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Abstract 

In this paper the linear stability of the delayed logistic equation with additive Allee effect is investigated. We 

also analyze the associated characteristic transcendental equation, to show the occurrence of Hopf bifurcation 

at the positive equilibrium. To determine the direction of Hopf bifurcation and the stability of bifurcating 

periodic solution, we use the normal form approach and a center manifold theorem. Finally, a numerical 

example is given to demonstrate the effectiveness of the theoretical analysis. 
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1 Introduction 

Considering the fact that the environment has limited resources, the Belgium mathematician Pierre-Francois 

Verhulst (Verhulst, 1838) proposed one of the most famous equation that used to model a lot of applications in 

ecology and biology. The logistic equation - also known as Verhulst model- is a model of population growth 

first proposed by Verhulst (1845, 1847). Verhulst (Agarwal et al., 2014) argued that the unlimited growth in 

the exponential growth model ࡺሶ ሺ࢚ሻ ൌ  ”ሻ must be restricted by the Malthusian “struggle for existence࢚ሺࡺ࢘

and he proposed the model    

ሶࡺ ሺ࢚ሻ ൌ ሻ࢚ሺࡺ࢘ ቀ െ
ሻ࢚ሺࡺ


ቁ                                                (1) 

Equation (1) is called logistic growth in a population where ࢘   is the intrinsic growth rate and      

is the carrying capacity (the maximum number of individuals that the environment can support). We can see 

that   ࡺ ൌ  is globally stable steady state for equation (1) with any initial condition. If the initial condition  

is more than (less than)  then the population decreases (increase) approaching  as ࢚ tends to ∞ . 

The logistic equation has a lot of applications in many fields like economy (Shone, 2002), ecology (Pastor, 

2008), biology (Murray, 2002), medicine (Forys and Marciniak-Czochra, 2003) and neurosciences 

(Gershenfeld, 1999). To know more about the history of the logistic equation see Kingsland (1982).   
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In the last few years the importance of embedding the time delay into dynamical systems was increased, 

especially in ecological and biological systems because in these systems the reproduction is not instantaneous. 

Incorporating the time delay into system allow the system rate of change to depend on his own past history. 

Also by using time delay in equations that model eco-systems or bio-systems, phenomena as feeding time, 

reaction time, maturation periods, etc., can be represented.  

Time delays have been incorporated into biological and ecological models to fix the deficiencies of 

ordinary differential equation that ignored important phenomena. Furthermore, so many of the processes, both 

natural and man-made, in medicine, diseases, physics, chemistry, bio-systems, eco-systems, economics, etc., 

involve time delays. In general, delay differential equations exhibit much more complicated dynamics than 

ordinary differential equations. For these reasons, the researchers in many fields pay great attention for 

studying delayed systems (Agarwal et al., 2014; Ding et al., 2013; Engelborghs et al., 2002; Ruan, 2006; 

Kuang, 1993; Braddock, 1983; Bi and Xiao, 2014; Hu and Li, 2012). 

To make the logistic equation more realistic, Hutchinson [Hutchinson, 1948] proposed incorporating the 

effect of delay and he introduced the delayed logistic equation   

ሶࡺ ሺ࢚ሻ ൌ ሻ࢚ሺࡺ࢘ ቀ െ
ሻ࣎ି࢚ሺࡺ


ቁ                                              (2) 

where ࣎   is time delay. For other formula of delayed logistic equation see (Arino et al., 2006). 

Hutchinson suggested that the equation (2) can be used to model the dynamics of a single species 

population growing towards a saturation level ܓ  with a constant reproduction rate ࢘  (Kuang, 1993; 

Gobalsamy, 1992; Cuching, 1977). 

More interesting topological changes in the population size as limit cycles, chaos and damped oscillations 

are produced in the existence of delay (Storgaz, 1994). 

Noticing the behavior of species one can see that some species often help each other in their search for 

food or habitat and to escape from their predators. For example, some social species such as ants, bees, etc., 

have developed complex cooperative behavior involving division of labor, altruism, etc. Such cooperative 

processes have a positive feedback influence since individuals have been provided a greater chance to survive 

and reproduce as density increase. 

