erro

excludes cons

emantics we h

o Javed et al.

re is no attem

del. The only

feature oriente

s but those m

ity model for

indicators and

11) have prov

o create a str

focus on the e

ill help desig

ole process of

are based on a

re divided int

ble and non-s

pseudo code

ology and Softw

del of a mobile

ositional form

ሻܽܤ ܽܤሺሺ ר ՞

ሺ݁ܯ ՜ ሻܲܯ

aracterise the

Me, Camሽ and

ors. In most c

straints betwe

have not add

(2014) for th

mpt in the lite

attempt in th

ed domain an

models are no

r evaluating fe

d metrics rela

vided a busin

rategy for the

existence of e

gners of softw

f software pro

algorithms th

to three grou

selectable fea

e of the algori

ware, 2015, 5(1)

phone (Benavi

mula Ԅ of fea

՞ ܵܿሻ ר ~ሺܥ

݁ܯሺ ר ՞ ሺܥ

e valid instan

false to ሼMP

cases these er

een mandato

ded that discu

he detailed dis

erature to pro

he literature is

nalysis. Altho

ot based on e

feature model

ated to feature

ness maturity

e assessment

errors in feat

ware product

oduct line eng

hat will be use

ups: 1) sets

atures from a

ithmic logic.

): 77-112

des, 2010)

ature model

݈݋ܥ ש ሻ ሻݎܪ ר

݉ܽܥ 3ሻܲܯש

nces. Here, a

P, Ca, Sc, Hr,M

rrors are cau

ry features o

ussion here, w

scussion.

opose a matu

s ours in whi

ough, there ar

errors in featu

ls (FMQ). Th

e models and

y model of so

t of the busin

ture models a

t lines to judg

gineering.

ed to judge th

the basic at

feature mode

 w

࣠ࣧ shown

݈݋ܥሺሺ ר ՞ ܵܿ

ሻ ሻ ר ሺ݉ܽܥ ՜

a possible in

Me, Camሽ.

used due the w

of a feature m

we would rec

urity model th

ch we have m

re some effor

ure models. F

here model is

their develop

oftware produ

ness elements

and judge the

ge the level

he quality lev

ttributes valu

el. Each algor

www.iaees.org

in Fig. 1 can

ܿሻ ר ~ሺܽܤ ש

՜ "ሻݎܪ

stance is the

wrong use of

model etc. To

commend the

hat can judge

motivated the

rts to propose

For example,

based on the

pment.

uct lines. The

s of software

e quality of a

of individual

vel of a given

ue; 2) detects

rithm will be

n

e

f

o

e

e

e

e

,

e

e

e

a

l

n

s

e

79

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Step 2. Explanation: In this step every statement is explained in a tabular form with statement number in the

first column whiles the explanation in the second column.

Step 3. Tracing: It shows the application of algorithm on example.

5 Setting Feature’s Attributes

Setting attributes algorithm is the prerequisite of all the upcoming algorithms, so this should be executed

before the execution of all other algorithms. The selection and rejection of features in a feature model is based

on values of these attributes of features. Without this algorithm no further processing can be done.

5.1 Set attributes algorithm

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

foreach f in FM

 If f.selected ≠ true OR f.selected ≠ false

 f.selected  null

 f.relevance  mandatory / optional / alternative / Or /null

 f.parent  this.parent

 f.exclude[]  // names of features that are excluded by this feature or that exclude this feature

 f.requires[]  // names of features that are required by this feature by implies

 f.required_by[]  //names of features that require this feature by implies

 if f.parent ≠ null then f.parent.total_alternstesets  0, 1, 2 ….

 if f.relevance = alternate AND f.selected ≠ false

 alternateset  a/b/c …

 f.parent_alternateset.add(f)

 End of if condition started at line # 11

 End of if condition started at line # 02

End of foreach loop started at line # 1

b) Explanation

Statt 1. Each iteration of this loop selects each feature (f) from a given feature model (FM)
Statt 2. We only set the attributes for those features which are neither selected nor rejected. The condition in

statement 2 checks whether the current feature (f) is selected or not.

Statt 3. Assigns null to the feature f that is neither selected nor rejected.

Statt 4. The relevance attribute of f stores the type of relevance feature contains with its parent. For example,

a feature may be either of mandatory, optional, Or-group, or Alternative-group.

Statt 5. This statement stores the name of direct parent of the current feature. It will only be null for root

feature of FM.

Statt 6. The array (exclude[]) contains the features which are connected to feature (f) by excludes constraint.

Statt 7. The array (requires[]) stores the features which are required by feature (f) through implies constraint.

Statt 8. The array (required_by[]) stores the features that require the selection of feature f by implies

constraint.

Statt 9. Check that the current feature has parent feature or not. If the selected feature is not a root feature

then total number of alternative set will be counted that falls under the direct parent of current feature.

80

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 10. This condition checks whether a feature (f) is a part of an alternate-group and also selected value is

not false, because if feature selection is already false due to any reason then this would not be processed

further hence no need to add in alternative list. If condition is true then this feature will be stored in a relative

feature list.

Statt 11. To set the alternative list name this variable should have a value because the name of different

alternative list will differ by this variable if there are multiple alternative sets under a feature e.g. engine-

type_a, Engine-type_b etc.

Statt 12. This function will add the feature in concerned alternative list, if it has an alternative constraint.

Statt 13. If condition started at line # 11 ends.

Statt 14. If condition started at line # 9 ends.

Statt 15. If condition started at line # 2 ends.

(c) Tracing

For the tracing of above mentioned algorithm, we use the feature model shown in Fig. 2. In this example,

a feature model of ubuntu software is presented which contains ubuntu as root feature. ubuntu has

texteditor, bash and gui as mandatory sub-features which exclude each other, while games is as optional

sub-feature of ubuntu that has an implies constraint with gui. The feature texteditor contains an alternative

group of vi and gedit. Similarly gui has an Or-group of kde and gnome. One more alternative group of

gnuchess and glchess comes under games feature.

Fig. 2 Void feature model (Felfernig et al., 2013).

Furthermore, the feature flchess is connected to gnuchess by using implies constraint. We start

tracing of our algorithm from the root feature. So, in the first iteration of loop f represents ubuntu. Also, it

is worth mentioning that all features of a given feature model has no attribute value when first time it is

inputted to the system. Below is the tracing result of the features in the feature model of our example (Fig.

2) by applying the set attribute example.

Table 1 Attributes values of features after tracing.

Features (f) Attributes values

Ubuntu selected=null, relevance=null, parent=null, exclude=null, requires=null,

required_by=null

Texteditor selected= null, relevance=mandatory, parent=ubuntu, exclude=[bash],

requires=[gnome], required_by=null, ubuntu.total_alternateset=0,

81

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Bash selected= null, relevance=mandatory, parent=ubuntu, exclude=[texteditor, gui],

requires=[kde], required_by=null, ubuntu.total_alternateset=0,

Gui selected= null, relevance=mandatory, parent=ubuntu, exclude=[bash, games],

requires=null, required_by=null, ubuntu.total_alternateset=0,

Games selected= null, relevance=optional, parent=ubuntu, exclude=gui, requires=null,

required_by=null, ubuntu.total_alternateset=0,

Kde selected=null, relevance=or, parent=gui, exclude=null, requires=null,

required_by=[bash], gui.total_alternateset=0,

Gnome selected= null, relevance =or, parent=gui, exclude=null, requires=null,

required_by=[texteditor], gui.total_alternateset=0,

Gnuchess selected= null, relevance=alternative, parent=games, exclude=null, requires=glchess,

required_by=null, games.total_alternateset=1,

(added to alternative set) games_a = [gnuchess]

Glchess selected= null, relevance=alternative, parent=games, exclude=null, requires=null,

required_by= gnuchess, games.total_alternateset=1,

 (added to alternative set) games_a = [gnuchess | glchess]

5.2 Algorithms to find contradiction

These algorithms are used to find contradictory depicted feature model. These contradictions arise due to the

wrong application of crosstree constraints. The contradiction causes various errors in feature models. It is

important to highlight all contradictions for the discovery of errors. This contradiction finding algorithm

consists of two parts: first part is to find contradictory features due the exclude constraint, while the second

part is to find contradictory features due to implies constraint.

5.2.1 Exclude contradiction

Below algorithm is the first part in-order to find contradictory features due to the exclude constraint.

