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Abstract 

In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-I type in the 

closed first quadrant 2
R . The existence and local stability of positive fixed point of the discrete dynamical 

system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-

Sacker bifurcation in the interior of 2
R  by using bifurcation theory. It has been found that the dynamical 

behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation 

results not only show the consistence with the theoretical analysis but also display the new and interesting 

dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of 

period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance 

of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic 

dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are 

numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in 

this paper are interesting in mathematics and biology. 

 

Keywords discrete-time predator-prey system; chaos; flip and Neimark-Sacker bifurcations; Lyapunov 

exponents. 

 

 

 

 

 

 

 

 

1 Introduction 

The dynamics of predator-prey interaction is the starting point for many variations that yield more realistic 

biological and mathematical problems in population ecology. Predation is a direct interaction which occurs 

when individuals from one population derive their nourishment by capturing and ingesting individuals from 

another population. There are many articles devoted to the study of predator-prey interaction both from the 

experimental and the modeling point of view. It is well known the Lotka-Voltera predator-prey model is one of 

the fundamental population models; a predator-prey interaction has been described firstly by two pioneers 

Lotka (1924) and Voltera (1926) in two independent works. After them, more realistic prey-predator model 
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were introduced by Holling suggesting three types of functional responses for different species to model the 

phenomena of predation (Holling, 1965). 

Qualitative analyses of prey-predator models describe by set of differential equations were studied by 

many authors (Brauer and Castillo, 2001; Hastings and Powell, 1991; Klebanoff and Hastings, 1994; May, 

1974; Murray, 1998; Zhu et al., 2002).  Another possible way to understand a prey-predator interaction is by 

using discrete-time models. These models are more reasonable than the continuous time models when 

populations have non-overlapping generations (Brauer and Castillo, 2001; Murray, 1998) and lead to 

unpredictable dynamic behaviors from a biological point of view. This suggests the possibility that the 

governing laws of ecological systems may be relatively simple and therefore discoverable. The author (May, 

1975, 1976) had clearly documented the rich array of dynamic behavior possible in simple discrete-time 

models. Recently, there is a growing evidence showing that the dynamics of the discrete-time prey-predator 

models can present a much richer set of patterns than those observed in continuous-time models (Agiza et al., 

2009; Danca et al., 1997; Elsadany et al., 2012; Hasan et al., 2012; He and Lai, 2011; Jing and Yang, 2006; Li, 

1975; Liu, 2007; Hu et al., 2011; He and Li, 2014). However, there are few articles discussing the dynamical 

behaviors of predator-prey models, which include bifurcations and chaos phenomena for the discrete-time 

models. The authors (He and Lai, 2011; Jing, 2006; Liu, 2007; Hu et al., 2011) obtained the flip bifurcation by 

using the center manifold theorem and bifurcation theory. But in (Agiza et al., 2009; Danca et al., 1997; 

Elsadany et al., 2012), the authors only showed the flip bifurcation and Hopf bifurcation by using numerical 

simulations. In this work, we confine our interest to present, by using both analytic and numerical methods, the 

domains of the values of the parameters under which the system predicts that the populations will be able to 

persist at a steady state, the conditions for flip and/or Neimark-Sacker bifurcations by using the normal form 

theory of the discrete system (see section 4, Kuznetsov, 1998) and the domain for the presence of chaos in the 

system by measuring the maximum Lyapunov exponents. 

In ecology, many species have no overlap between successive generations, and thus their population 

evolves in discrete-time steps (Murray, 1998). Such a population dynamics is described by difference equation. 

Let nx  denotes the number of prey population and ny the number of predator population in the n th 

generation. Our model is described by the following system of nonlinear difference equations in non-

dimensional form: 

 












nnnn

nnnnn

dyybxy

yaxxrxx
H

1

1 )1(
:   (1) 

 

In the system (1), the prey grows logistically with intrinsic growth rate r  and carrying capacity one in 

the absence of predation. The predator consumes the prey with functional response Holling type I. All 

parameters dbar ,,,  have positive values that stand for prey intrinsic growth rate, per capita searching 

efficiency of the predator, conversion rate, and the death rate of the predator, respectively. From mathematical 

and biological point of view, we will pay attention on the dynamical behaviors of (1) in the closed first 

quadrant 2
R . Starting with initial population size  00 , yx , the iteration of system (1) is uniquely 

determined a trajectory of the states of population output in the following form 

 

