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Abstract 

This paper deals with the approximate analytical solution of the Navier-Stokes equations in cylindrical 

coordinates. The homotopy perturbation method is used to get the analytical approximation. Depending upon 

different available choices for the linear operator, we also have the advantage to choose different initial 

approximations to start our analysis. The analysis is done without calculating the Adomian’s polynomials. 
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1 Introduction 

The Navier-Stokes equations describe the motion of fluids that is a substance which can be flow and it arises 

from Newton 2nd law applying to the fluid motion (Square, 1952). The Navier-Stokes equations are widely 

used in physics, they are used for modeling of weather and seas currents, designing of aircrafts and cars, for 

motions of stars, they are used in video games, flow of water in a pipe, blood circulations, analysis of power 

stations, and study of populations (Thorpe, 1997). 

In fluids mechanics, the dynamics of a flowing fluid is governed and represented by the Navier- Stokes 

equations which are nonlinear partial differential equations. Here our case of interest is to approximate the 

governing equations of the flow field in a tube, since it is nonlinear in character and it is impossible to solve 

these equations analytically to get the exact solution. To solve these equations, we are led to adopt some 

restrictive assumptions and some simplifications, which involve the suppositions of weak non linearity to 

apply traditional perturbation methods, small parameter assumptions which restrict the wide applications of the 
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perturbation techniques, linearization which is certainly a handy task, discretization to apply numerical 

techniques etc. In using the traditional numerical methods for the numerical solution of the Navier- Stokes 

equations are very difficult and it is due to mixing of different length scales involving in the fluid flow which 

results in massive out prints.  

Our objective here is to find the continuous analytical solution to the governing equation in cylindrical 

coordinates without massive outsprints and restrictive suppositions as discussed above, which change physical 

problem into a mathematical problem. K. Haldar (Haldar, 1995) used Adomian’s decomposition method 

(Adomian, 1996; Adomian, 1989) for the analytical approximation of the problem which is most transparent 

method for the solutions of the Navier-Stokes equation in cylindrical coordinates. However the limitations of 

this method involve a handy task of the calculations of the Adomian polynomials, which proved to be too 

difficult and cause to slow down the application. To overcome this shortcoming, we make use of the homotopy 

perturbation method to get analytical approximations for different choices of linear operators and the initial 

guesses available. Recently, the homotopy perturbation method being a powerful technique was developed by 

He (He, 1999, 2005) .The main advantage of this technique is to overcome the difficulties arising in the 

process of calculations for the nonlinear terms arising in the problem. This gives analytical approximation to 

the different classes of the nonlinear differential equations, system of differential equations, integral and 

integro-differential equation and systems of such equations. Haldar applied the Adomian’s decomposition 

method to the Navier- stokes equations in cylindrical coordinates for two dimensional irrotational fluid flow in 

a tube (Hardar, 1997). Our present analysis gives the application of homotopy perturbation method without 

any restrictive assumptions and handy calculations of the Adomian polynomials to the Navier Stoke Equations 

in cylindrical coordinates, in which the steady two dimensional irrotational flow of fluid in a tube of non-

uniform circular cross section can be studied. 

 

2 The Governing Equations 

Consider the governing equations of motion for the two dimensional flow field for a viscous fluid in a tube 

which are described by the cylindrical coordinate transformation of the Navier-Stokes equations read as;  

2 2
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It is suggested that the rotational motion of the fluid is negligible. Then the equation of continuity reads is 

 1
0

u
rv

r r z

 
  

 
                       (3) 

Where ,u  is fluid velocity components in the axial x  coordinate and v  is in the radial coordinate r , and 

the fluid pressure is described by P , the fluid density by  , and the kinematic viscosity by   for the fluid. 