The ecologist Warder Clyde Allee (Allee, 1931) paid a lot of attention to aggregation and associated 

cooperative and social characteristics among members of a species in animal populations, and his work has 

been among the most influential for animal behavioral research.  

In numerous writings (Allee, 1931; Allee, 1941; Allee et al., 1949) Allee shows that for a variety of 

biological reasons positive (negative) feedback effects can happen at low (high) population density. The 

positive feedback is called Allee effects (Dennis, 1989; Stephens et al., 1999). In population dynamics, the     

Allee effect refers to a process that reduces the growth rate for small population densities.   

The so-called Allee effect (Elabbasy et al., 2007) refers to a population that has a maximal per capita 

growth rate at intermediate density. This occurs when the per capita growth rate increases as density increases 

and decreases after the density passes a certain value.  

Modelling Allee effects in population dynamics and fields that related to it as a multi-species interactions 

in eco-systems, disease dynamics and the spread of epidemics, etc., has great interest in mathematical literature. 

(Dennis, 1989; Elaydi and Sacker, 2010; Courchamp et al., 2008; Schreiber, 2003; Cushing and Hudsona, 

2012; Lewis and Kareiva, 1993) 

The equation  

ሶࡺ ሺ࢚ሻ ൌ ሻ࢚ሺࡺ࢘ ቀ െ
ሻ࢚ሺࡺ


ቁ ሺࡺሺ࢚ሻ െሻ                                                                                           (3) 
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is the prototypical model for a multiplicative Allee effect where ࢘ is the intrinsic growth rate and   is the 

carrying capacity. If െ ൏  ൏   it shows the weak Allee effect, while if   ൏ ݉ ൏  it shows the , 

strong Allee effect. 

The strong Allee effect introduces a population threshold (the minimal size of the population required to 

survive), and the population must surpass this threshold to grow. In contrast, a population with a weak Allee 

effect does not have a threshold [Wang et al, 2011; Wang and Kot, 2001]. 

Dennis (Dennis, 1989) who first introduced the equation that modeled the additive Allee effect in the 

form  

ሶࡺ ሺ࢚ሻ ൌ ሻ࢚ሺࡺ࢘ ቀ െ
ሻ࢚ሺࡺ


ቁ െ 

ሻ࢚ሺࡺ

࢈ሻା࢚ሺࡺ
  ,                                (4) 

 

and then it used in [Aguirre et al, 2009]. 

The term  
ሻ࢚ሺࡺ

࢈ሻା࢚ሺࡺ
  is called the additive Allee effect where  ൏ ݉ ൏  and ൏ ܾ ൏  are called Allee 

constants with      If .࢈ ൏  then the equation (4) exhibits a weak Allee effect and if ࢘࢈   then it ࢘࢈

exhibits a strong Allee effect (Wang and Kot, 2001). 

In our paper, we study the delayed logistic equation with additive Allee effect in the form   

ሶࡺ ሺ࢚ሻ ൌ ሻ࢚ሺࡺ࢘ ቀ െ
ሻ࣎ି࢚ሺࡺ


ቁ െ 

ሻ࢚ሺࡺ

࢈ሻା࢚ሺࡺ
                                 (5) 

 

2 Local Stability and Existence of Hopf Bifurcation 

The model ሺሻ  – at ࢘࢈     - has a trivial equilibrium  ࡺ
כ ൌ  , and positive equilibrium ࡺ 

כ ൌ

ሺ܊ିܓሻାටሺ܊ିܓሻାܓ
࢘
ሺܕିܚ܊ሻ


 . And at ࢘࢈ ൏ ࡺ the model (5) has a trivial equilibrium  

ככ ൌ   and two positive 

equilibrium 

ࡺ
ככ ൌ

ሺ܊ିܓሻାටሺ܊ିܓሻାܓ
࢘
ሺܕିܚ܊ሻ


 and ࡺ

ככ ൌ
ሺ܊ିܓሻିටሺ܊ିܓሻାܓ

࢘
ሺܕିܚ܊ሻ


 . 

For convenience, we indicate to the next lemma which consolidates our stability analysis. 