   00 ,, yxHyx n
nn  , where ,2,1,0n . 
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Our results in this paper are extension to those in (Danca et al., 1997; Elsadany et al., 2012). This paper is 

organized as follows. In Section 2, we discuss the existence and local stability of positive fixed point for 

system (1) in 2
R . In Section 3, we show that there exist some values of the parameters such that (1) 

undergoes the flip bifurcation and the Neimark-Sacker bifurcation in the interior of 2
R . In section 4, we 

present the numerical simulations which not only illustrate our results with theoretical analysis but also exhibit 

complex dynamical behaviors such as the cascade periodic-doubling bifurcation in periods 2, 4, 8, 9, 10, 20-

orbits, quasi-periodic orbits and chaotic sets. Finally a short discussion is given in Section 5. 

 

2 Existence and Local Stability of Fixed Points 

In this section, we shall first discuss the existence of fixed points for (1), then study the stability of the fixed 

point by the eigenvalues for the Jacobian matrix of (1) at the fixed point.It is clear that the system (1) has the 

following fixed points in the ),( yx -plane: 

 0,00E , 





 

0,
1

1 r

r
E and  **

2 , yxE , where
b

d
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


1*  and 
ab

d

a

r
y

11
1* 






 
 . 

To discuss the existence of fixed points, we say that fixed points will not exist if any one of its 

components is negative. The fixed point 0E  always exists. The existence condition for 1E is 1r . Finally, 

the feasibility condition for the positive fixed point 2E  is 

db

b
r




1
 (or 1,

1

)1(





 r
r

dr
b ).  

Now we study the stability of the positive fixed point (we left the others) only. Note that the local stability 

of the fixed point ),( yx  is determined by the modules of eigenvalues of the characteristic equation at the 

fixed point. 

The Jacobian matrix due to the linearization of (1) evaluated at 2E  is given by 

 


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b
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and the characteristic equation of the Jacobian matrix J  can be written as 
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b
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d
rdJ 






 


2
1)1(det2 . 

Therefore, the eigenvalues of J  are  
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Using Jury’s criterion (Elaydi, 1996), we have necessary and sufficient condition for local stability of the 

fixed point 2E  which are given in the following proposition. 

Proposition 1. When
db

b
r




1
, then system (1) has a positive fixed point 2E  and 

(i) it is a sink if one of the following conditions holds: 

(i.1) 0 and 
1

)2(

)1(3

)3)(1(


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r
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1
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
r

rd
b . 

(ii) it is a source if one of the following conditions holds: 
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
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b . 

(iii) it is non-hyperbolic if one of the following conditions holds: 

(iii.1) 0 and 
rdd
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b

)1(3

)3)(1(
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(iii.2) 0 and 
1

)2(





r
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b . 

(iv)  it is a saddle for the other values of parameters except those values in (i)–(iii). 

 

Following Jury’s criterion, we can see that one of the eigenvalues of  2EJ  is 1  and the others are 

neither 1 nor 1  if the term (iii.1) of Proposition 1 holds. Therefore, there may be flip bifurcation of the 

fixed point 2E  if r  varies in the small neighborhood of 
2EFB  where 

 







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2
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dbd
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rdbarFBE . 

Also when the term (iii.2) of Proposition 1 holds, we can obtain that the eigenvalues of  2EJ are a pair 

of conjugate complex numbers with module one. The conditions in the term (iii.2) of Proposition 1 can be 

written as the following set: 

 
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
 0,,,1,0,

2
:,,,

2
dbar

db

b
rdbarNSE  

and if the parameter r  varies in the small neighborhood of 
2ENS ; then the Neimark-Sacker bifurcation will 

appear. 

 

190



Computational Ecology and Software, 2015, 5(2): 187-200 

 IAEES                                                                                    www.iaees.org 

3 Flip Bifurcation and Neimark-Sacker Bifurcation 

In this section, we choose the parameter r  as a bifurcation parameter to study the flip bifurcation and the 

Neimark-Sacker bifurcation of 2E  by using bifurcation theory in (see Section 4 in Kuznetsov, 1998; see also 

Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003). 

 

We first discuss the flip bifurcation of (1) at 2E . Suppose that 0 , i.e., 
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Let *~ xxx  , *~ yyy   and    **, yxJrA  , we transform the fixed point  **, yx  of system 

(1) into the origin, then system (1) becomes 
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and 1rr  . 
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Therefore,    
 


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1
 are symmetric multilinear vector 

functions of uyx ,, R2. 