Introducing and labeling the stream function as  , then we may have, 

1
,u

r r


 

       
and       1

v
r z





 ,             (4) 

The equation of continuity is satisfied identically. The dynamical equation of motion in term of the stream 

function   are obtained by eliminating P  between (2) and (3), and making us of the relation (4), it is read 
as; 
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Introducing  as a linear operator which is defined as;      

              

2 2
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1
,

r rr z

          
                      (6) 

and the Jacobean defined as 
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                     (7) 

Now, we here mainly discuss to forms of the linear operator  defined by equation (5). We will split the 

linear operator  in two parts and discuss the two cases. It is to note that in the homotopy perturbation 

method we are free to choose the linear operator. This mainly depends upon the given form of the initial or 

boundary condition and the problem under investigation. Therefore, depending upon our choices and the 

possibilities for the appearance of the auxiliary linear form of operator in the problem we consider two cases 

here. 

Case 1: 

The first form of the linear operator extracted from equation (5) for the possible form of the linear operator is 

supposed to be; 

            

2

1 2

1
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
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Then the operator   becomes  
2
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Using (9) in (5), the equation (5) takes the following form 

2 2 4
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1 12 2 4
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Taking 1  both sides 

2 4
2 11
1 2 4 2

( ) 1 ( , ) 2
2 .
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In order to apply the proposed homotopy perturbation method to the given problem, we need to define the 

nonlinear term appearing in the governing equations. Therefore, we define the nonlinear term as N  in the 

above equation which is given as;          

2

1 ( , ) 2
.

(r, z)
N

r zr

   
   

   

Then we get the following nonlinear form of equation for our analysis,  
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Operating 1
1

  on both sides of the above equation, 
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Using homotopy perturbation method (HPM) proposed by J. H. He (He, 2006), we construct a homotopy for 

equation (10) as; (r, z; ) : [0,1]    This satisfies

            0, 1 0,H v v u A v f r            and here   0,1   is designed to be an 
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 (11) 

Suppose the solution of (11) is of the form of 
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Now we simplify the quantities enclosed in brackets, 
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The calculations made in (14) is according to the definition of the Jacobean, and     
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Combining the terms containing the equal powers of  in equation (14) and (15)         
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and so on. Now 
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Now combining the terms containing the equal powers of  in equations (16) and (17) 
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and so on. Using equations (15a), (15b), (15c), (17a), (17b), (17c) in equation (13). We get from equation (13), 
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Equating the coefficients of equal powers of  we have the zeroth order problem as:  

Zeroth Order problem: 1 0 1 0 0,     which implies    0 0 ,r z   
                        

(19) 

Here 0 is defined as the solution of homogenous equation  2
1 0 0,             (20) 

subject to the pre-prescribed boundary conditions. Now to find the approximation for 1 for which we first 
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find the inverse operator 2
1
  and for it we consider equation (3),      1 0            (21) 
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1  
and 2  are the solutions of two homogenous equations 0,rr    and  0,r   respectively. The 

inverse linear operators 1
rr
  and 1

r
  are defined as

 

 
 

1

1

,

.

rr

r

drdr

dr





  

  




                (26) 

Adding (25) and (26) we get        1 1
1 2

1
2 ,rr r r rrr

r
               

 
 and dividing both 

sides by 2, to get                 1 11 2 1
,

2 rr r r rrr
r

                   
        (27) 

   
 1 1

0

1 1
,

2 rr r r rrr
r

                 
        (28) 

where  1 2
0 2

 
  , then 

 

 

 

1 1
1 0

1 1
2 1

1 1
1

1 1
,

2

1 1
,

2

   

1 1
.

