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Abstract 

In this paper, a nonlinear spatial model is proposed and analyzed to study the effect of pollution on biological 

population. It is assumed that the pollutants enter into the environment not directly by the population but by a 

precursor produced by the population itself. It is further assumed that larger the population, faster the precursor 

is produced, and larger the precursor, faster the pollutant is produced. Criteria for nonlinear stability and 

instability for both spatial and non-spatial models are obtained. The various parameter ranges for stable 

homogeneous solutions are identified. By the simulation experiments, it is observed that by applying an 

appropriate effort F , the population density P  can be maintained at a higher equilibrium level. It is also 

shown that the equilibrium level of the concentration of precursor pollutant, concentration of pollutant in the 

environment and in the population decrease due to the effort F.  
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1 Introduction 

Our environment is getting polluted day by day due to rapid pace of urbanization, industrialization and 

deforestation, and we face one of the most important present day socio-ecological problems closely related to 

physiological and bio-spherical changes in the population.  We do have several examples where the pollution 

is responsible for increase in death rate, decrease in birth rate and migration of population (Shukla and Dubey, 

1996). The effects of pollution caused by various human factors on structure and functions of ecosystems have 

been studied by several researchers (Woodwell, 1970; Smith, 1981; McLaughli, 1985; Hari et al., 1986; 
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Woodman and Cowling, 1987; Schulze, 1989; Ghosh, 2000; Srinivasu, 2002; Ghosh et al., 2002, 2006; Naresh 

et al. 2006a, 2006b; Sundar, 2013; Sundar et al., 2014).  In recent decades, some investigations have been 

made to study the effect of pollution on a single or two biological species (Hallam et al., 1983a, 1983b, Hallam 

and Luna, 1984; Hallam and Ma, 1986; Luna and Hallam, 1987; Freedman and Shukla, 1991; Huaping and Ma, 

1991; Shukla and Dubey, 1996, 1997; Dubey, 1997; Dubey and Das, 1999; Dubey and Hussain, 2000a, 2000b, 

2006; Shukla et al., 2001, 2003, 2009; Dubey et al., 2003, 2009; Naresh et al, 2006a, 2006b; Dubey and 

Naranayan, 2010; Sundar et al., 2014). In particular, Hallam et al. (1983b) studied the effect of a toxicant in 

the environment on a single-species population by assuming that its growth rate density decreases linearly with 

the uptake concentration of toxicant. Huaping and Ma (1991) proposed and analysed a mathematical model to 

study the effect of toxicant on naturally stable two-species communities. In these investigations, it has been 

assumed that carrying capacity does not depend on the concentration of toxicant present in the environment. 

However, in real situations the effect of toxicant is to decrease both the growth rate of species and the carrying 

capacity of the environment. Taking this aspect into account, Freedman and Shukla (1991) investigated the 

effect of a toxicant on a single-species and predator-prey system by considering the exogeneous introduction 

of toxicant into the environment. 

      Shukla and Dubey (1996) studied the simultaneous effects of two toxicants on a biological species, one 

being more toxic than the other. Dubey (1997) propose a mathematical model to study the depletion and 

conservation of forestry resources in a polluted environment. Shukla et al. (2001) studied the effect of a 

toxicant emitted into the environment from external sources on two competing biological species. They found 

that the four usual outcomes of competition between two species may be altered under certain conditions 

which are mainly dependent on emission rate of toxicant into the environment, uptake concentration of 

toxicant by the two species and their growth rates and carrying capacities. Dubey et al. (2003) studied the 

behaviour of a resource biomass in the presence of industrialization and pollution. They showed that in the 

case of small periodic influx of toxicant into the environment, the resource biomass has a periodic behaviour if 

the depletion rate coefficient of environmental pollution is small. However, if this coefficient increases beyond 

a threshold value, then the resource biomass converges towards its equilibrium. Naresh et al. (2006a) 

investigated the effect of an intermediate toxic product formed by uptake of a toxicant on a plant biomass. 