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

foreach f in FM

 if f.exclude ≠ null

 foreach ex in f.excludes

 if f.selected ≠ false OR ex.selected ≠ false // to check both or any one is not false

 if f.relevance = mandatory AND ex.relevance≠mandatory

 ex.selected  false

 if ex.relevance=alternative then ex.Parent_alternateset.remove(ex)

 End of if condition started at line # 5

 if ex.relevance = mandatory AND f.relevance≠mandatory

 f.selected  false

 if f.relevance=alternative then f.Parent_alternateset.remove(f)

 End of if condition started at line # 9

 if ex.relevance = mandatory AND f.relevance = mandatory

 f.selected  false

 ex.selected  false

 End of if condition started at line # 13

82

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 if ex.relevance ≠ mandatory AND f.relevance ≠ mandatory

 if ex.required_by=null OR (ex.required_by≠null AND ex.required_by.relevance≠mandatory)

 ex.selected  false

 if ex.relevance=alternative then ex.Parent_alternateset.remove(ex)

 End of if condition started at line # 18

 if f.required_by=null OR (f.required_by≠null AND f.required_by.relevance≠ mandatory)

 f.selected  false

 if f.relevance=alternative then f.Parent_alternateset.remove(ex)

 End of if condition started at line # 22

 End of if condition started at line # 17

 End of if condition started at line # 4

 End of foreach loop started at line # 3

 End of if condition started at line # 2

End of if condition started at line # 1

b) Explanation

Statt 1. Each iteration of this loop selects each feature (f) from a given feature model (FM)

Statt 2. This condition will check that (f) has any exclude constraint or not as this function is based on

exclude constraint so if exclude constraint is null then will not proceed further

Statt 3. If selected feature has exclude constraint then this loop will select each feature that has exclude

constraint with this feature from the exclude list

Statt 4. This condition is to check that selection of any of the feature that excludes each other is false. As

the exclude constraint means that both feature cannot appear together in an instance so if selection of any

one or both features is false then exclude constraint already satisfied no need to process further. If the

selection of both features is true then further checks will be applied

Statt 5. To check that current feature (f) has a mandatory relevance and other feature (ex) that is excluded by

(f) has no mandatory relevance

Statt 6. If (f) has a mandatory relevance and (ex) don’t have then selection of (ex) is set to false because both

exclude each other

Statt 7. If the relevance of (ex) is not mandatory then it’ll be checked that it has alternative relevance if yes

then (ex) will be removed from concern alternative list because it’s selection is set to false

Statt 8. If condition ends, started at line # 5

Statt 9. To check that current feature (f) doesn’t have mandatory relevance and other feature (ex) that is

excluded by (f) has mandatory relevance

Statt 10. If (f) don’t have mandatory relevance and ex has mandatory relevance then selection of (f) is set to

false because both exclude each other

Statt 11. If the relevance of (f) is not mandatory then it’ll be checked for alternative relevance. If it has

alternative relevance then (f) will be removed from concern alternative list because its selection is set to false

Statt 12. If condition ends that started at line # 9

Statt 13. To check that both features (f) and (ex) both have mandatory relevance

Statt 14. Selection of (f) set to false because both are mandatory so can’t appear in the same instance due to

exclude relevance

Statt 15. Selection (ex) set to false

83

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 16. if condition ends, started at line # 13

Statt 17. Check that both (f) and (ex) don’t have mandatory relevance

Statt 18. Check that (ex) is not required by any other feature by implied constraint or if required then the

feature that required (ex) is not mandatory

Statt 19. If (ex) has no implies constraint or not implied by any mandatory feature then set selection to false

Statt 20. If (ex) falls under any alternative set then it will be removed from that set because it’s selection is set

to false

Statt 21. If condition ends that started at line # 18

Statt 22. Check that (f) is not required by any other feature by implied constraint or if required then the

feature that required (f) is not mandatory

Statt 23. If (f) has no implies constraint or not implied by any mandatory feature then set selection to false

Statt 24. If (f) falls under any alternative set then it will be removed from that set because it’s selection is set

to false

Statt 25. If condition ends that started at line # 22

Statt 26. If condition ends that started at line # 17

Statt 27. If condition ends that started at line # 4

Statt 28. foreach loop ends that started at line # 3

Statt 29. If condition ends that started at line # 2

Statt 30. If condition ends that started at line # 1

c) Tracing

Each algorithm will affect the attributes of features in feature model (Fig. 2) as mentioned earlier so this

tracing will start from the previous values of attributes (listed in Table 1 after setting attributes). To explain the

functionality of “find exclude contradiction” we first present the step-by-trace one feature (as explanation of

statements) then the attributes values after tracing.

Table 2 Tracing of algorithm to find exclude contradiction.

Stat # Tracing for the feature “texteditor”

1 Selected feature is texteditor so f=texteditor

2 Exclude is not null so this condition is true

3 A feature selected from exclude array so ex = bash

4 As selection of both features (f=texteditor) and (ex=bash) not false so this condition is true.

5 Relevance of both (f) and (ex) is mandatory so this condition is false

6 Will not be executed because condition at line # 5 for this statement is false.

7 Will not be executed because condition at line # 5 for this statement is false.

8 If condition end that started at line # 5

9 Relevance of both (f) and (ex) is mandatory so this condition is false

10 Will not be executed because condition at line # 9 for this statement is false.

11 Will not be executed because condition at line # 9 for this statement is false.

12 If condition end that started at line # 9

13 This condition is true because the relevance of both (f) and (ex)

14 Texteditor.selected= false

15 bash.selected= false

84

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

16 If condition end that started at line # 9

17 Relevance of both (f) and (ex) is mandatory so this condition is false

18 Will not be executed because condition at line # 17 for this statement is false.

19 Will not be executed because condition at line # 17 for this statement is false.

20 Will not be executed because condition at line # 17 for this statement is false.

21 Will not be executed because condition at line # 17 for this statement is false.

22 Will not be executed because condition at line # 17 for this statement is false.

23 Will not be executed because condition at line # 17 for this statement is false.

24 Will not be executed because condition at line # 17 for this statement is false.

25 If condition end that started at line # 22

26 If condition end that started at line # 17

27 If condition end that started at line # 4

28 Foreach loop end that started at line # 3

29 If condition end that started at line # 2

30 If condition end that started at line # 1

In the Table below, we present the tracing of “find exclude contradiction” algorithm. After tracing of

the said algorithm, the attributes of the feature might change that have exclude constraint on each other.

Attributes that have been changed after the tracing of this algorithm are underlined.

Table 3 Attributes values after tracing of exclude contradiction algorithm.

Features (f) Attributes values

Ubuntu selected= null, relevance=null, parent=null, exclude=null, requires=null,

required_by=null

Texteditor selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash], requires=[gnome],

required_by=null, ubuntu.total_alternateset=0,

Bash selected=null, relevance=mandatory, parent=ubuntu, exclude=[texteditor, gui],

requires=[kde], required_by=null, ubuntu.total_alternateset=0,

Gui selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash, games],

requires=null, required_by=null, ubuntu.total_alternateset=0,

Games selected=null, relevance=optional, parent=ubuntu, exclude=gui, requires=null,

required_by=null, ubuntu.total_alternateset=0,

Kde selected=null, relevance=or, parent=gui, exclude=null, requires=null,

required_by=[bash], gui.total_alternateset=0,

Gnome selected= null, relevance =or, parent=gui, exclude=null, requires=null,

required_by=[texteditor], gui.total_alternateset=0,

Gnuchess selected= null, relevance=alternative, parent=games, exclude=null, requires=glchess,

required_by=null, games.total_alternateset=1,

(added to alternative set) games_a = [gnuchess]

Glchess selected= null, relevance=alternative, parent=games, exclude=null, requires=null,

85

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

required_by= gnuchess, games.total_alternateset=1,

 (added to alternative set) games_a = [gnuchess | glchess]

5.2.2 Alternative contradiction

This algorithm is the second part of finding contradiction. In this section, we will try to find contradiction

caused by implies constraint. The inputs of this algorithm are the alternative lists which were created by set

attribute algorithm. Each list consists of those features that lie under the same alternative set. Contradiction

arises in different situations, but most commonly occurring situation is features falling under similar sets and

are connected by implies constraint, as shown in the Fig. 3(a). Other situation is when a mandatory feature

requires multiple features and all required features falls under same alternative set, as shown in Fig. 3(b). This

contradiction violates the basic constraint that only one feature can be instantiated from a single alternative set.

a b

Fig. 3 Contradiction due to alternative relevance (Segura et al, 2010).