2

rr r r rr

rr r r rr

n rr r r rr n

r
r

r
r

r
r

 

 

 


             
             



             

 

                    (29) 
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Let the quantity in brackets is denoted by   

1 0

2
2 1 0 02

1
1 01

1

2
1 1 1 1

,2 2 2 2
    

1

2
n

n n



   

 
 

    
 
        
  
 
    

 

         (30) 

         
 1 1

0 0
0 0

1 1 1

2 2

n

n
rr r r rrn n

n n

r
r


 

 

 

                
         (31) 

Now the inverse of the linear operator is defined  
2

2
1

1
rr rr


       

 
as 

 2 1 1
1

0

1 1

2

n

rr r r rrn
n

r
r


  



             
                        (32) 

Now we come to equation (19) and define the zeroth order problem as,  0 0.   And the 1st order problem 

as   1 1
1 1 1 0 1 1 1 .C D          

Substituting values from equation (15a) (17a) we get, 

 
 

2 4
0 01 1 0 1 0 0

1 1 1 0 1 0 2 2 4

,1 2
2 .

,r r z zr z z

    
    

       
                  

Operating 1  on both sides of the above equation yields, 

 
 

2 4
0 02 2 1 0 1 0 0

1 1 1 0 0 2 2 4

,1 2
2 .

,r r z zr z z

    
          

              

Making use of 0 0 ,   for the initial guess of HPM methodology,         2
1 0 0,    

 
 

2 4
0 02 1 0 1 0 0

1 1 0 2 2 4

,1 2
2 .

,r r z zr z z

    
         

           
 

Operating with 2
1
  on both sides of the above expression, 

 
 

2 4
0 01 2 2 20 1 0 0

1 1 0 1 12 2 4

,1 2
2 ,

,r r z zr z z

    
           

             
      (33) 

where 2
1
  is given in equation (32). The 2nd order problem is given as,  1 1

1 2 1 2 2 .C D       Using 

the values of 2C  and 2D from equations (15b) and (17b), we get 
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 
 

 
 

2 4
1 0 0 11 1 0 1 1 1 1

1 2 1 1 02 2 2 4

, ,1 2 2
2 .

, ,r r z r z z zr r z z

       
    

                                                
 

Operating with 1
1
  both sides of the above equation to get, 

 
 

 
 

1 0 0 11 2 0 1
2 1 1 02 2

2 4
2 21 1 1

1 12 4

, ,1 2 1 2

, ,

      2 ,

r r z z r r z zr r

z z

 

 

 

 

          
                     

  
    

 


             (34) 

Now since in the methodology of HPM, we suppose the following expression for the approximate solution of 

the problem,  

0 1 2 3
1

lim ,


    


                  (35) 

where the components of the series solution are defined to be as;  0 0 ,    

 
 

2 4
0 01 2 2 20 1 0 0

1 1 0 1 12 2 4

,1 2
2 ,

,r r z zr z z
            

                

 
 

 
 

1 0 0 11 2 0 1
2 1 1 02 2

2 4
2 21 1 1

1 12 4

, ,1 2 1 2

, ,

      2 ,

r r z z r r z zr r

z z

 

 

          
                      

    
   

 

 

and so on. If once 0 is obtained, which can be easily obtained by constructing the homotopy for the given 

problem and equating the coefficients for the zeroth order problem, then we can find 1 in terms of 0  and 

in the similar fashion 2 can be evaluated in terms of 1  and 0 .The other higher order components can 

be easily obtained having the all other lower order values. Thus all the components of   can be calculated. 

The series solution 
0

,n
n





   thus can be given the following form,
 

 
 

 
 

 
 

2 4
0 01 2 2 20 1 0 0

0 1 0 1 12 2 4

1 0 0 11 2 0 1
1 1 02 2

2 4
2 21 1 1

1 12 4

,1 2
2

,

, ,1 2 1 2
   

, ,

    2

r r z zr z z

r r z z r r z zr r

z z





   

 

 

         
              

          
                     

    
    

 


             (36) 
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Case 2: 

We may have the other available or chosen form of the linear operator as; 

1
.rr r zzr

      
 

Whereas ,r r


 



2

2rr r


 


  and

2

2
,zz z


 


 then from equation (5) we have,

 

   

 
 

2
2

,1 2
.

, zr r r


   
   

   

Taking 1  both sides of the above expression,       
 

2 1
2

,1 2
.