Lemma 1 (Hale and Lunel, 1993)  

All roots of the characteristic equation   ࣅ  ࢉ  ࣅࢋ࢈ ൌ   , where ࢈ ܌ܖ܉ ࢉ are real, have negative real 

parts if and only if 

ࢉ  െ, 

ࢉ  ࢈   and 

࢈ ൏ ඥࢉ   ࣈ

where ࣈ is the root of ࣈ ൌ െࢉ ܖ܉ܜ  ,ࣈ ൏ ߦ ൏ ࢉ if  ࣊ ്  and ࣈ ൌ
࣊


 if  ࢉ ൌ . 

Theorem 1 

(I) At ࢘࢈ െ   

1. The equilibrium  ࡺ
כ ൌ   of equation (5) is unstable. 

2. The equilibrium  ࡺ
כ ൌ

ሺ܊ିܓሻାටሺ܊ିܓሻାܓ
࢘
ሺܕିܚ܊ሻ


 of Eq. (5) is stable if   ࣎ ൏ ࣎  and is unstable if  ࣎   .࣎

(II) At ܾݎ െ݉ ൏ 0 

1. The equilibrium ܰ
ככ ൌ 0 of equation (5) is stable. 
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2. The two equilibrium    ࡺ
ככ ൌ

ሺ܊ିܓሻାටሺ܊ିܓሻାܓ
࢘
ሺܕିܚ܊ሻ


      and      ࡺ

ככ ൌ
ሺ܊ିܓሻିටሺ܊ିܓሻାܓ

࢘
ሺܕିܚ܊ሻ


  of equation 

ሺ5ሻ are stable if      ࣎ ൏  ࣎   and are unstable if    ࣎   .࣎

Proof.   

ሺIሻ Linearizing equation  ሺሻ  about equilibrium  כࡺ
 ൌ  using    ሻ࢚ሺࡺ ൌ כࡺ   ሻ, it becomes࢚ሺ

ሶ ሺ࢚ሻ ൌ  
ି࢘࢈

࢈
 ሻ࢚ሺ                                                                                                 ሺ6ሻ 

It is easy to show that equation  ሺሻ  has the characteristic equation in the form 

ߣ ൌ
ି


                                                        (7) 

Since  ܾݎ െ ݉  0  then 
ି


 0 

Then the model is unstable. 

Again, by linearizing about ଵܰ
כ ൌ

ሺ୩ିୠሻାටሺ୩ିୠሻమିరౡ
ೝ
ሺୠ୰ି୫ሻ

ଶ
  equation ሺ5ሻ will be  

ሻݐሶሺ ൌ ቂݎ ቀ1 െ
ேభ
כ


ቁ െ



ሺାேభ
ሻమכ
ቃ ሻݐሺ െ

ேభ
כ


ݐሺ െ ߬ሻ                        (8) 

Or  

ሻݐሶሺ ൌ ܽଵሺݐሻ െ ܽଶሺݐ െ ߬ሻ                                         (9) 

Where   ܽଵ ൌ ቂݎ ቀ1 െ
ேభ
כ


ቁ െ



ሺାேభ
ሻమכ
ቃ  and   ܽଶ ൌ  

ேభ
כ


 

Equation (9) has the characteristic equation 

ߣ  ܽଶ݁ିఒఛ െ ܽଵ ൌ 0                                                  (10) 

Let ݅߱ be the root of equation  ሺ10ሻ ; then: 

݅߱  ܽଶሺcos߱߬ െ ݅ sin߱߬ሻ െ ܽଵ ൌ 0 

ሺܽଶ cos߱߬ െ ܽଵሻ  ݅ሺ߱ െ ܽଶ sin߱߬ሻ ൌ 0                                                                      (11) 

Then, by separating and equating real parts and imaginary parts 

ܽଶ cos߱߬ െ ܽଵ ൌ 0                                                                                   (12.a) 

߱ െ ܽଶ sin߱߬ ൌ 0                                                                                          (12.b)  

Then ߱ ൌ േඥܽଶ
ଶ െ ܽଵ

ଶ                                              (13) 

From ሺ13ሻ and using  ሺ12. ܽ , 12. ܾሻ 

߬ ൌ
ଵ

ටమ
మିభ

మ
tanିଵ

ටమ
మିభ

మ

భ
                                            (14) 

By the same way, we can prove part (II). 