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

foreach alternateset in f.parent_alternatesets

 total_required  0

 foreach fa in alternateset

 if fa.requires ≠ null

 foreach require in fa.requires

 if require.parent = fa.parent

 fa.selected  false // if the required feature for this feature is in the same

alternate set so the requiring feature is false

 alternateset.remove(fa)

 End of if condition started at line # 6

 End of foreach loop started at line # 5

 End of if condition started at line # 4

 if fa.required_by ≠ null then total_required ++

 End of foreach lop started at line # 3

 if total_required ≥ 2

 foreach fa in alternateset

 foreach P_require in fa.required_by

 foreach fs in alternateset

 if fa ≠ fs

 foreach require in fs.required_by

 if P_require = require then require.selected=false

86

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

21

22

23

24

25

26

27

 End of foreach loop started at line # 19

 End of if condition started at line # 18

 End of foreach loop started at line # 17

 End of foreach loop started at line # 16

 End of foreach loop started at line # 15

 End of if condition started at line # 14

End of foreach loop started at line # 1

b) Explanation

Statt 1. This loop will select each alternative set from all alternative sets, created by attributes setting

algorithm on feature model

Statt 2. Set total required variable to 0. This variable is to store the number of features that are required by a

feature by implies constraint

Statt 3. This loop is to get all features one-by-one stored in selected alternative list

Statt 4. This is to check that current feature (fa) from alternative list requires any other feature or not by

implies constraint

Statt 5. This loop is to select those features which are required by current feature (fa) by implies constraint

Statt 6. This condition is to check that parent feature of current feature (fa) and the feature which is required

by current feature (require) is same. As depicted in Fig. 3(a)

Statt 7. If the required feature of (fa) lies under same alternative set then selection of (fa) will be set false.

Because this violates the basic rule of alternative set i.e. only one feature can be instantiated from an

alternative set

Statt 8. As (fa) selection is set to false then this feature must be removed from alternative set

Statt 9. if condition ends, started at line # 6

Statt 10. foreach loop ends, that started at line # 5

Statt 11. if condition ends, started at line # 4`

Statt 12. This condition is to check that is there any feature required by other feature using implied constraint

if yes then increment the value of total_required variable. The reason for this check and increment is if

multiple features from the same alternative set are required then there is a chance of contradiction as in Fig.

3 (b)

Statt 13. foreach loop ends, started at line # 3

Statt 14. Check that total_required value is greater than or equal to 2 or not

Statt 15. This will select each feature from alternative list

Statt 16. Select those features that require the feature (fa) from alternative set

Statt 17. Select feature (fs) one-by-one from the same alternative set

Statt 18. As foreach loops at line # 16 and 18 both are selecting features from the same alternative set so this

condition is to check that not the same feature are being compared with each other

Statt 19. Select those feature which require (fs) by implies constraint

Statt 20. If the feature that require (fa) also requiring (fs) then that feature’s selection will be set to false

because it is violating implying multiple features from a single alternative set

Statt 21. End of foreach loop started at line # 19

Statt 22. End of if condition started at line # 18

Statt 23. End of foreach loop started at line # 17

87

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 24. End of foreach loop started at line # 16

Statt 25. End of foreach loop started at line # 15

Statt 26. End of if condition started at line # 14

Statt 27. End of foreach loop started at line # 1

c) Tracing

This algorithm is to find contradiction due to alternative constraint. So in this tracing we are considering the

alternative list that is created during set attributes algorithm. This alternative list is as under:

games_a = [gnuchess | glchess] this alternative set lies under games feature so list name is games_a.

Table 4 Tracing of algorithm to find alternative contradiction.

 Stat # Tracing of alternative list games_a

 1 In this loop games_a alternative set selected

 2 Total_required = 0

F
ir

st
 I

te
ra

ti
on

 o
f

fo
re

ac
h

lo
op

 a
t l

in
e

3

3 This loop will select first feature from alternative set so fa=gnuchess

4 This condition is true as this features requires glchess

5 As gnuchess requires glches so require = glchess

6 This condition is true because both features (fa) and (require) falls under same parent

games

7 Set the (fa=gnuchess) selection to false due to contradiction

8 As (fa=gnuchess) selection is set to false so this feature will be romoved from

alternative list

9 End of if condition started at line # 6

10 End of foreach loop started at line # 5

11 End of if condition started at line # 4

12 This condition is false

S
ec

on
d

It
er

at
io

n
of

fo
re

ac
h

lo
op

 a
t l

in
e

3 3 This loop will select second feature from alternative set so fa=glchess

4 This condition is False as this features requires no feature

5~8 These conditions will not execute

9 End of if condition started at line # 6

10 End of foreach loop started at line # 5

11 End of if condition started at line # 4

12 This condition is true so the value of total_required=1

 13 End of foreach loop started at line # 3

 14 This condition is false because total_required=1

 15~26 These conditions will not execute

 27 End of first iteration of foreach loop started at line # 1

This algorithm is to find contradiction in alternative sets after tracing. So, mostly features with alternative

relevance affected. In our example there are two features that have alternative relevance gnuchess and glchess

88

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

lies under games that contain contradiction because gnuchess implies glchess so the selection gnuchess is set

to false. There is no change in the attributes of the remaining three features. After the tracing of this algorithm,

values of attributes for the features from our example feature model (Fig. 2) is as under. Attributes that has

been changes after the tracing of this algorithm are underlined.

Table 5 Attributes values after the tracing of algorithm “alternative contradiction”

Features (f) Attributes values

Ubuntu selected= null, relevance=null, parent=null, exclude=null, requires=null,

required_by=null

Texteditor selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash],

requires=[gnome], required_by=null, ubuntu.total_alternateset=0,

Bash selected=null, relevance=mandatory, parent=ubuntu, exclude=[texteditor, gui],

requires=[kde], required_by=null, ubuntu.total_alternateset=0,

Gui selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash, games],

requires=null, required_by=null, ubuntu.total_alternateset=0,

Games selected=null, relevance=optional, parent=ubuntu, exclude=gui, requires=null,

required_by=null, ubuntu.total_alternateset=0,

Kde selected=null, relevance=or, parent=gui, exclude=null, requires=null,

required_by=[bash], gui.total_alternateset=0,

Gnome selected= null, relevance =or, parent=gui, exclude=null, requires=null,

required_by=[texteditor], gui.total_alternateset=0,

Gnuchess selected=false, relevance=alternative, parent=games, exclude=null, requires=glchess,

required_by=null, games.total_alternateset=1,

(added to alternative set) games_a = [gnuchess]

Glchess selected= null, relevance=alternative, parent=games, exclude=null, requires=null,

required_by= gnuchess, games.total_alternateset=1,

 (added to alternative set) games_a = [gnuchess | glchess]

5.3 Algorithm for the selection and rejection of features

This algorithm sets the selection attribute of all features in the given feature model. After tracing of this

algorithm, features either be selected or rejected on the basis of constraint applied on the features. The section

algorithm (explained below) process all features to find out the selectable features from a given feature model.

This will also help to find which feature is not selectable and also help to detect errors in that feature model.

a) Algorithm

1

2

3

4

5

6

foreach f in FM

 if f. parent = null AND f.selected ≠ false then f.selected  true

 if f.parent.select = true AND f.selected = null AND f. parent ≠ null

 if f.relevance ≠ alternate

 if f.requires ≠ null

 foreach require in f.requires

89

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 if require.selected ≠ false

 f.selected  true

 require.selected  true

 End of if condition started at line # 7

 if require.selected = false then f.selected  false

 End of foreach loop started at line # 6

 else

 f.selected  true

 End of if-else condition started at line # 5

 End of if condition started at line # 4

 if f.relevance = alternative AND f.parent.total_alternatesets ≥ 1

 select  false

 foreach fs in f.parent_alternatesets

 if fs.selected = true then select = true

 End of foreach loop started at line # 19

 if select = false // select if there is any required is mandatory

 foreach fs in f.parent_alternatesets

 if fs.required_by ≠ null

 foreach require in fs.required_by

 if require.selected ≠ false AND if require.relevance=mandatory

 fs.selected  true

 require.selected  true

 select  true

 break // exit from the loop for this alternate set

 End of if condition started at line # 27

 End of foreach loop started at line # 26

 End of if condition started at line # 25

 End of foreach loop started at line # 23

 if select = false // select if there is no any required is mandatory

 foreach fs in f.parent_alternatesets

 selected_required_by  0

 if fs.required_by ≠ null

 foreach require in fs.required_by

 if require.selected ≠ false

 fs.selected  true

 require.selected  true

 select  true

 break // exit from the loop for this alternate set

 End of if condition started at line # 41

 End of foreach loop started at line # 40

 End of if condition started at line # 39

 End of foreach loop started at line # 37

 End of if condition started at line # 36

 if select = false

90

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

78

79

80

81

82

83

84

85

86

 foreach fs in f.parent_alternatesets

 if fs.requires ≠ null

 foreach require in fs.requires

 if require.selected ≠ false

 fs.selected  true

 require.selected  true

 select  true

 break // exit from the loop for this alternate set

 End of if condition started at line # 55

 if require.selected = false then fs.selected  false

 End of foreach loop started at line # 54

 End of if condition started at line # 53

 End of foreach loop started at line # 52

 End of if condition started at line # 51

 if select = false

 foreach fa in alternateset

 if fa.selected ≠ false

 fa.selected  true

 select  true

 break // exit from the loop for this alternate set

 End of if condition started at line # 68

 End of foreach loop started at line # 67

 End of if condition started at line # 66

 if select = true

 foreach fs in f.parent_alternateset

 if fs.selected ≠ true then fs.selected  false

 End of foreach loop started at line # 76

 End of if condition started at line # 75

 End of if condition started at line # 22

 End of if condition started at line # 17

End of if condition started at line # 3

End of foreach loop started at line # 1 // deselect all those which are not selected

foreach f in FM

 if f.selected = null then f.selected = false

End of foreach loop started at line # 84

b) Explanation
Statt 1. This loop will select features from feature model one-by-one

