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Abstract

In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-1 type in the
closed first quadrant Rf. The existence and local stability of positive fixed point of the discrete dynamical
system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-
Sacker bifurcation in the interior of Rf by using bifurcation theory. It has been found that the dynamical
behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation
results not only show the consistence with the theoretical analysis but also display the new and interesting
dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of
period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance
of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic
dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are
numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in
this paper are interesting in mathematics and biology.

Keywords discrete-time predator-prey system; chaos; flip and Neimark-Sacker bifurcations; Lyapunov
exponents.
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1 Introduction

The dynamics of predator-prey interaction is the starting point for many variations that yield more realistic
biological and mathematical problems in population ecology. Predation is a direct interaction which occurs
when individuals from one population derive their nourishment by capturing and ingesting individuals from
another population. There are many articles devoted to the study of predator-prey interaction both from the
experimental and the modeling point of view. It is well known the Lotka-Voltera predator-prey model is one of
the fundamental population models; a predator-prey interaction has been described firstly by two pioneers
Lotka (1924) and Voltera (1926) in two independent works. After them, more realistic prey-predator model
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were introduced by Holling suggesting three types of functional responses for different species to model the
phenomena of predation (Holling, 1965).

Qualitative analyses of prey-predator models describe by set of differential equations were studied by
many authors (Brauer and Castillo, 2001; Hastings and Powell, 1991; Klebanoff and Hastings, 1994; May,
1974; Murray, 1998; Zhu et al., 2002). Another possible way to understand a prey-predator interaction is by
using discrete-time models. These models are more reasonable than the continuous time models when
populations have non-overlapping generations (Brauer and Castillo, 2001; Murray, 1998) and lead to
unpredictable dynamic behaviors from a biological point of view. This suggests the possibility that the
governing laws of ecological systems may be relatively simple and therefore discoverable. The author (May,
1975, 1976) had clearly documented the rich array of dynamic behavior possible in simple discrete-time
models. Recently, there is a growing evidence showing that the dynamics of the discrete-time prey-predator
models can present a much richer set of patterns than those observed in continuous-time models (Agiza et al.,
2009; Danca et al., 1997; Elsadany et al., 2012; Hasan et al., 2012; He and Lai, 2011; Jing and Yang, 2006; Li,
1975; Liu, 2007; Hu et al., 2011; He and Li, 2014). However, there are few articles discussing the dynamical
behaviors of predator-prey models, which include bifurcations and chaos phenomena for the discrete-time
models. The authors (He and Lai, 2011; Jing, 2006; Liu, 2007; Hu et al., 2011) obtained the flip bifurcation by
using the center manifold theorem and bifurcation theory. But in (Agiza et al., 2009; Danca et al., 1997;
Elsadany et al., 2012), the authors only showed the flip bifurcation and Hopf bifurcation by using numerical
simulations. In this work, we confine our interest to present, by using both analytic and numerical methods, the
domains of the values of the parameters under which the system predicts that the populations will be able to
persist at a steady state, the conditions for flip and/or Neimark-Sacker bifurcations by using the normal form
theory of the discrete system (see section 4, Kuznetsov, 1998) and the domain for the presence of chaos in the
system by measuring the maximum Lyapunov exponents.

In ecology, many species have no overlap between successive generations, and thus their population
evolves in discrete-time steps (Murray, 1998). Such a population dynamics is described by difference equation.
Let X, denotes the number of prey population and Y, the number of predator population in the nth
generation. Our model is described by the following system of nonlinear difference equations in non-
dimensional form:

H : {Xnﬂ = an (1_ Xn) - aXn Yn (l)

yn+l = bXn yn - dyn

In the system (1), the prey grows logistically with intrinsic growth rate r and carrying capacity one in
the absence of predation. The predator consumes the prey with functional response Holling type I. All
parameters I,a,b,d have positive values that stand for prey intrinsic growth rate, per capita searching
efficiency of the predator, conversion rate, and the death rate of the predator, respectively. From mathematical
and biological point of view, we will pay attention on the dynamical behaviors of (1) in the closed first
quadrant Rf. Starting with initial population size (xo,yo), the iteration of system (1) is uniquely
determined a trajectory of the states of population output in the following form

(Xn’yn): Hn(Xo,yo),Where n=0212,---.
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Our results in this paper are extension to those in (Danca et al., 1997; Elsadany et al., 2012). This paper is
organized as follows. In Section 2, we discuss the existence and local stability of positive fixed point for
system (1) in Rf. In Section 3, we show that there exist some values of the parameters such that (1)
undergoes the flip bifurcation and the Neimark-Sacker bifurcation in the interior of Rf. In section 4, we
present the numerical simulations which not only illustrate our results with theoretical analysis but also exhibit
complex dynamical behaviors such as the cascade periodic-doubling bifurcation in periods 2, 4, 8, 9, 10, 20-
orbits, quasi-periodic orbits and chaotic sets. Finally a short discussion is given in Section 5.