Shukla et al. (2003) proposed and analysed a mathematical model and studied effects of primary and 

secondary toxicants on the biomass of resources such as forestry, agricultural crops. Dubey and Hussain (2006) 

investigated the survival of a biological species which is dependent on a resource in a polluted environment 

and they showed that the diffusion plays a general role in stabilising the system.  

      In the above investigations, it is assumed that the pollutant enters into the environment by some manmade 

projects which may be population (industrialization) dependent, constant, zero or periodic. In this regard, 

Rescigno (1977) studied the effect of a precursor pollutant on a single species, but he did not consider the rate 

of uptake concentration of the pollutant on the growth of the species. Further, in the above works the effects of 

diffusion has not been considered. Keeping the above in view, in this paper we propose and analyse a 

nonlinear model to study the effect of a precursor pollutant, which is formed by various human activities in the 

atmosphere, on population where the effect of uptake concentration, diffusion and conservation are considered. 

      The paper is organized as follows. In Section 2, we discuss the model system. Under Section 3, we analyse 

the model system without diffusion. In Section 4, we analyze the model system with diffusion. Section 5 

describes the conservation model system. In Section 6 and 7, we analyse the conversion model system without 
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and with diffusion, respectively. Section 8 depicts the numerical results. Finally, we summarize the results in 

the last Section.  

 

2 The Proposed Mathematical Model 

Let us consider a polluted environment where a biological population is growing logistically in a closed region  

D  with smooth boundary D . We assume that the environment is polluted by various population activities. It 

is further assumed that the population is affected by the pollutant formed in the atmosphere by its precursor. 

Let ),,( tyxP be the population density, ),,( tyxQ the concentration of the precursor pollutant emitted by 

various activities of the population, ( , , )T x y t  the concentration of pollutant formed by Q in the atmosphere 

and ),,( tyxU  uptake concentration of pollutant by the population at coordinates Dyx ),( and time .0t  

It is also assumed that the larger the population, the faster the precursor is produced. It is further assumed that 

the larger the precursor, the faster the pollutant is produced. Then, system may be governed by the following 

set of differential equations: 
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 We analyse the system (1) with the following initial and boundary conditions: 
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where n  is the unit outward normal to .D  We assume that the functions P, Q, T, U belong to the class 

)(2 DC . 

  In model (1), 
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is the Laplacian diffusion operator. 1D  and 2D  are the diffusion rate coefficients of ),,( tyxP  and 

),,( tyxT  respectively in D .   is the growth rate of Q  due to population P , 0 the natural depletion rate 

coefficient of .Q  h can be interpreted as the growth rate coefficient of T due to .Q  0h  can be interpreted as 

the natural depletion rate coefficient of T , a fraction 0 of which goes inside the body of the population.   is 

the depletion rate coefficient of T due to .P  1 is the natural depletion rate coefficient of U , a fraction 1  of 

which re-enters into the environment.  

  In model (1), the function )(Ur  is the specific growth rate of the population which decreases as 

U increases, i.e. 
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0)0( rr   and 0)(  Ur  for .0U  (3) 

 The function )(TK  is the carrying capacity of the population in the presence of pollutant and it decreases 

as T increases. Hence we assume that 

0)0( KK   and 0)(  TK  for ,0T  and   a aTT   such that .0)( aTK  (4) 

The model is analysed with and without diffusion.  

 

3 Model Without Diffusion 

In this section we take 021  DD  in model (1). Then model (1) reduces to  
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 It can be checked that there exists two non-negative equilibria (which belong to the first orthant), namely, 

)0,0,0,0(0E  and ),,,( UTQPE , where TQP  , ,  and U  are the positive solutions of the following 

algebraic equations: 
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 It can be verified that the equilibrium E  exists if the following inequality holds at :E  

.0)()())(())(()()(0  PfTKPgrPfKPgUrr  (6) 

 By computing the variational matrix corresponding to the equilibrium 0E , it can be checked that 0E  is a 

saddle point with unstable manifold locally in the P  direction and with stable manifold locally in the 

UTQ   space. 
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 In the following theorem, it is shown that E  is locally asymptotically stable. 
 

