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Abstract 

In this paper, a nonlinear dynamical model is proposed and analyzed to study the survival of biological species 

in a polluted environment considering the effect of environmental tax which can be used further to improve 

environmental quality. The environmental tax is imposed to control the emission of pollutants/toxicants only 

when the equilibrium concentration of pollutants go beyond its threshold level causing harm to the biological 

species and its ecosystem under consideration. Local and nonlinear stability conditions are obtained by 

considering suitable Liapunov function. Numerical simulation of the dynamical system is performed in order 

to illustrate the analytical findings. It is shown that the density of biological species decreases as the 

concentration of pollutants increases and may even become extinct if the concentration is very high. It has also 

been shown that the environmental tax plays an important role to control the concentration of pollutants in the 

atmosphere and maintaining the density of biological species at a desired level. 

 

Keywords modeling; biological species; polluted environment; environmental tax; stability. 

 

1 Introduction 

It has been observed during last several years that various kinds of toxicants (pollutants) such as toxic gases, 

smoke, particulate matters, cement dust, chemicals, etc. discharged from various industries and other sources 

have made considerable change in the both terrestrial and aquatic environment in the form of deforestation, air 

pollution, water pollution, etc. The survival of biological species is threatened instantly due to polluted air, 

water, soil, land and vegetation, etc. caused by toxicants. Therefore, it is crucial to investigate the effect of 

toxicants on biological species and the reduction in concentration in the atmosphere by imposing 

environmental tax on emitters which may in turn reduce environmental damage and minimizing harm to 

economic growth.  

Some investigations have been made to study the effect of toxicants released to the water bodies, gaseous 

pollutants and particulate matters on the environment and ecology as well as on biological species (Lovett and 

Kinsman, 1990; Hopke, 2009; Woo, 2009; Cambra-Lopez, 2010; Pertsev and Tsaregorodtseva, 2011). For 

example, Cambra-Lopez  (2010) have reviewed the effect of airborne particulate matters from the livestock 

production systems and have shown that high concentration of particulate matters can deteriorate the 

environment as well as the health of human and animals.  
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In recent years, several studies have been conducted to comprehend the effect of toxicants on biological 

species living in a polluted environment (Hallam and Clark, 1981; Freedman and Shukla, 1991; Liu and Ma, 

1991; Chattopadhyaya, 1996; Shukla and Dubey, 1996, 1997; Shukla et al., 2001, 2009, 2013; Mukherjee, 

2002; Liu et al., 2003; Samanta and Matti, 2004; Dubey and Hussain, 2006; Naresh et al., 2006; Dubey, 2010; 

Samanta, 2010; Misra and Kalra, 2012; Naresh et al., 2014). In this regard, Samanta and Matti (2004) have 

proposed and analyzed a nonlinear mathematical model to study the effect of toxicant on a single species 

living in a polluted environment by considering three cases; instantaneous input of toxicant, constant input of 

toxicant and fluctuating emission rate of toxicant into the environment. In the analysis, it has been shown that 

instantaneous emission of toxicants has no significant effect on population but the population settles down to a 

steady state if the toxicants are emitted incessantly. Dubey and Hussain (2006) proposed a mathematical model 

for the survival of species dependent on a resource in polluted environment considering the effect of diffusion 

on the system.  They have shown that the equilibrium level of the density of population decreases as the 

environmental concentration of the pollutant increases. Naresh et al. (2006) have studied the dynamics of the 

plant biomass in a polluted environment by considering the effect of intermediate toxic product formed by 

uptake of a toxicant on plant biomass. It has been shown that intermediate toxic product is mainly responsible 

for the decrease in the intrinsic growth of plant biomass and the equilibrium label of the density of plant 

biomass depends upon the rate of emission of toxicant into the atmosphere. Shukla et al. (2009) have studied 

the effect of toxicants on population emitted from extraneous sources as well as formed by its precursors by 

developing a nonlinear mathematical model and have shown that the densities of population and its resource 

decrease due to increase in the concentration of toxicants in the environment.  