Statt 2. This condition is to check that (f) has any parent feature or not if it don’t have then it is root feature

the selection of root feature set to true if the selection of root feature was not set to false due to any

constraint

Statt 3. In this condition first to check that that the selection of parent features of (f) is true because a feature

can’t be instantiated if its parent’s selection is false. In second part of this condition it is checked that the

selection of (f) is not set to false due to any constraint

91

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 4. To check that (f) does not have alternative relevance

Statt 5. This is to check that does this features has implies constraint for any other feature?

Statt 6. This loop will select each feature that is required by (f) by implies constraint

Statt 7. This is to check that selection of the feature which is required by (f) is not set to false

Statt 8. If implied feature’s selection is not set false then the selection of (f) is set to true

Statt 9. Selection of required feature also set to true because without this feature (F) cannot be instantiated

Statt 10. If condition ends, started at line # 7

Statt 11. This is to check that if selection of implied feature is set to false then selection of (f) also set to false

because without required feature (f) cannot be instantiated

Statt 12. foreach loop ends, started at line # 6

Statt 13. If the condition of statement # 5 false then coming statements will be executed

Statt 14. Else part of if condition at line # 7

Statt 15. As (f) does not have any constraint or contradiction then (f) set to true

Statt 16. If condition ends that started at line # 5

Statt 17. If condition ends that started at line # 4

Statt 18. This is to check that (f) has alternative relevance and parent feature of (f) have alternative sets

Statt 19. A boolean variable select set to true. This variable will be used to track that any of the feature from

an alternative set selected or not because only one feature can be selectable from an alternative set

Statt 20. This loop will select each feature from alternative set as (fs)

Statt 21. To check that if selection of (fs) is true then set the value of select true to keep record of selected

feature in alternative set

Statt 22. Foreach loop ends, started at line # 19

Statt 23. To check the value of variable select if true then proceed further

Statt 24. This loop will select each feature from alternative set as (fs)

Statt 25. This to check that (fs) is implied by any other feature or not

Statt 26. This loop will select those features one-by-one which required (fs) by implies constraint

Statt 27. This condition will check that (require) feature’s selection is not set to false and its relevance is

mandatory

Statt 28. Selection of (fs) set to true because it is required by a mandatory feature (require)

Statt 29. As (require) feature is mandatory so selection of this feature set to true because its required feature

is also selected

Statt 30. Value of variable select is set to true because one feature from alternative set has been selected

Statt 31. This break statement is to exit from all loops that are used for this alternative set and will move to

statement # 75

Statt 32. If condition ends, started at line # 27

Statt 33. Foreach loop ends, started at line # 26

Statt 34. If condition ends, started at line # 25

Statt 35. Foreach loop ends, started at line # 23

Statt 36. To check the value of select variable that it is true or false

Statt 37. This loop will select each feature from alternative set as (fs) for those feature which require (fs) and

don’t have mandatory relevance

Statt 38. This to check that (fs) is implied by any other feature or not

92

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 39. This loop will select those features one-by-one which required (fs) by implies constraint (this time

loops is to find implied feature by an optional feature)

Statt 40. This condition will check that (require) feature’s selection is not set to false

Statt 41. Selection of (fs) set to true because it is required by a feature

Statt 42. Selection of this (require) feature set to true because its required feature is also selected

Statt 43. Value of variable select is set to true because one feature from alternative set has been selected

Statt 44. This break statement is to exit from all loops that are used for this alternative set and will move to

statement # 75

Statt 45. If condition ends, started at line # 41

Statt 46. foreach loop ends, started at line # 40

Statt 47. If condition ends, started at line # 39

Statt 48. foreach loop ends, started at line # 37

Statt 49. If condition ends, started at line # 36

Statt 50. To check the value of select variable that it is true or false

Statt 51. This loop will select each feature from alternative set as (fs) for those which are implied by (fs)

Statt 52. This to check that (fs) implies any other feature or not

Statt 53. This loop will select those features one-by-one which are implied by (fs)

Statt 54. This condition will check that (require) feature’s selection is not set to false

Statt 55. Selection of (fs) set to true

Statt 56. Selection of this (require) feature set to true

Statt 57. Value of variable select is set to true because one feature from alternative set has been selected

Statt 58. This break statement is to exit from all loops that are used for this alternative set and will move to

statement # 75

Statt 59. If condition ends, started at line # 55

Statt 60. This condition will check if implied feature by (fs) is false then (fs) also set to false

Statt 61. foreach loop ends, started at line # 54

Statt 62. If condition ends, started at line # 53

Statt 63. foreach loop ends, started at line # 52

Statt 64. If condition ends, started at line # 51

Statt 65. To check the value of select variable that it is true or false

Statt 66. This loop will select each feature from alternative set as (fa) for those which are neither implied by

any feature not (fa) implies any feature

Statt 67. To check that selection of (fa) is not false

Statt 68. Selection of (fa) set to true

Statt 69. Value of variable select is assigned true to indicate that a feature from alternative set has been

selected

Statt 70. This break statement is to exit from all loops that are used for this alternative set and will move to

statement # 75

Statt 71. If condition ends, started at line # 68

Statt 72. foreach loop ends, started at line # 67

Statt 73. If condition ends, started at line # 66

Statt 74. To check value of select variable true or false

Statt 75. This loop will select each feature from alternative set as (fs)

93

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 76. To check that any of the feature from alternative set is selected or not. If not selected then select a

feature

Statt 77. foreach loop ends, started at line # 76

Statt 78. If condition ends, started at line # 75

Statt 79. If condition ends, started at line # 22

Statt 80. If condition ends, started at line # 15

Statt 81. If condition ends, started at line # 03

Statt 82. foreach ends, started at line # 1

Statt 83. This loop will select each feature (f) from feature model. This loop will deselect those features

which are not selected due to any reason

Statt 84. This condition will check that if the selection of a feature (f) is neither true nor false then set the

selection to false

Statt 85. foreach loop ends, started at line # 84

c) Tracing

This algorithm is to set the selection value true or false. For more explanation of the algorithm by tracing we

are using the feature model of our example (Fig. 2). First we are tracing step-by-step of root feature ubuntu

then of another feature games.

Table 6 Tracing of “selection” algorithm for feature “ubuntu”

Stat # Tracing

1 f = ubuntu

2 (as both conditions are true i.e. (f) neither has parent feature not its selection is false)

ubnuntu.selected =true

3 This condition is false so reset of the statements will not execute

After tracing of “selection” algorithm, value of “selected” attribute for each feature in a feature model

will either be true or false based on the constraints, relevance and parent feature’s attributes value. After

tracing of this algorithm values of attributes for the features from our example feature model (Fig. 2) is as

under. Selected attributes that are changed after the tracing of this algorithm are underlined.

Table 7 Attributes values after tracing of “selection” algorithm.

Features (f) Attributes values

Ubuntu selected=true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null

Texteditor selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash],

requires=[gnome], required_by=null, ubuntu.total_alternateset=0,

Bash selected=null, relevance=mandatory, parent=ubuntu, exclude=[texteditor, gui],

requires=[kde], required_by=null, ubuntu.total_alternateset=0,

Gui selected=null, relevance=mandatory, parent=ubuntu, exclude=[bash, games],

94

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

requires=null, required_by=null, ubuntu.total_alternateset=0,

Games selected=null, relevance=optional, parent=ubuntu, exclude=gui, requires=null,

required_by=null, ubuntu.total_alternateset=0,

Kde selected=false, relevance=or, parent=gui, exclude=null, requires=null,

required_by=[bash], gui.total_alternateset=0,

Gnome selected=false, relevance =or, parent=gui, exclude=null, requires=null,

required_by=[texteditor], gui.total_alternateset=0,

Gnuchess selected=false, relevance=alternative, parent=games, exclude=null, requires=glchess,

required_by=null, games.total_alternateset=1,

(added to alternative set) games_a = [gnuchess]

Glchess selected=false, relevance=alternative, parent=games, exclude=null, requires=null,

required_by= gnuchess, games.total_alternateset=1,

 (added to alternative set) games_a = [gnuchess | glchess]

5.4 Finding maturity level of a feature model

In this section, we define the mechanism for maturity level detection (error detection on each level) in detail.