, zr r zr
     

        
 

         

 
 

2 1
2

,1 2
0.

, zr r zr
     

         
        (37) 

Using the methodology of HPM, we may construct a homotopy for equation (37) as; 

   , ;q : 0,1r z         
 

1 1
0 2

,1 2
, 1

,z
H q q q

r r zr

      
    

             
 (38) 

Suppose the solution for equation (38) is of the following form

 0 1 2
0 1 2( , ; ) ( , ) ( , ) ( , )r z q q r z q r z q r z                 (39) 

Where as 

 
 

   

   

   

 
 

 
 

 
 

0 1 0 1

0 1 0 1

0 1 0 10 1 0 1

0 0 1 0 0 11

, ,
,

, z , ,

, ,( , ) ( , )
               

, , ,
              

, , ,

q q

r r
r q q

z z

q qq q

r z r z

q
r z r z r z

   
 

   

      

     

     
   
      

 
          

   
   

        
            

 

 

  

 
 

 
 

 
 

2 0 0 2 1 12 , , ,
              ,                                             (40)

, , ,
q

r z r z r z

     



      
        



  

     

  

   
1

0 1 1 0 10 0 1
0 1 0 0

2 0 1 2
2 1 0

,
,

                                                                ,

q q
z z z z

q
z z z

     
     

  
  

                          
             






      (41) 

Using (40) and (41) in (38) we get 
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 
 

 
 

 
 

 
 

 
 

 
 

0 0 1 0 0 11 1
0 0

2 0 0 2 1 12

, , ,
     

, , ,

, , ,
                                         

, , ,

                                  

q q
r z r z r z

q
r z r z r z

     
 

     


        

                    
      

       


0 10 0 1
0 1 02 2 2

2 2 2
    , 0q q

z z zr r r

  
  

                       


 

We first define the inverse linear operator 2 , consider equation (3), 0.   Then  

1
,rr r zzr

           1
0,rr r zzr

         
          

1
,rr zz rr

       

Multiplying both sides of the above equation by r , we get 

.r rr zzr r       
                (42)

 

In similar way, we get           
1

,zz r rrr
                  (43) 

1
.rr r zzr

      
         

       (44) 

 1
1

1
2

1
3

1

1

r rr zz

zz r rr

rr r zz

r r

r

r













 
       
 
         

  
         

  

         (45) 

 1 1 11 2 3 1 1 1
,

3 3 r rr zz zz r rr rr r zzr r
r r

                                         
   

(46) 

where 1 2 3
0 3

   
  , and 1 , 2  and 3  are the solutions of homogenous equations 0r   , 

0r r   and 0,zz   then 

 1 1 1
0

1 1 1
.

3 r rr zz zz r rr rr r zzr r
r r

                                    
     (47) 

The inverse linear operators  1
r
 ,  1

zz
 ,  and  1

rr
  are defined by 

                  
     1 1 1,         ,          r zz rrdr dzdz drdr                     (48) 

Then we have, 
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 

 

 

1 1 1
1 0

1 1 1
2 1

1 1 1
1

1 1 1
,

3

1 1 1
,

3

   

1 1 1

3

r rr zz zz r rr rr r zz

r rr zz zz r rr rr r zz

n r rr zz zz r rr rr r zz

r r
r r

r r
r r

r r
r r

  

  

  


                            
                            



                     
   

 

.n

 
 

 

          (49) 

Let us denote the quantity within the brackets by  , then the following expression is obtained, 

1 0

2
2 1 0 02

3
3 2 03

1
1 01

1
,

3
1 1 1 1

,
3 3 3 3
1 1

,
3 3

   

1
,

3
n

n n


 

    
 
        
 
     
 
  
    
 
 



   

 

 



               (50) 

 1 1 1
0

0 0

1 1 1 1
.