Theorem 2  

If ߣሺτሻ ൌ  α୨ሺτሻ  i  ߱ሺτሻ   denote a root of Eq. (10) near τ ൌ τ  , such that  ߱൫τ൯ ൌ  ߱  and 

α୨൫τ൯ ൌ 0  then  

dα୨ሺτሻ

dτ
ቤ
தୀதೕ

 0 

Proof.  

By differentiating the characteristic equation (10) with respect to ߬ we get  
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ߣ݀
݀߬

ൌ  
ܽଶି݁ߣఒఛ

1 െ ܽଶ߬݁ିఒఛ
 

This gives  

൬
ߣ݀
݀߬
൰
ିଵ

ൌ  
݁ఒఛ

ܽଶߣ
െ 
߬
ߣ

 

Then   

Sign ቊ
ୢౠሺதሻ

ୢத
ቚ
தୀதೕ

ቋ ൌ sign ቊܴ݁ ቀ
ௗఒ

ௗఛ
ቁ
ିଵ
ฬ
தୀதೕ

ቋ ൌ  sign ቊܴ݁ ቀ
ഊഓ

మఒ
െ 

ఛ

ఒ
ቁቚ
தୀதೕ

ቋ 

ൌ sign ൜
߱݊݅ݏ ߬

ܽଶ߱
ൠ ൌ sign ൜

1
ܽଶଶ

ൠ   ז   0

 

Theorem 2 stated the last condition for the occurrence of Hopf bifurcations and the results can be introduced as 

follows.  

Theorem 3. 

(I) in the case if  ܾݎ െ ݉  0 , When the parameter  τ  passes through the critical value τ ൌ ߬
 there , כ

are Hopf bifurcations at the equilibrium                                         

ଵܰ
כ ൌ  

ሺ୩ିୠሻାටሺ୩ିୠሻమିరౡ
ೝ
ሺୠ୰ି୫ሻ

ଶ
to a periodic orbit.  

(II)  In the case if  ܾݎ െ ݉ ൏ 0  , when the parameter  τ   passes through the critical           

value τ ൌ ߬
there are Hopf bifurcations at the equilibriums                              ଵܰ ,ככ

ככ ൌ

ሺ୩ିୠሻାටሺ୩ିୠሻమାరౡ
ೝ
ሺୠ୰ି୫ሻ

ଶ
  and  ଶܰ

ככ ൌ
ሺ୩ିୠሻିටሺ୩ିୠሻమାరౡ

ೝ
ሺୠ୰ି୫ሻ

ଶ
 to a periodic orbit. 

 

3 Stability and Direction of the Hopf Bifurcation 

Let ݕሺݐሻ ൌ   ሻ, then the equation ሺ5ሻ written asݐሺ߬

ሻݐሶሺݕ ൌ  ܽଵ߬ݕሺݐሻ െ ܽଶ߬ݕሺݐ െ 1ሻ 

               െ



ݐሺݕሻݐሺݕ߬ െ 1ሻ 



ሺାேכሻయ
ሻݐଶሺݕ߬ െ



ሺାேכሻయ
 ሻ                     (15)ݐଶሺݕ߬

In   ൌ ,ሺ ሾെ1  0ሿ, Թሻ  equation ሺ15ሻ  written as 

ሻݐሶሺݕ ൌ   ௧ሻݕఓሺܮ  , ߤሺ ܨ  ௧ሻ                                                                         (16)ݕ

Where 

ఓሺ߮ሻܮ ൌ ሺ ߬  ሻሺܽଵ߮ሺ0ሻߤ െ ܽଶ߮ሺെ1ሻሻ 

, ߤሺ ܨ ߮ሻ ൌ ൫ ߬  ൯ߤ ቄ
ି


߮ሺ0ሻ߮ሺെ1ሻ

 

ሺାேכሻయ
߮ଶሺ0ሻቅ                          (17) 

Using the Riesz representation theorem, there exists a function ߟ ሺߠ, ߠ ሻof bounded variation for ߤ א ሾെ1,0ሿ 

such that 

ఓሺ߮ሻܮ ൌ  ,ߠሺ ߟ݀ 0ሻ߮ሺߠሻ       for ߮߳ܿ                                            

ିଵ                   (18) 

We can choose  

,ߠሺ ߟ ሻ ߤ ൌ ൫ ߬  ሻߠሺߜ൯ሺܽଵߤ െ ܽଶߜሺߠ  1ሻሻ                                                   (19) 

where ߜሺߠሻ is the Dirac delta function. 