This is algorithmic based mechanism. Errors defined on each level are to be detected as per definition. For

each error different algorithm defined and these algorithms will indicated the level if error exist.

5.4.1 Instanceable (Level-0)

A feature model lies on this level if it is a void feature model. To find that feature model lies on this level or

not “void feature model “algorithm will be used.

Void feature model

After setting all attributes specially selection attribute it is easy to detect errors. If selection of all features is set

false then it will be a void feature model.

a) Algorithm

1

2

3

4

5

Select  0

foreach f in FM

 if f.selected = true then select ++

End of foreach loop started at line # 2

if select < 2 then “The given feature model is at Level 0 (Instanceable level)”

b) Explanation

Statt 1. Initializing the select attribute by zero. This variable is used to count the number of selected

features

Statt 2. This loop is to select each feature from feature model one-by-one

Statt 3. This condition will check that if (f) is selected then increment the value of select variable used to

count selected features

Statt 4. Foreach loop ends, started at line # 2

Statt 5. This condition will check that “are selected features less than 2” because in void feature model

selected feature is root feature and some time root feature also not selected. So, in either case number

of selected features in a feature model is zero or one (less than 2). If number selected feature are less

than 2 in any of the feature model is said to be void and no instance can be generated

95

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

c) Tracing
Table 8 Attributes values of feature model shown in Fig. 2.

 Features Attributes values

Ubuntu selected= true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null,

Texteditor selected= false, relevance=mandatory, parent=ubuntu, exclude=[bash], requires=null,

required_by=null, ubuntu.total_alternateset=0,

Bash selected= false, relevance=mandatory, parent=ubuntu, exclude=[texteditor, gui],

requires=null, required_by=null, ubuntu.total_alternateset=0,

Gui selected= false, relevance=mandatory, parent=ubuntu, exclude=[bash], requires=null,

required_by=games, ubuntu.total_alternateset=0,

Games selected= false, relevance=optional, parent=ubuntu, exclude=null, requires=gui,

required_by=null, ubuntu.total_alternateset=0,

Vi selected= false, relevance=alternative, parent=texteditor, exclude=null, requires=null,

required_by=null, texteditor.total_alternateset=0,

(added to alternative list) texteditor_a = [vi]

Gedit selected= false, relevance=alternative, parent=texteditor, exclude=null, requires=null,

required_by=null, texteditor.total_alternateset=0,

(added to alternative list) texteditor_a = [vi | gedit]

Kde selected= false, relevance =or, parent=gui, exclude=null, requires=null,

required_by=null, gui.total_alternateset=0,

Gnome selected= false, relevance =or, parent=gui, exclude=null, requires=null,

required_by=null, gui.total_alternateset=0,

Gnuchess selected= false, relevance=alternative, parent=games, exclude=null, requires=glchess,

required_by=null, games.total_alternateset=1,

(added to alternative list) games_a = [gnuchess]

Glchess selected= false, relevance=alternative, parent=games, exclude=null, requires=null,

required_by=gnuchess, games.total_alternateset=1,

 (added to alternative list) games_a = [gnuchess | glchess]

After the tracing of selection algorithm all feature’s selected attributes in our example feature model (Fig.

2) are false due to contradictions and constraints except root feature so it is said to be a void feature model as a

result this feature model is said to be at instantiated level.

5.4.2 Acceptable (Level-1)

A feature model will be at this level if the instances (products) generated are not valid. An invalid product is

that which is missing any of the mandatory features because mandatory feature are necessary part of a valid

product.

96

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Fig. 4 Feature model with invalid product (Benavides, 2010).

Invalid product

A product missing a mandatory feature of a feature diagram is considered to be an invalid product of that

feature diagram (Trinidad, 2008). In the following algorithm, we check invalid products of a given feature

diagram.

a) Algorithm

1

2

3

4

5

mandatory  0

foreach f in FM

 if f.relevance=mandatory AND f.selected ≠ true then mandatory ++

End of foreach loop started at line # 2

if mandatory ≥ 1 then “This Feature Model lies on Acceptable level”

b) Explanation

Statt 1. Assigning the value to mandatory variable zero. This variable is used to count that how many feature

selected

Statt 2. This loop is to select each feature from feature model one-by-one

Statt 3. This condition will check if relevance of (f) is mandatory and its selection is false then increase the

value of mandatory variable

Statt 4. Foreach loop ends, started at line # 2

Statt 5. If the value of mandatory variable is greater than or equal to one (one or more mandatory features are

not selected) then this feature model will generate invalid product. Hence it is on Acceptable level (Level-

1)

c) Tracing

Example of feature model mention in Fig. 4 will be used for the tracing of algorithm to find invalid products.

This feature model contains a contradiction in the form of exclude constraint on two mandatory features GPS

and Media.

After the tracing of basic attribute setting algorithm, contradiction finding algorithm and selection

algorithm the attribute values of features in feature model (Fig. 4) are as under.

Table 9 Attribute values of feature model.

Features Attribute values

Mobile

Phone

selected= true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null,

97

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Calls selected= true, relevance=mandatory, parent=Mobile Phone, exclude=null, requires=null,

required_by=null,

GPS selected= false, relevance=mandatory, parent=Mobile Phone, exclude=[Media, Basic],

requires=null, required_by=null,

Screen selected= true, relevance=mandatory, parent=Mobile Phone, exclude=null, requires=null,

required_by=null,

Media selected= false, relevance=mandatory, parent=Mobile Phone, exclude=[GPS, High

Resolution], requires=null, required_by=null,

Basic selected= false, relevance=alternative, parent=Screen, exclude=[GPS], requires=null,

required_by=null,

High

Resolution

selected=true, relevance=alternative, parent=Screen, exclude=Media, requires=null,

required_by=null,

In this feature model both features GPS and Media have mandatory relevance, so these should be the part

of every instance. Due to the presence of excludes constraint between GPS and Media, they both cannot be

chosen in a single instance and as a result the products generated from this feature model will be invalid. As

this feature model contains invalid product error so it lies on acceptable level.

5.4.3 Managed (Level-2)

A given feature model will be on this level if it contains either of dead feature, conditionally dead feature and

false variable feature. We propose separate algorithms for the detection of each error.

Fig. 5 Feature model with dead, false variable features and conditionally dead feature (Segura et al., 2010)

5.4.3.1 Dead feature

The following algorithm, checks the existence of dead features in a given feature model. If a feature model

contains dead feature it will be at level-2.

a) Algorithm

1

2

3

4

5

6

7

Dead  0

foreach f in FM

 if f.selected=false AND (f.exclude.relevance= mandatory OR f.requires.selected=false) then dead++

 if f.selected=false AND f.relevance =alternative AND f.exclude = null

 required  false

 foreach fa in f.alternateset

 if fa.selected =true AND fa.required.relevance =mandatory

98

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

8

9

10

11

12

13

14

15

16

17

18

19

 required  true

 break

 End of if condition started at line # 7

 End of foreach loop started at line # 6

 if required =true

 foreach fa in f.alternateset

 if fa.selected =false then dead ++

 End of foreach loop started at line # 13

 End of if condition started at line # 12

 End of if condition that was started at line # 4

End of foreach loop that was started at line # 2

if dead ≥ 1 then “This Feature Model is at Managed Level”

b) Explanation

Statt 1. Initialize the variable dead to 0. This variable will be used count the dead features found in a feature

model

Statt 2. This loop will select each feature (f) from feature model

Statt 3. This condition is to check that whether the selection of (f) is false due to the exclude constraint with

mandatory feature or due to implies constraint (selection of implied feature was also false) then this is a

dead feature and increment the value of variable dead

Statt 4. This condition is to check that the selection of (f) is false, its relevance is alternative and not

excluded by any feature

Statt 5. Initialize the variable required with false. This variable will be used to track that a selected feature

from this alternative set is due to implies constraint by a mandatory feature or not.

Statt 6. This loop will select each feature from alternative set

Statt 7. This condition is to check that (fa) is selected due to implies constraint by a mandatory feature

Statt 8. Set required to true if (fa) is selected due to implies constraint by a mandatory feature.

Statt 9. This is to exit from the loop for alternative set when selected feature from alternative set found

Statt 10. If conditions ends, started al line # 7

Statt 11. Foreach loop ends, started at line # 6

Statt 12. This condition is check value of selected variable which was assigned to true when selected feature

found in alternative set.