 

We know that A  has simple eigenvalue 1)( 11 r , and the corresponding eigenspace cE  is one-

dimensional and spanned by an eigenvector q R2 such that qqrA )( 1 . Let p R2 be the adjoint 

eigenvector, that is, pprAT )( 1 . By direct calculation we obtain 

  Tbybxdq ** ,1~  , 

 Taybxdp ** ,1~  . 

 
In order to normalize p  with respect to q , we denote 

 Taybxdp **
1 ,1    

where 

  **2*1
1

1

yabxbxd 
 . 

 

It is easy to see 1, qp , where ,  means the standard scalar product in R2: 

2211, qpqpqp  . 

 

Following the algorithms given in (Kuznetsov, 1998), the sign of the critical normal form coefficient 

 11 r , which determines the direction of the flip bifurcation, is given by the following formula: 

      qqBIAqBpqqqCpr ,)(,,
2

1
,,,

6

1 1
11

  (8) 

From the above analysis and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson, 

1999; Wiggins, 2003), we have the following result. 

 

Theorem 1. Suppose that  **, yx  is the positive fixed point. If the conditions (4), (5) hold and   011 r , 

then system (1) undergoes a flip bifurcation at the fixed point  **, yx  when the parameter r  varies in a 

small neighborhood of 1r . Moreover, if   011 r  (respectively,   011 r ), then the period-2 orbits that 

bifurcate from  **, yx  are stable (respectively, unstable). 

 

In Section 4, we will give some values of the parameters such that   011 r , thus the flip bifurcation 

occurs as r  varies (see Figure 1). 

 

We next discuss the existence of a Neimark-Sacker bifurcation by using the Neimark-Sacker theorem in 

(Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003). 

 

It is clear that the eigenvalues 2,1  given by (3) are complex for   0det42  JtrJ , which leads to 

0 , i.e., 
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Let q C2 be an eigenvector of )( 2rA  corresponding to the eigenvalue )( 21 r  such that 

 

qrqrA )()( 212  ,  qrqrA )()( 212  . 

 

Also let p C2 be an eigenvector of the transposed matrix )( 2rAT  corresponding to its eigenvalue, 

that is, )()( 2221 rr   , 

 

prprAT )()( 222  ,  prprAT )()( 222  . 

 

By direct calculation we obtain 

 

 Tbybxdq **
1 ,~  , 

 Taybxdp **
2 ,~  . 

 

In order to normalize p  with respect to q , we denote 
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 Taybxdp **
22 ,    

where 

  **2*
2
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
 . 

 

It is easy to see 1, qp , where ,  means the standard scalar product in C2: 

2211, qpqpqp  . 

 

Any vector X R2 can be represented for r  near 2r as qzqzX  ,for some complex z . Indeed, 

the explicit formula to determine z is Xpz , . Thus, system (6) can be transformed for sufficiently 

small r  (near 2r ) into the following form:  

 

),,()(1 rzzgzrz  , 
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0)( 2 r ) and g is a complex-valued smooth function of rzz and,, , whose Taylor expression with 

respect to ),( zz contains quadratic and higher-order terms: 
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By symmetric multilinear vector functions, the Taylor coefficients klg  can be expressed by the formulas 
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and the coefficient  22 r , which determines the direction of the appearance of the invariant curve in a 

generic system exhibiting the Neimark-Sacker bifurcation, can be computed via 
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)( 2 re ri   . 

 

For the above argument and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983; 

Robinson, 1999; Wiggins, 2003), we have the following result. 

 

Theorem 2. Suppose that  **, yx  is the positive fixed point. If   022 r  (respectively, 0 ) the 

Neimark-Sacker bifurcation of system (1) at 2rr   is supercritical (respectively, subcritical) and there exists 

a unique closed invariant curve bifurcation from  **, yx  for  2rr  , which is asymptotically stable 

(respectively, unstable). 

 

In Section 4 we will choose some values of the parameters so as to show the process of a Neimark-Sacker 
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bifurcation for system (1) in Figure 2 by numerical simulation. 

 

4 Numerical Simulations 

In this section, our aim is to present numerical simulations to explain the above theoretical analysis, especially 

the bifurcation diagrams, phase portraits and Maximum Lyapunov exponents for system (1) around the 

positive fixed point 2E  and show the new interesting complex dynamical behaviors. It is known that 

Maximum Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories 

and frequently employ to identify a chaotic behaviour. We choose the growth rate of prey, r  as the real 

bifurcation parameter (varied parameter) and other model parameters are as fixed parameters, otherwise stated. 