For  ߮ ߳ ଵሺሾെ1,0ሿ, Թሻ; define 

ሻ߮ߤሺܣ ൌ ቐ
ௗఝሺఏሻ

ௗఏ
ߠ ݂݅          א ሾെ1,0ሻ

 ,ߤሺ ߟ݀ ሻ݂݅ θݏሻ߮ሺݏ ൌ 0

ିଵ

                                       (20) 
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and 

                  ܴሺߤሻ߮ ൌ ൜
ߠ ݂݅                                0 א ሾെ1,0ሻ
,ߤሺܨ ߮ሻ                   ݂݅ ߠ ൌ 0          

            ሺ21ሻ 

 

Then the system ሺ16ሻ can be written as operation equation   

ሶ௧ݕ ൌ ௧ݕሻߤሺܣ    ܴሺߤሻݕ௧                                                            ሺ22ሻ 

where 

ሻߠ௧ሺݕ ൌ ݐሺݕ  ߠ    ݎ݂                  ሻߠ א ሾെ1,0ሿ 

The equation ሺ22ሻ is more mathematically pleased because this equation involves a single unknown variable 

 .௧ݕ

For ψ߳ሾ0, െ1ሿ , the adjoint operator  כܣ of  ܣ is defined as  

ሻݏሻψሺߤሺכܣ ൌ

ە
ۖ
۔

ۖ
ۓ ݀ψሺݏሻ

ݏ݀
ݏ   ݂݅          א ሾെ1,0ሻ

න ,ߤሺ ߟ݀ ሻ  ݂݅   sݏሻψሺݏ ൌ 0


ିଵ

                       ሺ23ሻ 

For ߮ ߳ ሺሾെ1,0ሿ and ψ ߳ ሾ0, െ1ሿ , the bilinear inner product defined as  

,ሻݏψሺۦ ߮ሺߠሻۧ ൌ  ψഥሺ0ሻ߮ሺ0ሻ െ න න ψഥሺߦ െ ሻߠ

ఏ

కୀ

ሺ24ሻ            ߦሻ݀ߦሻ߮ሺߠሺ ߟ݀


ିଵ
 

To determine the Poincare normal form of the operator ܣ we need to calculate the eigenvector  ݍሺߠሻ and 

  .that corresponding to the eigenvalues  ݅߱߬୨  and െ݅߱߬୨ respectively כܣ  and ܣ  ሻ ofߠሺכݍ

It is easy to be verified that  ݍሺߠሻ ൌ ݁ఠబఛౠఏand כݍሺߠሻ ൌ    .ఠబఛౠఏ݁ܦ 

In order to assure that כݍۦሺݏሻ, ሻۧߠሺݍ ൌ 1, we need to determine the value. From ሺ24ሻ 

,ሻݏሺכݍۦ ሻۧߠሺݍ ൌ ሺ0ሻݍሺ0ሻכതݍ െ න න ഥ݁ିఠబఛౠሺకିఏሻܦ
ఏ

కୀ
ߦ݀ ሻ݁ఠబఛౠకߠሺ ߟ݀



ିଵ
 

,ሻݏሺכݍۦ ሻۧߠሺݍ ൌ ഥܦ ቈ1 െ න ߠ


ିଵ
݁ఠబఛౠఏ݀ߟ ሺߠሻ ൌ 1 

ഥܦ ൌ
1

1 െ
ேכ


݁ିఠబఛೕ

                                                                              ሺ25ሻ 

Hassard et al. (1981) introduced a method to compute the co-ordinates that describe the center manifold  ܿ 

at  ߤ ൌ 0 .  