2 Existence and Local Stability of Fixed Points

In this section, we shall first discuss the existence of fixed points for (1), then study the stability of the fixed
point by the eigenvalues for the Jacobian matrix of (1) at the fixed point.It is clear that the system (1) has the
following fixed points in the (X, ) -plane:

E,(0,0), El(rT_l,Ojand EZ(X*,y*),WhereX*:lzd and y =E(1_—j__'

To discuss the existence of fixed points, we say that fixed points will not exist if any one of its
components is negative. The fixed point E, always exists. The existence condition for Ejis r >1. Finally,
the feasibility condition for the positive fixed point E, is
b ra+d) |

(or b>

r>— ——
b-1-d r-1

>1).

Now we study the stability of the positive fixed point (we left the others) only. Note that the local stability
of the fixed point (X, Yy) is determined by the modules of eigenvalues of the characteristic equation at the
fixed point.

The Jacobian matrix due to the linearization of (1) evaluated at E, is given by

L Qrdr aed)
. b b
WY )= b1y Qs ayr .
a

and the characteristic equation of the Jacobian matrix J can be written as

A +ad+a,=0 )

where o, = —trJ :—2+@ and «, =detJ =(1+d)l’(1—22d}—d.

Therefore, the eigenvalues of J are

_ o 3 _(1+d)r
Ay = 2:b£5_1 —7ir—iJZ' (3)
WhereA=(ﬂj —a2=[1+wj —(1+d)r(1—gj+d.
2 2b b
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Using Jury’s criterion (Elaydi, 1996), we have necessary and sufficient condition for local stability of the
fixed point E, which are given in the following proposition.

b
Proposition 1. Whenr > —d , then system (1) has a positive fixed point E, and

(i) itisasink if one of the following conditions holds:

A+d)@+d)r _, _(@+d)r .
3—d+(1+d)r r-1 -’

(i.1) A>0and

(i.2) A<Oand b<%.

(i) it is a source if one of the following conditions holds:

A+d)B+d)r (2+d)r
3-d+@1+d)r’ r-1

(ii.l)) A>0and b> max{

2+d)r

(ii.2) A<Oand b>

(iii) it is non-hyperbolic if one of the following conditions holds:

@+d)@+d)r
3—d+@+d)r’

(iii.l) A>0and b=

(iii.2) A<Oand b =%.

(iv) itis a saddle for the other values of parameters except those values in (i)—(iii).
Following Jury’s criterion, we can see that one of the eigenvalues of J (EZ) is —1 and the others are

neither 1 nor —1 if the term (iii.1) of Proposition 1 holds. Therefore, there may be flip bifurcation of the
fixed point E, if r varies in the small neighborhood of FBE2 where

FB. ={(r,a,b,d):r: b(=3+d) ,
: (1+d)(—3+b—d)

A>0,r>1a,b,d >0}.

Also when the term (iii.2) of Proposition 1 holds, we can obtain that the eigenvalues of J (Ez)are a pair
of conjugate complex numbers with module one. The conditions in the term (iii.2) of Proposition 1 can be
written as the following set:

b

NS, =1(r.ab,d)ir=— 2
Z {(ra vy

,A<0,r>1a,b,d >0}

and if the parameter r varies in the small neighborhood of NSE2 ; then the Neimark-Sacker bifurcation will

appear.
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3 Flip Bifurcation and Neimark-Sacker Bifurcation

In this section, we choose the parameter I as a bifurcation parameter to study the flip bifurcation and the
Neimark-Sacker bifurcation of E, by using bifurcation theory in (see Section 4 in Kuznetsov, 1998; see also
Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003).