Statt 13. To select all features (fa) from alternative set

Statt 14. If the feature (fa) from alternative set is not selected then it’ll be marked dead because of implies

constraint from mandatory feature and value of variable dead incremented

Statt 15. Foreach loop ends, started at line # 13

Statt 16. If condition ends, started at line # 12

Statt 17. If condition ends, started at line # 4

Statt 18. Foreach loop ends, started at line # 2

Statt 19. This condition is to check the value of variable dead. If it is greater than or equal to 1 this means

this feature model contain dead features so it on level-managed.

c) Tracing

99

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

As shown in Fig. 5, there is excludes constraint between Payment and High features, i.e., they both must not be

chosen in one instance. Payment feature is mandatory at global level of the diagram—it must be the part of

each instance, as result feature High will not be select because it has variable relevance and become dead

feature.

After the tracing of basic attribute setting algorithm, contradiction finding algorithm and selection

algorithm the attribute values of features in feature model (Fig. 5) are as under.

Table 10 Features attribute values of feature model shown in Fig.5.

Features Attribute values

E-Shop selected=true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null,

Payment selected=true, relevance=mandatory, parent=E-Shop, exclude=High, requires=null,

required_by=null,

Security selected=true, relevance=mandatory, parent=E-Shop, exclude=null, requires=null,

required_by=null,

GUI selected=true, relevance=mandatory, parent=E-Shop, exclude=null, requires=null,

required_by=null,

Banners selected= true, relevance=optional, parent=E-Shop, exclude=Mobile, requires=null,

required_by=null,

High selected=false, relevance=Alternative, parent=Security, exclude=Payment, requires=null,

required_by=null,

Medium selected=true, relevance=Alternative, parent=Security, exclude=null, requires=null,

required_by=null,

PC selected= true, relevance=or, parent=GUI, exclude=null, requires=null,

required_by=null,

Mobile selected=false, relevance=or, parent=GUI, exclude=Banners, requires=null,

required_by=null,

Table 11 Tracing of algorithm to find dead feature for the feature “high”

Stat # Tracing

1 Dead =0

2 (f) = Medium

3 This condition is false because exclude is null

4 This condition is true because exclude is null this feature has alternative relevance

5 Set required = false

6 This loop will select each feature from the alternative set to which feature “Medium” belongs so

fa=High

7 This condition is true because fa=High is selected and it has implies constraint by a mandatory

feature

8 Set required=true

9 This break will end the loop started at line # 6

10 If of line # 7 conditions ends

100

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

11 Loop of line # 6 ends

12 Condition is true because required=true

13 This loop will select each feature from the alternative set to which feature “Medium” belongs so

fa=High

14 This condition will check if the selection of a feature from alternative set is flase then increment

the value of variable dead. In this case dead=1

15 End of foreach loop that was started at line # 13

16 End of if that was started at line # 12

17 End of if that was started at line # 4

18 End of foreach loop that was started at line # 2

19 This condition id true because value of variable dead =1 so “This Feature Model is at Managed

Level”

5.4.3.2 Conditionally dead feature

This algorithm is to detect this error. If a given feature model contains conditionally dead features it will be on

level-2 (managed).

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

cdead  0

foreach f in FM

 if f.selected=false AND (f.exclude.relevance≠mandatory OR f.requires.selected= false) then cdead++

 if f.selected =false AND f.relevance = alternative AND f.exclude = null

 required  false

 foreach fa in f.alternateset

 if fa.selected=true AND fa.required.relevance≠mandatory

 required  true

 break

 End of if condition that was started at line # 7

 End of foreach loop that was started at line # 6

 if required =true

 foreach fa in f.alternateset

 if fa.selected =false then cdead ++

 End of foreach loop that was started at line # 13

 End of if condition that was started at line # 12

 End of if condition that was started at line # 4

End of foreach loop that was started at line # 2

if cdead ≥ 1 then “This Feature Model is at Managed Level”

b) Explanation

Statt 1. Initialize the variable cdead to 0. This variable will be used count the dead features found in a feature

model

Statt 2. This loop will select each feature (f) from feature model

101

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Statt 3. This condition is to check that whether the selection of (f) is false due to the exclude constraint with

non-mandatory feature or due to implies constraint (selection of implied feature was also false) then this is

a dead feature and increment the value of variable cdead.

Statt 4. This condition is to check that the selection of (f) is false, its relevance is alternative and not

excluded by any feature

Statt 5. Initialize the variable required with false. This variable will be used to track that a selected feature

from this alternative set is due to implies constraint by a mandatory feature or not

Statt 6. This loop will select each feature from alternative set

Statt 7. This condition is to check that (fa) is selected due to implies constraint by a non-mandatory feature

Statt 8. Set required to true if (fa) is selected due to implies constraint by a mandatory feature

Statt 9. This is to exit from the loop for alternative set when selected feature from alternative set found

Statt 10. If conditions ends, started al line # 7

Statt 11. Foreach loop ends, started at line # 6

Statt 12. This condition is check value of selected variable which was assigned to true when selected feature

found in alternative set

Statt 13. Select all features (fa) from alternative set

Statt 14. If the feature (fa) from alternative set is not selected then it’ll be marked dead because of implies

constraint from non-mandatory feature and value of variable dead incremented

Statt 15. Foreach loop ends, started at line # 13

Statt 16. If condition ends, started at line # 12

Statt 17. If condition ends, started at line # 4

Statt 18. Foreach loop ends, started at line # 2

Statt 19. This condition is to check the value of variable cdead. If it is greater than or equal to 1 this means

this feature model contain conditionally dead features so it on level-managed

c) Tracing

For the tracing of conditionally dead feature algorithm we are using the feature model depicted in Fig. 13 and

its features attribute’s values mentioned in Table 10.

Table 12 Tracing of algorithm to find “conditionally dead feature”

Stat # Tracing on “Mobile” feature

1 cdead=0

2 f = Mobile

3 This condition is true because selection of (f) is false due to exclude constraint and the

relevance of that feature which excludes (f) is not mandatory. Selection of “Banner” feature

made it dead. So value of cdead incremented to 1 (cdead=1)

4 This condition is false because exclude is not null

5 to

18

These statements will not be executed because the condition at line # 2 is false and all these

statements grouped under this condition.

19 This condition is true because the value of cdead=1 because of condition at line # 3 so this

feature model contains Conditionally dead feature as a result lies on Managed level

102

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

5.4.3.3 False variable features

The following algorithm finds the false variable features in a given feature model. If a feature model contains

false variable feature then it’ll be at managed level.

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

fvariable  0

foreach f in FM

 if f.selected=true AND f.relevance≠mandatory AND f.required_by.relevance=mandatory then fvariable++

 if f.selected=true AND f.relevance=alternate AND f.alternateset.coutfeatures()=2 AND f.parent.relevance =

mandatory

 foreach fa in f.alternateset

 if fa.selected = false AND fa.exclude≠ null AND fa.exclude.relevance= mandatory

 fvariable ++

 break

 end of if condition started at line # 6

 end of foreach loop started at line # 5

 end of if condition started at line # 4

End of foreach loop started at line # 2

if fvariable ≥ 1 then “This Feature Model is at Managed Level”

b) Explanation

Statt 1. Initialized a variable fvariable to zero. This will be used to count the false variable features in feature

model if exist

Statt 2. This loop will select features (f) from a feature model

Statt 3. This condition is to check that a non-mandatory feature selected due to implies constraint by

mandatory feature. So, it is a false variable feature and the value of fvariable incremented

Statt 4. This condition will check that selected non-mandatory feature (f) has alternative relevance with its

mandatory parent feature and this alternative set has only two features. This check is to detect exclude

constraint implied by a mandatory feature on a feature having alternative relevance. If one feature from

two alternative features excluded the defiantly other feature will be selected

Statt 5. This loop will select features (fa) from alternative set

Statt 6. This condition is to check that feature (fa) is not selected due to exclude constraint by a mandatory

feature as a result other feature will be selected

Statt 7. One feature is selected automatically in this alternative set so the value of fvariable incremented

Statt 8. This to stop the loop started at line # 5

Statt 9. If condition ends, started at line # 6

Statt 10. Foreach loop end, started at line # 4

Statt 11. If condition ends, started at line # 2

Statt 12. Foreach loop ends, started at line # 5

Statt 13. This condition will check if the value of fvariable is greater than or equal to one then this feature

model contains false variable feature model hence it is on level-managed

c) Tracing

103

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

This algorithm will be applied on feature model depicted in Fig. 5 to find false variable features. In this feature

model, Medium is a false variable feature. It’ll be the part of all instances generated from this feature model.

After tracing of the basic attribute setting algorithm, contradiction finding algorithm and selection algorithm

the attribute values of features in feature model (Fig. 5) are listed in Table 11.