Tracking Hassard method, for ݕ௧, a solution of ሺ22ሻ at  ߤ ൌ 0 , we define:  

ሻݐሺݖ ൌ   ,ݐሺݓ  ௧ۧ  andݕ,כݍۦ ሻߠ ൌ ሻߠ௧ሺݕ  െ 2ܴ݁ሼݖሺݐሻݍሺߠሻሽ                                                     ሺ26ሻ 

On the center manifold ܿ we have: 

,ݐሺݓ ሻߠ ൌ ,ሻݐሺݖሺݓ  ,ሻݐҧሺݖ  ሻ, Whereߠ

,ݐሺݓ ሻߠ ൌ ሻߠଶሺݓ
௭మ

ଶ
 ҧݖݖሻߠଵଵሺݓ  ሻߠଶሺݓ

௭ҧమ

ଶ
  ሺ27ሻ                                                             , ڮ

where ݖ ݀݊ܽ ݖҧ are local co-ordinates for center manifold  ܿ in  in the direction of  כݍand ݍതכ. Note that , 

 .௧ is real. We shall deal with real solution onlyݕ is real if ݓ
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Now, for solution ݕ௧ ߳ ܿ of equation ሺ22ሻ 
ሶ௧ۧݕ,כݍۦ ൌ   ௧ݕሻߤሺܣ ,כݍۦ   ܴሺߤሻݕ௧ۧ, 

Then since ߤ ൌ 0 

ሻݐሶሺݖ ൌ   ሶݍۦ ௧ۧݕ,כ   ௧ݕሻߤሺܣ   ,כݍۦ   ܴሺߤሻݕ௧ۧ 

ሻݐሶሺݖ ൌ ݅߱ ߬ ݖሺݐሻ   כݍሺ0ሻ݂൫ݖሺݐሻ,  ሻ൯                       ሺ28ሻݐҧሺݖ

Equation (28) can be written in abbreviated form as 

ሻݐሶሺݖ ൌ ݅߱߬୨ݖሺݐሻ    ݃ሺݖ,  ҧሻ                                              ሺ29ሻݖ

Where  

݃ሺݖ, ҧሻݖ ൌ ,ሻݐሺݖሺ0ሻ݂൫כݍ  ሻ൯ݐҧሺݖ

݃ሺݖ, ҧሻݖ ൌ ݃ଶሺߠሻ
ଶݖ

2
 ݃ଵଵሺߠሻݖݖҧ  ݃ଶሺߠሻ

ҧଶݖ

2
  ሺ30ሻ           ڮ

Since from ሺ26ሻ 

ሶݓ ൌ ሶ௧ݕ െ ݖሶݍ െ  തݍҧሶݖ
Then 

 

ሶݓ ൌ   ቊ
ݓܣ െ ,ሻݐሺݖሺ0ሻ݂൫כݍ2ܴ݁ൣ   ߠ ݂݅   ൧ݍሻ൯ݐҧሺݖ א ሾെ1,0ሻ                 

ݓܣ െ ,ሻݐሺݖሺ0ሻ݂൫כݍ2ܴ݁ൣ  ൧ݍሻ൯ݐҧሺݖ   ݂ሺݖ, ߠ  ݂݅    ҧሻݖ ൌ 0       
 ሺ31ሻ 

This can be written as  

ሶݓ ൌ ݓܣ  ,ሻݐሺݖሺܪ ,ሻݐҧሺݖ  ሻ                                                                    ሺ32ሻߠ

where 

,ሻݐሺݖሺܪ  ,ሻݐҧሺݖ ሻߠ ൌ ሻߠଶሺܪ 
ଶݖ

2
 ҧݖݖሻߠଵଵሺܪ  ሻߠଶሺܪ

ҧଶݖ

2
  ሺ33ሻ     ڮ

Since  

݃ሺݖ, ҧሻݖ ൌ ,ሻݐሺݖሺ0ሻ݂൫כݍ  ሻ൯ݐҧሺݖ

              ൌ ,ሺ0ሻ݂ሺ0כݍ  ௧ሻݕ

          ൌ ഥ߬୨ܦ   ቄ
ି


௧ሺെ1ሻݕ௧ሺ0ሻݕ  



ሺାேכሻమ
 ௧ଶሺ0ሻቅ                               (34)ݕ

 