We first discuss the flip bifurcation of (1) at E,. Suppose that A >0, i.e.,

@+d)ry d
(1+ 2 j —(1+d)r[1—EJ+d >0. 4)

b(-3+d)

Let 1, =
ST dy(C3+b—d)

, then the eigenvalues of J are

6-3b+4d

A4(n)=-1,and 4,(r)= 3_b+d

The condition |/12(rl)|¢1 leads to

6—3b+4d 41

3-b+d ®)

Let X=x-X, y=y-y and Ar)=1J (x*, y*>, we transform the fixed point(x*, y*) of system
(1) into the origin, then system (1) becomes

(2l ©

where

F (X, §.r)= (%% + axy)+ o x|,

R, (%, §.r)=bxy + o{|x|), @

and X =(X,¥) . It follows that

2, 0°F,(&,r
Bl(X! y):J . affffk) X;Y) = =2y, —axy, —ax,y; ,
NAA)
: =bx,y, +bx,y, ,
A og 08, XYy 1Y 2 Y1
2. 0°F (&
Cl(XaYau): ﬁ Xiju|:o’
£ 0805,08|

qu:ia%:(gr)

u =0,
frogosos| 0

and r=r.
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B
Therefore, B(X, y):(BlE);’ Z/))j and C(X, y,u):(glx’ i//’ l:))} are symmetric multilinear vector
2 ! 2 v Y

functions of X, Y,U €R%

We know that A has simple eigenvalue 4,(r;) =—1, and the corresponding eigenspace E° is one-
dimensional and spanned by an eigenvector ¢ €R? such that A(r)g=-0. Let p €R? be the adjoint
eigenvector, thatis, A’ (r,)p = —p . By direct calculation we obtain

q~(-1+d—bx", by ),

p~(-1+d-bx", —ay) .

In order to normalize P with respectto (, we denote
p= 71(—1+ d—bx’, - ay*)T

where

_ 1
(—1+ d —bx*)2 —abx’y"

71

It is easy to see <p,q>:1, where <,> means the standard scalar product in R?:

(p,q) = .0y + P, -

Following the algorithms given in (Kuznetsov, 1998), the sign of the critical normal form coefficient
,Bl(rl), which determines the direction of the flip bifurcation, is given by the following formula:

Aﬂﬁ=%<nCQAAM—%(nB®&A—D*qu» ®)

From the above analysis and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson,
1999; Wiggins, 2003), we have the following result.

Theorem 1. Suppose that (X*, y*) is the positive fixed point. If the conditions (4), (5) hold and /,(r,)# 0,
then system (1) undergoes a flip bifurcation at the fixed point (X*, y*) when the parameter r varies in a
small neighborhood of r,. Moreover, if ﬂl(rl) >0 (respectively, ,Bl(rl) < 0), then the period-2 orbits that
bifurcate from (X*, y*) are stable (respectively, unstable).

In Section 4, we will give some values of the parameters such that ﬂl(rl) # 0, thus the flip bifurcation
occursas I varies (see Figure 1).

We next discuss the existence of a Neimark-Sacker bifurcation by using the Neimark-Sacker theorem in
(Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003).

It is clear that the eigenvalues A4, , given by (3) are complex for (trJ )2 —4detJ <0, which leads to
A<O0,i.e.,
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2
(1+Mj —(1+d)r(1—9j+d <0 )
2b b
b
Let r2 A —
-2+b-d

then we have detJ(r,) =1.

For r=r,, the eigenvalues of the matrix associated with the linearization of the map (6) at
(X*, y*) =(0,0) are conjugate with modulus 1, and they are written as

Ay :_@i%\/‘laz(rz)_alz(rz) (10)
and ‘xli(rz)‘ =1, w = (_2+b_23)(1+d) #0, i=12.Notethat A, = 4, .

r=r,
In addition, if trJ(r,) = 0,—1, which leads to

L+d)r,

* 2,3,
b

then we have /I'i‘ (r,) =1 for k=1234.

Let ¢ eC”be an eigenvector of A(r,) corresponding to the eigenvalue A, (r,) such that

Alr)a=A4(rR)a,  AR)T =A4(r)T.

Also let p eC? be an eigenvector of the transposed matrix A’ (r,) corresponding to its eigenvalue,
thatis, A,(r,) =4,(r,),

AT (rz) p= iz(rz) P, AT (rz)ﬁ = Zz(rz) p.

By direct calculation we obtain

q~Qﬁd—b{mfy,
p~(1,+d-bx", —ayJ .