Theorem 3.1 Let the following inequalities hold: 
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Then the equilibrium E  is locally asymptotically stable. 
 

Proof By taking the transformations 

 , , , , uUUTTqQQpPP    

we first linearize model (5). Then we consider the following positive definite function in the linearized form of 

model (5): 
2
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where 1c  and 2c  are positive constants given by (10). It can be checked that the derivative of V with respect 

to t  is negative definite under conditions (7)-(9), proving the theorem. 

 In the following theorem it is shown that the equilibrium E  is globally asymptotically stable. To prove 
this theorem, we need the following lemma which establishes a region of attraction for system (5). The proof 

of this lemma is easy and hence is omitted. 

 

Lemma 3.1 The set }0 ,0:),,,{( 0
01 

K
UTQKPUTQP   is a region of attraction for 

all solutions initiating in the interior of the positive orthant, where 
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Theorem 3.2 In addition to the assumptions (3) and (4), let )(Ur and )(TK satisfy in 1 , 
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for some positive constants mK, and .k  Let the following inequalities hold: 
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where 1c  is same as defined in Eq. (10). 

Then, E   is globally asymptotically stable with respect to all solutions initiating in the interior of the positive 

orthant 1 . 
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Now Eq. (18) can be rewritten as the sum of the quadratics: 
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 We note that inequality (19) is satisfied automatically for the chosen value of 1c  in the theorem. We also 

note that that ),20()13(  ),21()14(  )22()15(  and ).23()16(   Hence 1V is a Liapunov 

function with respect to E whose domain contains the region of attraction 1 ,   proving the theorem.    

  

 The above theorem implies that the population living in a polluted environment attains an equilibrium 

level under certain conditions. The equilibrium level of the precursor pollutant is crucial in affecting the 

equilibrium level of population which decreases as the equilibrium level of precursor pollutant increases. We 

also note that if   and h are kept at small level, then possibility of satisfying conditions (13)-(15) increases. 

This implies that the stability of the system can be maintained by lowering the rate of formations of precursor 

and environmental pollutants.  
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4 Model With Diffusion 

In this section, we consider the complete model (1)-(2) and state the main results in the form of the following 

theorem. 

 

Theorem 4.1 (i) If the equilibrium E  of model (5) is globally asymptotically stable, then the corresponding 
uniform steady state of the initial-boundary value problems (1)-(2) is also globally asymptotically stable. 

(ii) If the equilibrium E  of model (5) is unstable even then the uniform steady state of the initial-boundary 
value problems (1)-(2) can be made stable by increasing diffusion coefficients to sufficiently large values. 

 

Proof Let us consider the following positive definite function 
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 Now we consider 2I  and determine the sign of each term. We utilize the following formula known as 

Green’s first identity in the plane: 
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Similarly  .0 21 



D dAT
T

V
 

i.e.,   .02 I   (26) 

 Thus we note that if ,01 I  then .021
1  II

dt

dV
 This shows that if E  is globally asymptotically 

stable in the absence of diffusion, then the uniform steady state of the initial-boundary value problems (1)-(2) 

also must be globally asymptotically stable. This proves the first part of Theorem 4.1. 

 We further note that if ,01 
dt

dV
i.e., if ,01 I  then E  may become unstable in the absence of diffusion. 

But, Eqs. (24) and (26) show that by increasing diffusion coefficients 1D  and 2D  to sufficiently large values, 

dt

dV2  can be made negative even if .01 I  This proves the second part of Theorem 4.1.    

 The above theorem implies that diffusion with reservoir boundary conditions may stabilize a system which 

is otherwise unstable. 