Using equations  ሺ26ሻ in ሺ34ሻ and comparing coefficient with ሺ30ሻ, we find 

݃ଶ ൌ ഥ߬୨ܦ2  ൬
െݎ
݇
݁ିఠబ 

ܾ݉
ሺܾ  ሻଶכܰ

൰ ሺ                                           35. ܽሻ 

 ݃ଵଵ ൌ ഥ߬୨ܦ ቀ
ି


ሺ݁ఠబ  ݁ିఠబሻ 

ଶ

ሺାேכሻమ
ቁ                                 (35.bሻ 

݃ଶ ൌ ഥ߬୨ܦ2  ൬
െݎ
݇
݁ఠబ 

ܾ݉
ሺܾ  ሻଶכܰ

൰ ሺ                                            35. ܿሻ 

݃ଶଵ ൌ

ഥ߬୨ܦ ቄ
ି


൬݁ିఠబݓଵଵሺ0ሻ 

ଵ

ଶ
݁ఠబݓଶሺ0ሻ 

ଵ

ଶ
ଶሺെ1ሻݓ  ଵଵሺെ1ሻ൰ݓ                                 



ሺାேכሻమ
൫2ݓଵଵሺ0ሻ 

 ଶሺ0ሻ൯ቅ                                                                                                                                        ሺ35.dሻݓ 

Since  ݓሶ ሺݖ, ҧሻݖ ൌ ሶݖ௭ݓ    ҧሶ                                                                                                     ሺ36ሻݖ௭ҧݓ
Using ሺ32ሻ and substitution by the expansions of previous functions and comparing coefficients we find that 

 

ሻߠଶሺܪ ൌ ሺ2݅߱–  ሻ                                  ሺ37ሻߠଶሺݓሻܣ 
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ሻߠଵଵሺܪ ൌ  െݓܣଵଵሺߠሻ                                          ሺ38ሻ 

ሻߠଶሺܪ ൌ ሺ2݅߱–  ሻ                           ሺ39ሻߠଶሺݓሻܣ 

Since from ሺ31ሻ, ሺ32ሻ and ሺ33ሻ we find 

ሻߠଶሺܪ ൌ  െݍሺߠሻ݃ଶሺߠሻ െ ሻߠതሺݍ ҧ݃ଶሺߠሻ                ሺ40ሻ 

ሻߠଵଵሺܪ ൌ െݍሺߠሻ݃ଵଵሺߠሻ െ ሻߠതሺݍ ҧ݃ଵଵሺߠሻ                                                                 ሺ41ሻ 

ሻߠଶሺܪ ൌ െݍሺߠሻ݃ଶሺߠሻ െ ሻߠതሺݍ ҧ݃ଶሺߠሻ                                                                 ሺ42ሻ 