For showing the dynamics of the system (1) change, the bifurcation parameters are considered in the following 

cases: 

Case (i): varying r  in range 43  r , and  25.0,95.1,3  dba  fixing.  

Case (ii): varying r  in range 97.21  r , and 25.0,5.4,5.3  dba  fixing.  

 

 

Fig. 1 Bifurcation diagrams and maximum Lyapunov exponent for system (1) around 2E . (a) Flip bifurcation diagram of system 

(1) in ( yxr  ) space, the initial value is    061.0,641.0, 00 yx (b) Flip bifurcation diagram in ( xr  ) plane (c)  

Maximum Lyapunov exponents corresponding to (b) and (d) Maximum Lyapunov exponents are superimposed on Flip 

bifurcation diagram. 
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For case (i). The bifurcation diagrams of system (1) in ( yxr  ) space and in ( xr  ) pane are given 

in Fig. 1(a-b). After calculation for the fixed point 2E  of map (1), the flip bifurcation emerges from the fixed 

point  062.0,641.0  at 3.31  rr and  
2

,, EFBdba  . It shows the correctness of proposition 1. At 

1rr  , we have   167.1411 r , which determines the direction of the flip bifurcation and shows the 

correctness of Theorem1.From Fig. 1(b), we see that the fixed point 2E  is stable for 3.3r  and loses its 

stability at the flip bifurcation parameter value 3.3r , we also observe that there is a cascade of period 

doubling bifurcations for 3.3r . The maximum Lyapunov exponents corresponding to Fig. 1(b) are 

computed and plotted in Fig. 1(c), confirming the existence of the chaotic regions and period orbits in the 

parametric space. 

 
For case (ii). The bifurcation diagrams of system (1) in the ( yxr  ) space, the ( xr  ) plane and the 

( yr  ) plane are given in Fig. 2(a-b-c). After calculation for the fixed point 2E  of map (1), the Neimark-

Sacker bifurcation emerges from the fixed point  127.0,2778.0  at 22  rr and  
2

,, ENSdba  .  It 

shows the correctness of proposition 1. For 2rr  , we have ,691661.0722222.02,1 i 12,1  , 

,03125.0
)(

2


rr

i

dr

rd 
,65106.188889.020 ig  ,57389.461111.102 ig 

,30523.125.111 ig  ,021 g  and   625.522 r . Therefore, the Neimark-Sacker bifurcation is 

supercritical and it shows the correctness of Theorem 2. 

 

From Fig. 2(b-c), we observe that the fixed point 2E  of map (1) is stable for 2r  and loses its 

stability at 2r  and an invariant circle appears when the parameter r exceeds 2 , we also observe that 

there are period-doubling phenomenons. The maximum Lyapunov exponents corresponding to Fig. 2(b-c) are 

computed and plotted in Fig. 2(d), confirming the existence of the chaotic regions and period orbits in the 

parametric space. From Fig. 2(d), we observe that some Lyapunov exponents are bigger than 0, some are 

smaller than 0, so there exist stable fixed points or stable period windows in the chaotic region. In general the 

positive Lyapunov exponent is considered to be one of the characteristics implying the existence of chaos. The 

bifurcation diagrams for x  and y  together with maximum Lyapunov exponents is presented in Fig. 2(e). 

Fig. 2(f) is the local amplification corresponding to Fig. 2(b) for ]948.2,7.2[r . 

The phase portraits which are associated with Fig. 2(a) are disposed in Fig. 3, which clearly depicts the 

process of how a smooth invariant circle bifurcates from the stable fixed point  127.0,2778.0 . When r  

exceeds 2  there appears a circular curve enclosing the fixed point 2E , and its radius becomes larger with 

respect to the growth of r . When r  increases at certain values, for example, at 745.2r , the circle 

disappears and a period-9 orbits appears, and some cascades of period doubling bifurcations lead to chaos. 

From Fig. 3, we observe that as r  increases there are period-9, 10, 20-orbits, quasi-periodic orbits and 

attracting chaotic sets. See that for 97.2&95.2r , where the system is chaotic, is the value of maximal 

Lyapunov exponent positive that confirm the existence of the chaotic sets. 
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