       We shall explain the above theorem for a rectangular habitat D  defined by 

 }0 ,0:),{( byaxyxD   (27) 

in the form of the following theorem. 
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Theorem 4.2 In addition to assumptions (3) and (4), let )(),( TKUr satisfy the inequalities in (12). Let the 

following inequalities hold: 
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Then the uniform steady state of the initial-boundary value problems (1)-(2) is globally asymptotically stable 

with respect to all solutions initiating in the interior of the positive orthant. 

 

Proof Let us consider the rectangular region D given by equation (27). In this case 2I , which is defined in 

Theorem (4.1), can be written as 
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From Eq. (17),  we obtain 
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Now using the inequality (Denn, 1972), 
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 Now from (18) and (24), we obtain  

 



D

QQcPP
baK

baPD

TK

r

dt

dV 2
01

2

222
0

222
102 )()}(

)(

)(
{[ 


 

  2
1

2
22

222
2

0 )()}(
)(

{ UUTT
ba

baD
Ph 


 


  

  ))(}()({))(( 03 TTPPTTPrQQPPc    

  ))(}()({ UUPPTU    
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where )(T  and )(U  are defined in Eq. (18). 

     Now Eq. (34) can be written as the sum of the quadratics 
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Sufficient conditions for 
dt

dV2  to be negative definite are that the following conditions hold: 

,2211
2

12 bbb   (35) 

,3311
2

13 bbb   (36) 

,4411
2

14 bbb   (37) 

,3322
2
23 bbb   (38) 

.4433
2
34 bbb   (39) 

 We note that inequality (35) is automatically satisfied for the value of 3c  given in (32). We further note 

(28) (36), (29) (37), (30) (38) and (31) (39). Hence 2V  is a Liapunov function with respect to E  

whose domain contains the region of attraction ,1  proving the theorem.    

 

 From the above theorem we note that inequalities (28)-(31) may be satisfied by increasing 1D  and 2D  to 

sufficiently large values. This implies that in the case of diffusion stability is more plausible than the case of 

no diffusion. Thus, in the case of diffusion the population converges towards its carrying capacity faster than 

the case of no diffusion, and hence the survival of the population may be ensured. 

 

5 Conservation Model 

In the previous section, it has been noted that uncontrolled human activities that are polluting the environment 

may harm itself considerably. Therefore, some kind of efforts must be adopted to stop further deterioration of 

the environment. In this section a mathematical model is proposed and analysed to control the undesired level 

of precursor pollutant by some mechanisms. It is assumed that the effort applied to control the precursor 

pollutant is proportional to the undesired level of the precursor pollutant. Then the dynamics of the system is 

assumed to be governed by the system of differential equations given below: 
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 The above model (40) is to be analysed with following initial and boundary conditions: 

                 ,0),()0,,( ,0),()0,,( ,0),()0,,(  yxyxTyxyxQyxyxP     
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 (41) 

where n  is the unit outward normal to .D  Again we assume that the functions P, Q, T, U, F belong to the 

class )(2 DC . 

 In model (40), ),,( tyxF  is the density of effort applied to control the undesired level of precursor 

pollutant formed by the population. 01 r  is depletion rate coefficient of ),,( tyxQ  due to the effort .F  1  

is the growth rate coefficient of F and 1  its natural depreciation rate coefficient. cQ is the critical level of 

precursor pollutant which is assumed to be harmless to the population. In the last equation of system (40), 

)(tH denotes the unit step function which takes into account the case for which .cQQ   

 

6 Conservation Model Without Diffusion 

In this section we take 021  DD  in model (40). Then model (40) has only one interior equilibrium, 

namely, ),,,,,(  FUTQPE  where  UTQP ,,,  and F  are the positive solutions of the system 

of algebraic equations given below: 
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As earlier, it is easy to check that E  exists if the following inequality holds at E : 

.0))(()()())(()()( 32230  PfrPfTKPfKPfUrr  (42) 

 In the following theorem, it is shown that E  is locally asymptotically stable. The proof is similar to 

Theorem 3.1 and hence is omitted. 

 

Theorem 6.1 Let the following inequalities hold: 
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Then E  is locally asymptotically stable. 