In order to normalize P with respectto (, we denote
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p= ;/2(/12 +d —bx, —ay*)T

where

1
(/12 +d - bx*)2 —abx’y"

Vo=

It is easy to see <p,q>:1, where <,> means the standard scalar product in c2

<p’ q> = .0, + P9, -

Any vector X €R? can be represented for r near r,as X =zq+ZQ ,for some complex z. Indeed,
the explicit formula to determine zis z :<p, X>. Thus, system (6) can be transformed for sufficiently
small |r| (near ) into the following form:

z-> A4(Nz+9(z,Z,1),

where A,(r) can be written as A (r)=(1+q@(r))e'’" (where ¢(r) is a smooth function with
@(r,)=0) and gis a complex-valued smooth function of z,Z,and r, whose Taylor expression with
respect to (z, Z) contains quadratic and higher-order terms:

9(z,z,r)= >, I(I“gk,(r)z ,with g, e , kI1=01--

k+1>2

By symmetric multilinear vector functions, the Taylor coefficients g,, can be expressed by the formulas

92(r)=(p.B(a.a)), 9.(r,)=(p, (? )

902(r,)=(p.B(@.T)). 9x(r,)=(p.C

).

and the coefficient ﬁz(rz), which determines the direction of the appearance of the invariant curve in a
generic system exhibiting the Neimark-Sacker bifurcation, can be computed via

e—ié’(rz)g 1_2ei9(r2) e—2i9(r2) 1 1
ﬁz(rz)z RE(TMJ - Re[( 2(1_ eiZ(fz)) gzoguj _§|911|2 _Z|goz|2 '

where €'/ = 4 (r,).

For the above argument and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983;
Robinson, 1999; Wiggins, 2003), we have the following result.

Theorem 2. Suppose that (X*,y*) is the positive fixed point. If ﬂz( )<0 (respectively, >0) the
Neimark-Sacker bifurcation of system (1) at I =, is supercritical (respectively, subcritical) and there exists
a unique closed invariant curve bifurcation from (x*,y*) for r=r,, which is asymptotically stable
(respectively, unstable).

In Section 4 we will choose some values of the parameters so as to show the process of a Neimark-Sacker
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bifurcation for system (1) in Figure 2 by numerical simulation.

4 Numerical Simulations

In this section, our aim is to present numerical simulations to explain the above theoretical analysis, especially
the bifurcation diagrams, phase portraits and Maximum Lyapunov exponents for system (1) around the
positive fixed point E, and show the new interesting complex dynamical behaviors. It is known that
Maximum Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories
and frequently employ to identify a chaotic behaviour. We choose the growth rate of prey, r as the real
bifurcation parameter (varied parameter) and other model parameters are as fixed parameters, otherwise stated.
For showing the dynamics of the system (1) change, the bifurcation parameters are considered in the following
cases:

Case (i): varying r inrange 3<r<4,and a=3b=1.95d =0.25 fixing.

Case (ii): varying r inrange 1<r <2.97,and a=3.5b=4.5d =0.25 fixing.

Fig. 1 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around Ez- (a) Flip bifurcation diagram of system
(1) in (F —X—Y) space, the initial value is (XO, yo) = (O.641,0.061)(b) Flip bifurcation diagram in (I — X ) plane (c)
Maximum Lyapunov exponents corresponding to (b) and (d) Maximum Lyapunov exponents are superimposed on Flip

bifurcation diagram.
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For case (i). The bifurcation diagrams of system (1) in (I —X—Y ) space and in (I — X) pane are given
in Fig. 1(a-b). After calculation for the fixed point E, of map (1), the flip bifurcation emerges from the fixed
point (0.641,0.062) at r=r, =3.3and(a,b,d)e FBe, . It shows the correctness of proposition 1. At
r=r,, we have B,(r,)=-14.167, which determines the direction of the flip bifurcation and shows the
correctness of Theorem1.From Fig. 1(b), we see that the fixed point E, is stable for r < 3.3 and loses its
stability at the flip bifurcation parameter value r = 3.3, we also observe that there is a cascade of period
doubling bifurcations for r >3.3. The maximum Lyapunov exponents corresponding to Fig. 1(b) are
computed and plotted in Fig. 1(c), confirming the existence of the chaotic regions and period orbits in the
parametric space.

For case (ii). The bifurcation diagrams of system (1) in the (F — X — Y space, the (I — X) plane and the

(r—y) plane are given in Fig. 2(a-b-c). After calculation for the fixed point E, of map (1), the Neimark-
Sacker bifurcation emerges from the fixed point (0.2778,0.127) at r =r, = 2and(a,b,d)e NS¢, . It

shows the correctness of proposition 1. For r=r,, we have 4, =0.722222 +0.691661 1, ‘21’2‘ =1,

diA;(r
—‘ { )‘ =0.3125>0, g, =—0.88889+1.651061, 9o, =—1.61111-4.57389 1,
dr

r=r,

0,, =—1.25+1.30523i, g,, =0, and f,(r,)=—5.625. Therefore, the Neimark-Sacker bifurcation is

supercritical and it shows the correctness of Theorem 2.