3 3

n

n
r rr zz zz r rr rr r zz nn n

n n

r r
r r

 
  

 

                              
 

 

Thus the inverse linear operator can be easily identified as; 

 
2

2 1 1 1

0

1 1 1 1
   (51)

3

n

rr r zz r rr zz zz r rr rr r zzn
n

r r
r r r

 
   



                                        


Now the zeroth order problem is 0 0 ,  
   0 0 .  

                    
(52) 

The 1st order problem is:  
 
 

0 01 1 0
1 0 02

,1 2
.

,r r z zr

  
        

          
 

Operating with   both sides of the above equations;

  
 

0 02 2 1 0
1 0 02

,1 2

,r r z r z

         
          

In order to find the initial guess of HPM, we make use of the zeroth order problem as: 2
0 0.   

 
 

0 02 1 0
1 02

,1 2
,

,r r z zr

  
      

         

Operating 2 on both sides to get,      
 
 

0 01 2 0
1 02

,1 2
,

,r r z zr

  
       

       
      (53) 
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The 2nd order problem is: 

 
 

 
 

1 0 0 11 2 0 1
2 1 02 2

, ,2 2
,

, ,r z z r z zr r

    
          

              

and so on. The series solution form of the problem reads as,

     

  0 2 31
lim , ;q ,r z


   


     
 

Where the following quantities are defined, 1 2 3
0 3

   
 

 

 
 

0 01 2 0
1 02

,1 2
,

,r r z zr
      

        
 

 
 

 
 

1 0 0 11 2 0 1
2 1 02 2

, ,2 2
,

, ,r z z r z zr r
         

             
         (54)

 

and so on. The series form of the solution can be written as;     
0

,n
n





    

 
 

 
 

 
 

2 4
0 01 2 2 20 1 0 0

0 1 0 1 12 2 4

1 0 0 11 2 0 1
1 1 02 2

2 4
2 21 1 1

1 12 4

,1 2
2

,

, ,1 2 1 2
   

, ,

   2

r r z zr z z

r r z z r r z zr r

z z





   

 

 

         
                

          
                     

    
     

 
 

 

 

 

3 Conclusion 

We have considered two cases for the available linear operators and obtained the approximation for our 

problem. Of course, the selection of the linear operators mainly depends upon the given initial or boundary 

conditions. We can see that for the first case, the available linear operator was split in two parts and for the 

second case, we considered the full linear form of the operator without splitting it into parts. Thus, on the basis 

on methodology of the Adomian decomposition and the homotopy perturbation method (Haldar, 1995), the 

present analysis can be applied to a wide range of the physical and engineering problems (Shakil et al., 2013; 

Wahab et al., 2013; Wahab et al., 2014; Siddiqui et al., 2014).  

As compared to the Adomian decomposition method for the analysis of the problem (Haldar, 1995), we 

have the great advantage of the selection of the initial guess which can be chosen on the basis of the previous 

knowledge, and most importantly, the initial approximation should satisfy the given initial or boundary 

conditions, which leads us to the uniformly valid approximately series solution. While, the Adomian 

decomposition method does not have such advantage, because we have to select the initial guess based on the 

recursive relation produced by the method. But this initial approximations sometimes, may lead to non-

uniformly valid series solution which also may contain the secular terms in the series. In homotopy 

perturbation method, the initial guess satisfying the given conditions may give a uniformly valid series 

solution.  

On the other hand, the calculation of the Adomian polynomials is not an easy task for the nonlinear terms 
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appearing in the problems. However, there are some computer programs which can calculate the Adomian 

polynomials, but they are for some specific cases. In our analysis, we avoid such handy calculation because 

homotopy perturbation method transforms a non-linear problem into a small number or sub-linear problems 

with prescribed conditions. No matter of concern with the existence of the parameter small or large. This is 

again a dominating advantage of the method over Adomian decomposition method (Shakil et al., 2013; Wahab 

et al., 2013; Wahab et al., 2014; Siddiqui et al., 2014). 
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