At present, deterioration in environmental quality due to discharge of toxicants in the atmosphere is a 

burning issue in India and elsewhere. Rapid growth of industries, fast population growth, increasing demand of 

resources and deforestation are all exacerbating problems that need to be comprehended. In this regard, some 

mitigation options are to be required to improve environmental quality. Environmental tax policy may be one 

of the most potent mitigation strategies that must be imposed to the emitters keeping in mind that it is imposed 

neither to enhance net additional tax revenue nor to reduce the overall energy consumptions but is 

implemented to get clean environment. During previous years, effect of implementation of environmental tax 

has been discussed by policy makers to reduce environmental damages and to get a clean environment 

(Symons et al., 1994; Bovenberg et al., 1996; Stern, 2006; Sterner, 2007; Braathen and Greene, 2011; Liu, 

2012). Environmental tax, to be imposed to the emitters, is generally based on the following factors, 

1. The quantity of the pollutants/toxicants discharged into the environment 

2. The use of resources 

3. The products responsible for environmental degradation 

4. The vehicle excise duty 

In India, about 64% policy makers have considered environmental tax as a most important significant 

factor making a clean environment (Kanabar, 2011). It is mentioned here that the tax is levied to the emitters 

only when the concentration of pollutants in the atmosphere crosses a threshold limit. Threshold means the 

concentration of pollutants below which there is no harm to the population and its environment. The tax is 

imposed on the basis of per unit emission of pollutants (beyond its threshold limit) in the environment. The 

study of implementation of environmental tax to reduce the concentration of pollutants in the atmosphere has 

less understood and received little attention using nonlinear mathematical models. In this regard, Agarwal and 

Devi (2010) have studied the effect of environmental tax on the survival of biological species in a polluted 

environment using a mathematical model but they have not considered the formation of intermediate toxic 

product inside the biomass. 
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In view of the above, in this paper, we have proposed and analyzed a nonlinear mathematical model to 

study the effect of environmental tax to reduce the concentration of toxicants in the atmosphere forming 

intermediate toxic product inside the biomass due to interaction of toxicants with sap (biomass fluid). 

 

2 Mathematical Model 

Consider a biological species living in a polluted environment affected by toxicants emitted into the 

atmosphere from different sources. To model the phenomenon, we have made the following assumptions, 

1. The cumulative rate of emission of toxicants is constant (say Q ) though it may be a function of time. 

2. The growth rate of biological species is affected by an intermediate toxic product (formed inside the 

biomass due to the interaction of uptaken toxicants and the liquid present in the biomass). 

3. The carrying capacity of biological species is affected by the concentration of toxicants emitted into the 

environment and it decreases with increase in the concentration of toxicants emitted into the environment. 

4. Environmental tax is assumed to be imposed only when the toxicant concentration crosses a threshold and as 

such, it is taken to be directly proportional to the difference of toxicants concentration and its threshold level. 

Threshold concentration implies the level up to which there is no harmful effect on biological species. 

Let )(tN  be the density of biological species, )(),( tUtT  and )(1 tU be the concentrations of 

toxicants emitted into the environment, the toxicants uptaken by biological species and the intermediate toxic 

product formed, respectively. Let )(tI be the environmental tax imposed on the emitters. It is assumed that the 

depletion of toxicants is directly proportional to the concentration of toxicants as well as the density of 

biological species i.e. )()( tTtN ,   being the interaction rate coefficient of toxicants with biological 

species,   is the uptake rate coefficient of toxicants due to biological species and  )1(   is the rate by 

which biological species are directly affected by toxicants. The uptake concentration of toxicants is assumed to 

be depleted naturally by a rate 0  and 1 is the interaction rate coefficient of toxicants uptaken by the 

biological species. When toxicants uptaken interact with the fluid (sap) inside biological species, intermediate 

toxic product is formed which is mainly responsible for deterioration of biological species. Let   be the rate 

of formation of intermediate toxic product and the constants 0  and 1  are the depletion rate coefficients of 

intermediate toxic product due to excretion and depuration of toxicants. To control the emission of toxicants 

into the atmosphere, environmental tax is assumed to be imposed on the emitters when toxicant concentration 

crosses a threshold level and it is assumed to be proportional to the difference of toxicants concentration and 

its threshold value i.e. )( 0TT  , 0T  being the threshold concentration of toxicants and   is the tax rate 

coefficient. If 0TT  , no tax will be imposed on the emitters. Since it is difficult to implement and maintain a 

foolproof tax system due to some practical problems like pilferages, natural and administrative problems, it is, 
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therefore, obvious to consider a term E0  as a depletion of environmental tax due to these factors. The 

constant μ is the tax repulsion rate coefficient. 