From ሺ37ሻ and  ሺ40ሻ 

ሻߠଶሺݓܣ ൌ 2݅߱ݓଶ െ  ሻߠଶሺܪ

ሶݓ ଶሺߠሻ ൌ  2݅߱ݓଶ  ሻߠሻ݃ଶሺߠሺݍ  ሻߠതሺݍ ҧ݃ଶሺߠሻ                ሺ43ሻ 

This equation has the solution  

ሻߠଶሺݓ ൌ  
݅݃ଶ
߱

݁ఠబఏ 
݅ ҧ݃ଶ
3߱

݁ିఠబఛౠఏ  ܧଵ݁ଶఠబఏ                ሺ44ሻ 

By the same way  

ሻߠଵଵሺݓ ൌ
݃ଵଵ
݅߱

݁ఠబఏ െ 
ҧ݃ଵଵ

݅߱
݁ିఠబఏ   ଶ                                ሺ45ሻܧ

Where  ܧଵ and  ܧଶ are constants and they are evaluated from the formulas  

ଵܧ ൌ  
ഥ߬ሾܦ2

ି


݁ିఠబ  



ሺାேכሻమ
ሿ

2݅߱ െ ܽଵ߬ 
ேכ


߬݁ିଶఠబ

                                                ሺ46ሻ 

ଶܧ ൌ ഥሾܦ
െݎ
݇
ሺ݁ିఠబ  ݁ఠబሻ  

2ܾ݉
ሺܾ  ሻଶכܰ

ሿ/
כܰݎ

݇
                ሺ47ሻ 

We can also compute  

ە
ۖ
۔

ۖ
ଵሺ0ሻܿ ۓ ൌ  

݅
2߱

ቆ݃ଶ݃ଵଵ െ 2|݃ଵଵ|ଶ െ
|݃ଶ|ଶ

3
ቇ 

݃ଶଵ
2

ଶߤ ൌ  
െԸ݁ሼ ܿଵሺ0ሻሽ

Ը݁൛߬୨̀ߙ൫߬୨൯ൟ
ଶߚ ൌ  2Ը݁ሼ ܿଵሺ0ሻሽ

                 ሺ48ሻ 

Theorem (Hassard et al., 1981): In (48), the directions of Hopf bifurcation are determined by the sign of ߤଶ 

and the stability of bifurcating periodic solutions by the sign of ߚଶ . In this case, if ߤଶ  0ሺ൏ 0ሻ, then the 

Hopf bifurcation is supercritical (subcritical) and if ߚଶ ൏ 0ሺ 0ሻ the bifurcating periodic solutions are 

orbitally stable (unstable). 

 

4 Numerical Example 

In this section, we give some numerical simulations supporting our theoretical analysis. In the first case 

ݎܾ) െ݉  0), by choosing r ൌ 3 ,  ݇ ൌ 4 , ݉ ൌ 0.5 ; ܾ ൌ 0.75 and ܰሺݐሻ ൌ 0.5 for  ݐ א ሾെ߬, 0ሿ, fig. 1 

at ߬ ൌ 0.6 shows the existence of Hopf bifurcation and limit cycle behavior for model (5).  
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              (a) ( b) 

Fig. 1 Wave form plot (a) and phase plot (b) at ߬ ൌ 0.6 for the case ሺ ݎܾ െ ݉  0ሻ for model (5). 

 

 

The wave form plot and the phase plot in Fig. 2 show the periodicity of the solution and existence of an 

attractor for model (5) at ߬ ൌ 1. 

 

 

(a)                                   (b) 

 

Fig. 2 Wave form plot (a) and phase plot (b) at ߬ ൌ 1 for the case (ܾݎ െ ݉  0 ) for model (5). 

 

 

In the second case (ܾݎ െ ݉ ൏ 0 ) - we will choose ݎ ൌ 1 , ݇ ൌ 4, ݉ ൌ 0.9 ; ܾ ൌ 0.6  and ܰሺݐሻ ൌ

0.5 for , ݐ א ሾെ߬, 0ሿ-Fig. 3 shows that the equilibrium point for the model (5) is asymptotically stable at 

߬=1.5.  
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                  (a)                                          (b)     

Fig. 3 Wave form plot (a) and phase plot (b) at ߬ ൌ 1.5for the case (ܾݎ െ ݉ ൏ 0 ) for model (5). 

 

 

In Fig. 4, wave form plot and phase plot at ߬=2 show the existence of Hopf bifurcation and limit cycle 

behavior for model (5). 

 

 

 

(a)                                           (b) 

Fig. 4 Wave form plot (a) and phase plot (b) at ߬=2 for the case (ܾݎ െ ݉ ൏ 0 ) for model (5). 

 

 

5 Conclusions  

In this paper, we have investigated the stability and Hopf bifurcation of a delayed logistic equation with 

additive Allee effect. Also we have obtained stability conditions and we showed that a Hopf Bifurcation will 

occur when the time delay parameter pass through critical values; that is, a family of periodic orbits bifurcates 

from the equilibrium. The direction of Hopf bifurcation and the stability of the bifurcating periodic orbits are 
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discussed by applying the normal form approach and the center manifold theorem. Numerical simulations have 

shown that the analytical results are correct.  
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