Table 13 Tracing of algorithm to find “false variable features” for the feature “medium”

Stat # Tracing on the feature “High”

1 fvariable=0

2 f=High

3 This condition if true because this feature (f) is implied by a mandatory feature so fvariable=1

4 This condition is true because (f) has alternative relevance, this alternative set has two features

and parent feature of (f) has mandatory relevance

5 This loop will select feature (fa = High) from alternative set

6 This condition is false because (fa= High) is selected and exclude is null

7 Will not be executed because condition is false.

8 Exit from the foreach loop started at line # 5 and move to statement # 12

13 This condition is true because value of fvariable=1. It means this feature model contain false

variable feature so this feature model is at Level Managed

5.4.4 Consistent (Level-3)

Errors due to the redundancy in feature model are placed in this level and the following algorithms use to

detect these errors.

Fig. 6 Feature model with multiple exclusions, multiple implications & implied mandatory (Zhang and Lin, 2011).

5.4.4.1 Multiple exclusions

This algorithm is to find the redundancy caused by multiple exclusions especially by mandatory features.

104

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

excluded_feature  0

foreach f in FM

 exclude  0

 if f.selected = false AND f.exclude ≠ null

 foreach ex in f.exclude

 if ex.relevance = mandatory then exclude ++

 End of foreach loop started at line # 5

 End of if condition started at line # 4

 if exclude ≥ 2 then excluded_feature ++

End of forach loop started at line # 2

if excluded_feature ≥ 1 then “This Feature Model contains Multiple Excluded Features so it is on Consistent Level “

b) Explanation

Statt 1. Excluded_feature initialized to count multiply excluded features in a feature model

Statt 2. This loop will select feature from feature model

Statt 3. Variable exclude initialize to count that how many mandatory features exclude (f)

Statt 4. This is to check that (f) is not selected and excluded by any feature

Statt 5. This loop will select each feature that exclude (f)

Statt 6. This to check that feature that exclude (f) has mandatory relevance then increment the value of

exclude variable

Statt 7. Foreach loop ends, started at line # 5

Statt 8. If condition ends, started at line # 4

Statt 9. This is to check that if (f) is excluded by two or more that two mandatory features then it has

multiple exclusions. So, the value of excluded_features incremented

Statt 10. Foreach loop end that was started at line # 2

Statt 11. This to check that if there any multiple excluded features then the feature model is at level consistent

c) Tracing

The feature model shown in Fig. 6 is redundantly modelled. First redundancy in this feature model is an

optional feature Position Detection is implied by two mandatory features Route Search and Authentication,

which is normally called multiple implications (Maßen and Horst, 2004). Secondly, Mobile feature is excluded

by two mandatory features Encryption and Authentication, which is normally called multiple exclusions

(Maßen and Horst, 2004). Thirdly, feature Authentication implies a mandatory feature Devices, which is called

implied mandatory feature (Maßen and Horst, 2004).

All of the discussed redundancies are detected by the help of different algorithms. Here, in this tracing

of algorithm we are going to find multiple exclusion redundancy depicted on feature Mobile.

Feature Attributes Value

Tourist Guide selected= true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null,

Services selected= true, relevance=mandatory, parent=Tourist Guide, exclude=null,

requires=null, required_by=null,

105

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Operating

Environment

selected= true, relevance=mandatory, parent=Tourist Guide, exclude=null,

requires=null, required_by=null,

Route Search selected= true, relevance=mandatory, parent=Services, exclude=null, requires=null,

required_by=null,

Position

Detection

selected= true, relevance=optional, parent=Services, exclude=null, requires=null,

required_by=[Authentication | Encryption],

Authentication selected= true, relevance=mandatory, parent=Services, exclude=[Mobile],

requires=[Position detection | Devices], required_by=null,

Devices selected= true, relevance=mandatory, parent=Operation Environment, exclude=null,

requires=null, required_by=[Authentication],

Connection selected= true, relevance=optional, parent=Operation Environment, exclude=null,

requires=null, required_by=null,

Encryption selected=true, relevance=mandatory, parent=Authentication, exclude=[Mobile],

requires=[Position Detection], required_by=null,

Mobile selected= False, relevance=Alternative, parent=Devices, exclude=[Authentication |

Encryption], requires=null, required_by=null,

Table 15 Tracing of algorithm to find “multiple exclusions” redundancy.

Stat # Tracing on the feature “Mobile”

1 excluded_feature=0

2 f= Mobile

3 exclude=0

4 This condition is true because (f) is not selected and exclude is not null

5

1stIteration

ex = Authentication

6

1stIteration

This condition is true because the relevance of (ex=Encryption) is mandatory so the value

of exclude=1

5

2nd Iteration

ex= Encryption

6

2nd Iteration

This condition is true because the relevance of (ex=Encryption) is mandatory so the value

of exclude=2

7 foreach loop ends, started at line # 5

8 If condition ends, started at line # 4

9 This condition is true because the value of exclude=2 so the value of

excluded_features=1

10 For each loop end that was started at line # 2

11 This condition is true because value of excluded_feature =1 which prove that this feature

model contains multiple exclusion redundancy so this feature model lies on level

Consistent

106

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

5.4.4.2 Multiple implications

This algorithm is to detect the redundancy caused by the multiples implication on variable features.

a) Algorithm

1

2

3

4

5

6

7

8

9

10

11

multi_implies  0

foreach f in FM

 mandatory_implies  0

 if f.relevance≠mandatory AND f.required_by≠ null

 foreach require in f.required_by

 if require.relevance=mandatory then mandatory_implies ++

 End of foreach loop started at line # 5

 End of if condition started at line # 4

 if mandatory_implies ≥ 2 then multi_implies ++

End of foreach loop started at line # 2

if multi_inmplies ≥ 1 then “This Feature Model multiple implications so it is on Consistent Level “

b) Explanation

Statt 1. Multi_implies initialized to count multiply implied features in a feature model

Statt 2. This loop will select feature from feature model

Statt 3. Variable mandatory_implies initialize to count that how many mandatory features implies (f)

Statt 4. This is to check that (f) is selected variable feature and implied by any feature

Statt 5. This loop will select each feature that implies (f)

Statt 6. This to check that feature that implies (f) has mandatory relevance then increment the value of

mandatory_implies variable

Statt 7. Foreach loop ends, started at line # 5

Statt 8. If condition ends, started at line # 4

Statt 9. This is to check that if (f) is implied by two or more that two mandatory features then it is implied by

multiple features. So, the value of multi_implies incremented

Statt 10. Foreach loop ends, started at line # 2

Statt 11. This to check that if there any multiple implied feature then the feature model is at level consistent

c) Tracing

This algorithm to find multiple implications applied on feature model in Fig. 6. The attributes values of

features for the feature model used as example for this algorithm are in Table 14.

Table 16 Tracing of algorithm to find “multiple implication”

Stat # Tracing on the feature “Position Detection”

1 multi_implies=0

2 f = Position Detection

3 mandatory_implies=0

4 This condition is true because (f) is selected and implied by multiple mandatory features

5

1st Iteration

require=Authentication

107

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

6

1st Iteration

This condition is true because (require=Authentication) is a mandatory feature so

mandatory_implies=1

5

2nd Iteration

require=Encryption

6

2nd Iteration

This condition is true because (require=Encryption) is a mandatory feature so

mandatory_implies=2

7 foreach loop ends, started at line # 5

8 If condition ends, started at line # 4

9 This condition is true because the value of mandatory_implies=2 so multi_implies=1

10 Foreach loop end that was started at line # 2

11 This condition is true because value of multi_implies=1 which proves that this feature

model contains the multi implication redundancy so it lies on the level Consistency

5.4.4.3 Implied mandatory features

This algorithm is find redundancy due to implied constraint on mandatory feature.

a) Algorithm

1

2

3

4

5

Implied_mandatory  0

foreach f in FM

 if f.relevance=mandatory AND f.required_by≠null then implied_mandatory++

End of foreach loop started at line # 2

if mandatory_implied ≥ 1 then “This Feature Model is on Optimized Level “

b) Explanation

Statt 1. Implied_mandatory variable initialized to count implied mandatory features in a feature model

Statt 2. This loop will select feature from feature model

Statt 3. This is to check that (f) is selected mandatory feature and implied by any feature then increment the

value of implied_mandatory

Statt 4. Foreach loop ends, started at line # 2

Statt 5. This to check that if there any implied mandatory feature then the feature model is at level Optimized

c) Tracing

This algorithm is to find implied mandatory feature redundancy from feature model in Fig. 6. The attributes

values of this feature model are in Table 14 and the Table 17 contains the tracing of the algorithm.