 

)()()1()(
))((

)(
))((

)( 0
1 tTtNtN

tTK

tNr
tUr

dt

tdN 







                 (1) 

)()()()()(
)(

0 tEtTtNtTtQ
dt

tdT         (2) 

)()()()()(
)(

10 tNtUtUtTtN
dt

tdU        (3) 

)()()()(
)(

1110
1 tNtUtUtU

dt

tdU
        (4) 

)())((
)(

00 tETtT
dt

tdE          (5) 

0)0(,0)0(,0)0(,0)0(,0)0( 10  EUUTTN  

 

In the model, the function )( 1Ur denotes the intrinsic growth rate of biological species in the presence of 

intermediate toxic product formed inside it, as discussed above, and 0r  is the maximum intrinsic growth rate 

of biological species in the absence of intrinsic toxic product. The intrinsic growth rate )( 1Ur  decreases as the 

concentration of intermediate toxic product 1U  increases and hence, we assume that, 

0)0( 0  rr , 0)( 1  Ur  for 01 U        

The function )(TK denotes the carrying capacity of species in presence of toxicants in the environment 

and 0K  is the maximum carrying capacity in the absence of toxicants. The carrying capacity )(TK decreases 

as the concentration of toxicants T  increases and hence, 

                       0)0( 0  KK , 0)(  TK  for 0T  

 

Remarks 

1. As discussed above, the rate of discharge of toxicants (Q ) into the atmosphere is assumed to be constant 

which is controlled by introducing a term E (environmental tax), given in equation (2). From (2), we note 

that as  (the tax repulsion coefficient) increases, the concentration of toxicant into the atmosphere decreases. 
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2. It is further remarked here that the cumulative concentration of toxicants/pollutants must be greater than its 

threshold concentration (i.e. 0TT  ) for the physical significance of the model system and in this situation the 

tax will be imposed on the industrialists and would continue till 0TT  . If 0TT  , then 
dt

dE
 will be negative 

and no tax will be imposed to the concerned industrialists. Further, if 0  i.e. no tax is imposed to the 

industrialists, the toxicants concentration would cross its harmful limit (threshold concentration) and the 

survival of biological species will be threatened and it might become extinct.   

It is, therefore, desirable that environmental tax must be levied to keep the toxicants emission under control.   
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Since 
0

Q
 is the maximum concentration of toxicants and therefore it is remarked here that the condition 

0
0 

Q
T   for the existence of region of attraction   implies that the environmental tax can be imposed to the 

industrialists only when the concentration of toxicants crosses its threshold value. 

 

3 Equilibrium Analysis 

The model under consideration has following two nonnegative equilibria, 
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The positive solution of *E is given by the following system of algebraic equations, 
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010  UNUTN          (8) 

01110  NUUU          (9) 
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From equations (7) and (10), we have  
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To show the existence of nontrivial equilibrium *E , we plot the isoclines given by equations (11) and (15) in 
TN   plane as follows, 

From equation (11) we note the following, 
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From equation (15), we also note the following, 

(i) 0T  0KN   
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In view of the above, it is shown in figure 1 that the isoclines given by (11) and (15) intersect at a unique point 

),( ** TN  in the interior of first quadrant in TN   plane showing that the steady-state values of *N and 

*T are within the invariant region. 

Knowing the values of *N and *T , we can find the values of 
*

1
* ,UU and *E from the equations (13), (14) 

and (10) respectively. 

It is noted that, 
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This shows that the steady-state value of *U is within the invariant region. 

We also note that,  
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which shows that the steady-state value of *E is within the invariant region. 

 

 

Fig. 1 Existence of 
*E in TN   plane. 