From Fig. 2(b-c), we observe that the fixed point E, of map (1) is stable for r <2 and loses its
stability at ¥ =2 and an invariant circle appears when the parameter I exceeds 2, we also observe that
there are period-doubling phenomenons. The maximum Lyapunov exponents corresponding to Fig. 2(b-c) are
computed and plotted in Fig. 2(d), confirming the existence of the chaotic regions and period orbits in the
parametric space. From Fig. 2(d), we observe that some Lyapunov exponents are bigger than 0, some are
smaller than 0, so there exist stable fixed points or stable period windows in the chaotic region. In general the
positive Lyapunov exponent is considered to be one of the characteristics implying the existence of chaos. The
bifurcation diagrams for X and Y together with maximum Lyapunov exponents is presented in Fig. 2(e).
Fig. 2(f) is the local amplification corresponding to Fig. 2(b) for r €[2.7,2.948].

The phase portraits which are associated with Fig. 2(a) are disposed in Fig. 3, which clearly depicts the
process of how a smooth invariant circle bifurcates from the stable fixed point (0.2778,0.127). When T
exceeds 2 there appears a circular curve enclosing the fixed point E,, and its radius becomes larger with
respect to the growth of r. When r increases at certain values, for example, at r = 2.745, the circle
disappears and a period-9 orbits appears, and some cascades of period doubling bifurcations lead to chaos.
From Fig. 3, we observe that as r increases there are period-9, 10, 20-orbits, quasi-periodic orbits and
attracting chaotic sets. See that for r =2.95 & 2.97, where the system is chaotic, is the value of maximal
Lyapunov exponent positive that confirm the existence of the chaotic sets.
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Fig. 2 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around E, . (a) Neimark-Sacker bifurcation
diagram of system (1) in (r—x—y) space (b-c) Hopf bifurcation diagrams in (r—x) and (r—y) planes (d) Maximum
Lyapunov exponents corresponding to (b-c) (¢) Maximum Lyapunov exponents are superimposed on bifurcation diagrams (f)

Local amplification corresponding to (a) for r e[2.7,2.948]. The initial value is (o, yo )= (0.25,0.11).
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Fig. 3 Phase portraits for various values of r corresponding to Fig. 3(a).

In order to observe the complex dynamics, we can vary one more parameters of system (1). Since the
values of Lyapunov exponents quantify the chaotic behavior of discrete system or at least sensitive dependence
on initial conditions, so we compute maximum Lyapunov exponents of system (1) and study the dependence
of these Lyapunov exponents on two real parameters rand b . The maximum Lyapunov exponents of system
(1) for parameters I € [1.0,2.97] and be [2.5,4.5]and fixing other parameters as in case (ii) is given in
Fig. 4(a). In Fig. 4(b) is plotted the sign of the maximal Lyapunov exponent of map (1). Blue color represents
negative Lyapunov exponent and red color represents positive Lyapunov exponent. Here it is easy to see for
which choice of parameters the system (1) is showing chaotic motion, and for which one is the system (1)
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exhibiting periodic or quasi periodic movement. E.g., the chaotic situation is on Fig. 3 for values of parameters
r=297 & b=4.5 and the non-chaotic situation is for values of parameters r =2.745 & b=4.5
which are consistent with signs in Fig. 4(b).

magles

10 01110 00 I3 00 01 00 06 (O 0E! T

™1 12 14 ‘8 18 2 22 24 28 28 3
N

1))
r

Fig. 4 Sign of maximum Lyapunov exponent for system (1) around E, . (a) Maximum Lyapunov exponents of system (1)

covering re[l.0,2.97] and be[2.5,4.5] (b) Sign of Maximum Lyapunov exponents corresponding to (a) (red“*” = positive,

blue‘o’ = negative). The initial value is (xg, yo)=(0.25,0.11).

5 Discussion
In this paper, We performed a detailed computational analysis of the discrete-time predator-prey system (1) of

Holling type I functional response and showed that it has a complex dynamics in the closed first quadrant Rf .
As certain parameters increase or decrease further away, we showed that system (1) can undergo a flip
bifurcation and a Neimark-Sacker bifurcation in the interior of Rf. Moreover, system (1) displayed much

interesting dynamical behaviors, including period-9, 10, 20-orbits, invariant cycle, cascade of period-doubling,
quasi-periodic orbits and the chaotic sets, which imply that the predators and prey can coexist in the stable
period-n orbits and invariant cycle. Finally, simulation works showed that in certain regions of the parameter
space, the model (1) had a great sensitivity to the choice of initial conditions and parameter values.
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