Table 17 Tracing of algorithm to find “implied mandatory feature”

Stat # Tracing on the feature “devices”

1 implied_mandatory=0

2 f= Devices

3 This condition is true because (f=Devices) is a mandatory feature and it is implied by a feature

(required_by=Connection) so implied_mandatory=1

4 Foreach loop ends, started at line # 2

5 This condition is true because the value of implied_mandatory =1 which shows that this feature

108

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

model contains redundancy of implied mandatory feature this feature model is

5.4.4.4 Duplicate features

This Algorithm is to find multiple features with same names in a feature model.

Fig. 7 Feature model with duplicate features (Segura, 2011).

a) Algorithm

1

2

3

4

5

6

7

8

9

duplicatefeature 0

foreach f in FM

 dfeature  0

 foreach fa in FM

 if f = fa then dfeature ++

 End of foreach loop started at line # 4

 if dfeature ≥ 2 then duplicatefeature ++

End of foreach loop started at line # 2

if duplicatefeature ≥ 1 then “This Feature Model contains Duplicate Features so it is on Consistent

Level“

b) Explanation

Statt 1. Duplicate feature variable initialized to count duplicate feature

Statt 2. This loop will select feature (f) from feature model

Statt 3. dfeature variable initialized to count that (f) has a duplicate feature

Statt 4. This loop will select feature (fa) from feature model. This loop will compare the features.

Statt 5. This condition is to check that if both feature are equal then increment the value of dfeature

Statt 6. Forech loop ends, started at line # 4

Statt 7. This condition is to check that the value dfeature is greater than or equal to 2 increment the value of

duplicate feature variable because once the feature (f) will be compared with itself and rest of the time

with other so two or greater than two mean this feature has duplicate feature in this feature model

Statt 8. Foreach loop end that was started at line # 2

Statt 9. If a feature model contains duplicate features then it’ll be at level consistent

109

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

c) Tracing

For the tracing of algorithm to find duplicate features following feature model will be used as an example

(Fig. 7). This feature model contains two features with the same name Java Support. After the tracing of basic

attribute setting algorithm, contradiction finding algorithm and selection algorithm the attribute values of

features in feature model (Fig. 6) are as under.

Table 18 Attributes values of features from the feature model in Fig. 7.

Features Attributes values of feature model

Mobile

Phone

selected= true, relevance=null, parent=null, exclude=null, requires=null,

required_by=null,

Utility

Functions

selected= true, relevance=mandatory, parent=Mobile Phone, exclude=null,

requires=null, required_by=null,

Calls selected= true, relevance=mandatory, parent=Utility Function, exclude=null,

requires=null, required_by=null,

Messaging selected= true, relevance=mandatory, parent=Utility Function, exclude=null,

requires=null, required_by=null,

Games selected= true, relevance=mandatory, parent=Utility Function, exclude=null,

requires=null, required_by=null,

Alarm

Clock

selected= true, relevance=mandatory, parent=Utility Function, exclude=null,

requires=null, required_by=null,

Ringing

Tones

selected= true, relevance=mandatory, parent=Utility Function, exclude=null,

requires=null, required_by=null,

OS selected= true, relevance=mandatory, parent=Setting, exclude=null, requires=null,

required_by=null,

Java

Support

selected= true, relevance=mandatory, parent=Setting, exclude=null, requires=null,

required_by=null,

Java

Support

selected= true, relevance=Mandatory, parent=Games , exclude=null, requires=null,

required_by=null,

Table 19 Attributes values of features from the feature model shown in Fig. 7.

Stat # Tracing on the feature “Java Support”

1 duplicatefeature =0

2 f = Java Support (Parent=Games)

3 dfeature =0

4 fa = Java Support (Parent=Games)

5 dfeature =1

4 fa= Java Support (Parent=Setting)

5 Dfeature=2

6 Forech loop end that was started at line # 4

7 This condition is true because the value of dfeature =2 so duplicatefeature=1

110

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

8 Forech loop end that was started at line # 2

9 This condition is true because duplicatefeature=1 which proves that this feature model contains

dup;icate feature so this feature model is at level Consistant

6 Conclusion and Future Work

In this paper, we have presented algorithmic based quality detecting technique for feature models. For the

detection of each error, a separate detection algorithm is used. These algorithms evaluate the quality of a given

feature model by detecting errors mentioned on each level of the maturity model.

The work is in progress in the following directions:

1. Finding the complexity of these algorithms

2. Verifying the provided semantics with the help of standard interpretation techniques of feature models, like

propositional logic, constraint programming etc.

3. We are also planning to extend our work to find the quality levels of the extended version of feature models

like, service feature diagrams (Naeem and Heckel, 2011; Naeem, 2012) and cardinality based service e

feature diagrams (Assad et al., 2014).

References

Ahmed F, Fernando C. 2011. A business maturity model of software product line engineering. Information

Systems Frontiers, 13(4): 543-560

Assad GM, Naeem M, Wahab HA. 2015. Towards cardinality-based service feature diagrams, Computational

Ecology and Software: 5(1): 69-76

Batory D, Benavides D, Antonio R. 2006. Automated analysis of feature models: challenges

ahead. Communications of the ACM, 49(12): 45-47

Batory D. 2005. Feature models, grammars, and propositional formulas. 9th International Conference on

Software Product Lines. 1: 7-20

Benavides D, Segura S, Ruiz-Cortés A. 2010. Automated analysis of feature models 20 years later: A literature

review. Information Systems, 35(6): 615-636

Benavides D. 2007. On the automated analysis of software product lines using feature models. PhD

Dissertation, Universidad de Sevilla, Spain

Böckle G, Van Der Linden F. 2005. Software Product Line Engineering (Klaus Pohl, ed) Vol. 10. Springer,

Heidelberg, Germany

Clements P. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA

Felfernig A, Benavides D, Galindo J, Reinfrank F. 2013. Towards anomaly explanations in feature models.

15th International Configuration Workshop. 117- 124

Hemakumar, A. 2008. Finding contradictions in feature models. 12th International Conference on Software

Product Line Vol. 2. 183-190

Javed M, Naeem M, Wahab HA. 2014. Towards the maturity model for feature oriented domain analysis,

Computational Ecology and Software, 4(3): 170-182

Kang, KC, Cohen SG, Hess JA. Novak WE, Peterson AS. 1990. Feature-oriented domain analysis (FODA)

feasibility study. Technical report, Carnegie-Mellon University Pittsburg, SEI, USA

111

Computational Ecology and Software, 2015, 5(1): 77-112

 IAEES www.iaees.org

Maßen T, Horst L. 2004. Deficiencies in feature models. In: Workshop on Software Variability Management

for Product Derivation - Towards Tool Support, collocated with the 3rd International Software Product Line

Conference. 3154: 331-331, Springer Berlin Heidelberg, Germany

Mendonça M. 2009. Efficient reasoning techniques for large scale feature models. PhD Dissertation,

University of Waterloo, Canada

Naeem M., Heckel R. 2011. Towards matching of service feature diagrams based on linear logic. 15th

International Conference on Software Product Lines Vol. 2.

Naeem M. 2012. ing of service feature diagrams based on linear logic. PhD Dissertation, Department of

Computer Science, University of Leicester, UK

Rosso CD. 2006. Experiences of performance tuning software product family architectures using a scenario-

driven approach. 10th International Conference on Evaluation and Assessment in Software Engineering. 1-

9

Rubin J, Chechik M. 2012. Combining related products into product lines. 15th International Conference on

Fundamental Approaches to Software Engineering (Lara J, Zisman A, eds). 285-300, Springer-Verlag,

Berlin, Heidelberg, Germany

Segura S, Benavides D, Ruiz-Cortés A. 2010. FaMa Test Suite v1.2. Technical Report ISA-10-TR-0: 1-52.

Applied Software Engineering Research Group, University of Seville, Spain

Segura S. 2011. Extended support for the automated treatment of feature models. PhD Dissertation, University

of Sevilla, Spain

Thomas E. 2008. SOA: Principles of Service Design (Vol. 1). Prentice Hall, USA

Thörn C. 2007. A quality model for evaluating feature models. The 11th International Software Product Lines

Conference Vol. 2. 184-190, Kindai Kagaku Sha Co. Ltd., Tokyo, Japan

Thörn C. 2010. On the quality of feature models. PhD Dissertation, Department of Computer and Information

Science, Linköping University, Sweden

Trinidad P, Benavides D, Durán A, Ruiz-Cortés A, Toro M. 2008. Automated error analysis for the agilization

of feature modeling. Journal of Systems and Software, 81(6): 883-896

Zhang G, Ye H, Lin Y. 2011. Feature model validation: A constraint propagation-based approach. 10th

International Conference on Software Engineering Reaserch and Practice. Las Vegas, USA

112