 

 

4 Stability Analysis 

4.1 Local stability of equilibria 

The local stability analysis of an equilibrium point determines the behaviour of the dynamical system. It 

characterizes whether or not the system settles down to the equilibrium point if it initiates very close to 

equilibrium point. The local stability of an equilibrium point can be determined by computing the eigenvalues 

of variational matrix corresponding to that equilibrium point.   

To establish the local stability behaviour of equilibria, we compute the following Jacobian matrix M  

for model system (1) – (5), 
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It can easily be checked that the equilibrium ),0,0,,0(0 ETE is stable or unstable according as 

 )1(
0




r
T  or 

 )1(
0




r
T (necessary condition for the existence of *E ) respectively. This implies that 
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To study the local stability behaviour of the model system about ),,,,( **
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This theorem implies that if the interaction rate coefficient of toxicants with biological species (i.e.  ) and 
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1Ur   are large then the conditions (17) and (18) may not be satisfied. This implies that these parameters 

destabilize the system.  
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positive definite function, 
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where )5...,2,1( imi  are positive constants to be chosen appropriately. 

Differentiating it, we get 
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 will be negative definite provided the following conditions are satisfied, 
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Let )( 1Ur  and )(TK  satisfying in   such that 0)( KTKK m  , pUr  )(0 1 , qTK  )(0 , 

where qpKm ,,  are some positive constants. 

Using mean value theorem, we get pU )( 1  and qT )( . 

Now maximizing LHS and choosing 121  mm ,  
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negative definite inside the region of attraction  , provided the conditions (19) and (20) are satisfied 

implying that ),,,,( **
1

**** EUUTNE  is nonlinearly asymptotically stable. 
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qTK  )(0 , where qpKm ,,  are some positive constants then  equilibrium 

),,,,( **
1

**** EUUTNE will be nonlinearly asymptotically stable provided the inequalities  are satisfied, 

)(9

4
)1(

*
00

2

*
200 TK

r
T

K

q
Kr

m


 


























      (19) 

)(3

2
)(

*
00

1
2*

114 TK

r
mpUm


         (20) 

where 











2
0

0
2*

1
**

0
03 )(

,
)(

1

)(
min

9

4

KUTTK

r
m





  and 32

00
4 3

2
mm




  

This theorem implies that if the interaction rate coefficient of toxicants with biological species (i.e.  ) 

and p are large then the conditions (19) and (20) may not be satisfied. This implies that these parameters have 

destabilizing effect on the model system.  

 

5 Permanence of Solution 

From a biological point of view, permanence (persistence) is defined as the long-term survival of all 

interacting populations in an ecosystem. It also deals with the growth of biological species as well as other 

components of the system. It is noted that the steady state level of all species settles asymptotically above a 

certain threshold. Mathematically, persistence is defined as, 

Let )(tN  be the population density at any time ‘ t ’ then it is said to be persistent (Freedman and Waltman, 

1984), if  

0)(inflim 


tN
t

 

provided 0)0( N . If there exists 0 such that 




)(inflim tN
t

 

then the population is said to be uniformly persistent in an ecological system. Thus, the population is said to be 

permanent, if it is uniformly persistent and if the bound of population size does not depend on initial 

conditions as t . 

Theorem 5 
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Similarly, we can find from equation (5), that 
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Hence the theorem. 

 

6 Numerical Simulations 

In this section, we have performed some numerical simulations using software Maple7 in the presence and 

absence of environmental tax considering the effect of intermediate toxic product on biological species. For 

this, we have assumed the following set of parameters, 

3.0,2.0,1.0,3.0,5.0,9,4,01.0,01.0,5 010  KrbaQ  

6.0,2.0,4.0,4.0,03.0,02.0,2.0 0010  T  

The equilibrium values corresponding to ),,,,( **
1

**** EUUTNE  are given by,  

695243.1,049509.1,781606.0,447621.1,285064.8 **
1

***  EUUTN  

Eigenvalues corresponding to ),,,,( **
1

**** EUUTNE  are given by, 

0.0073i0.2656 0.0073i,0.2656 1.0300, 2.3388,4.2706,  . Since all the eigenvalues are 

either negative or have negative real parts and therefore equilibrium ),,,,( **
1

**** EUUTNE  is locally 

asymptotically stable. 
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The existence of ),,,,( **
1

**** EUUTNE  in TN   plane is shown in figure 1. The nonlinear 

stability behavior of ),,,,( **
1

**** EUUTNE  is shown in figure 2 where the trajectories with different 

initial starts have been plotted. It is noted that all the trajectories with different initial starts approach to the 

equilibrium point *E . The variation of density of biological species, concentration of toxicants, uptaken 
concentration, concentration of intermediate toxic product and the amount of environmental tax with time ''t  

for different values of rate of emission of toxicants is shown in figures 3 – 7 respectively. From these figures, it 

can easily be observed that the density of biological species decreases while the concentrations of toxicants, 

uptaken toxicants and intermediate toxic product increase as the rate of emission of toxicants increases. Further, 

it has also been shown in figure 7 that the environmental tax increases as the rate of emission of toxicants in 

the environment increases beyond its threshold level.  

 

Fig. 2 Nonlinear stability in 1UU   plane. 

 

Fig. 3 Variation of N with time ''t  for different values of Q  
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Fig. 4 Variation of T with time ''t  for different values of Q  

 

Fig. 5 Variation of U with time ''t  for different values of Q  

 

The effect of intermediate toxic product on biological species with time ''t  has been shown in figure 8. It 

can be seen from figure 8 that as the rate of formation of intermediate toxic product inside the biological 

species increases the density of biomass decreases. The variation of density of biological species )(N and the 

concentration of toxicants )(T with time ''t  in the presence and absence of environmental tax has been shown 

in figures 9 and 10 respectively. From these figures, it is noted that in the absence of environmental tax, 

density of biological species decreases as a result of increase in the concentration of toxicants while in the 

presence of environmental tax, density of biological species increases due to decrease in the concentration of 

toxicants. The variation of density of biological species )(N and the concentration of toxicants )(T with time 

''t for different values of tax rate coefficient is shown in figures 11 and 12 respectively. It is shown that as the 

tax rate coefficient increases, the equilibrium level of density of biological species increases and the 

concentration of toxicants decreases. 
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Fig. 6 Variation of 1U with time ''t  for different values of Q  

 

Fig. 7 Variation of E with time ''t  for different values of Q  

 

 

Fig. 8 Variation of N with time ''t  for different values of   
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Fig. 9 Variation of N with time ''t   in the presence )4.0(   and absence )0(  of environmental tax. 

 

 

Fig. 10 Variation of T with time ''t  in the presence )4.0(   and absence )0(  of environmental tax 

 

 

 

Fig. 11 Variation of N with time ''t  for the different values of tax rate coefficient   
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Fig. 12 Variation of T with time ''t  for the different values of tax rate coefficient   

 

 

7 Conclusions 

In this paper, our main aim is to study the survival of biological species living in a polluted environment and to 

reduce the concentration of toxicants into the atmosphere by imposing environmental tax on emitters. The 

concentration of toxicants into the atmosphere can only be reduced by reducing the cumulative emission rate 

of toxicants. It is assumed that the environmental tax is levied on emitters only when the concentration of 

pollutants goes beyond a threshold level, as discussed earlier. Existence of equilibria and their stability 

behavior has been obtained.  It is shown that the first equilibrium (i.e. E ) corresponding to the extinction of 

biological species is unstable. The nontrivial equilibrium (i.e. *E ) is locally and globally stable under certain 
conditions within the region of attraction. It is shown that the equilibrium density of biological population 

decreases while the concentration of toxicants, uptaken concentration and the concentration of intermediate 

toxic product increase as the emission rate of toxicants increases. It is further shown that as the rate of 

emission of toxicants increases, the environmental tax to be imposed on emitters, also increases. This implies 

that it is advantageous to levy tax to reduce the discharge of toxicants and to improve the environmental 

quality. It is also noted here that the tax revenue, thus generated, can be used for environmental protection so 

that we have a clean environment and the biological species may survive potentially. 
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