 

 In the following lemma a region of attraction for system (40) without diffusion is established. The proof of 

this lemma is easy and hence is omitted. 

Lemma 6.1 The set }0,0 ,0:),,,,{(
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 K
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K

UTQKPFUTQP   is a 

region of attraction for all solutions initiating in the interior of the positive orthant, where 

 h0  and )}.1(),1(),min{( 11000   hh   

 The following theorem gives criteria for global stability of E , whose proof is similar to Theorem 3.2 and 

hence is omitted. 

 

Theorem 6.2 In addition to the assumptions (3) and (4), let )(Ur and )(TK satisfy in 2 , 

0)(  ,)(0 KTKKUr m    and 0 ( )K T k   , 
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for some positive constants 
mK,  and .k  Let the following inequalities hold: 
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Then E  is globally asymptotically stable with respect to all solutions initiating in the positive orthant. 

 

 Theorems (6.1) and (6.2) show that if suitable efforts are made to control the undesired level of precursor 

pollutant formed by the activities of populations in the environment, the population density may be maintained 

at a desired level under certain conditions. 

 

7 Conservation Model With Diffusion 

We now consider the case when )2,1(  0  iDi in model (40). Under an analysis similar to Section 4, it can 

be established that if the interior equilibrium E  of model (40) with no diffusion is globally asymptotically 

stable, then the corresponding uniform steady state of system (40)-(41) is also globally asymptotically stable 

with respect to solutions such that 

 ,0),( ,0),( ,0),( ,0),( ,0),( 1  yxyxyxyxyx   .),( Dyx   

  Further, it should be noted that if system (40) with no diffusion is unstable even then the corresponding 

uniform steady state of system (40)-(41) can be made stable by increasing diffusion coefficients to sufficiently 

large values. 

 Thus, we conclude that diffusion in our model plays the general role of stabilizing the system. 

 

8 Numerical Simulations 

In this section, numerical simulation results are presented to illustrate the results of previous sections. Matlab 

7.5 is used for numerical simulation to study the dynamical behaviour of the model system (5). Model (5) is 

integrated numerically using the fourth order Runge-Kutta method.  We consider the following particular form 

of the function in model (5): 
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0 1
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r U r r U
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 The model system (5) displays stable focus for the following set of parameter values given in Eq. (51): 

).5,5,5,5(),,,(  conditions initialwith 

,06.0,02.0,01.0,0.7,20.0,30.0

,04.0,05.0,0.50,08.0,0.60,07.0,0.20

0000

1010

010100






UTQP

hh

KKKrr m




   (51) 

  With above values of parameters, it is found that condition (6) for the existence of interior equilibrium E  

is satisfied and it is given by 

                            ( , , , ) (58.8821,73.5844, 6.0276, 3.0440).P Q T U   (52) 

       We also note that for the values of parameters given above, all conditions of Theorem (3.1) and (3.2) are 

satisfied. This shows that E  is locally as well as globally asymptotically stable. The time series analysis of 

model system (5) is presented in Fig.1 which shows that the positive equilibrium  E  is a stable focus.  

 

 

Fig. 1 Time-series corresponding to the individuals of the model system (5) with   parameter values given in Eq. (51). 

 

 To study the dynamical behaviour of the model system (5), the temporal evolution of T and U are 

observed for different values of control parameters. We observe the temporal dynamics of the concentration of 

pollutant T in the atmosphere formed by Q for different control parameters and found that it increases for the 

increasing value of the growth rate parameter of Q due to P (i.e., ) but it is of decline nature as we increase 

the value of the parameter 0 , the natural depletion rate coefficient of Q. We have presented the increasing and 

decreasing nature of T in Fig. 2.  
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                                    (a)                                                                        (b) 
Fig. 2 Temporal evolution (t vs. T) for the model system (5) with variation of parameters (a)  ,  (b) 0 , and other parameters 
are given in Eq. (51). 

 

 We have also studied the temporal dynamics of uptake concentration of pollutant by the population due to 

the variation of parameters , 0  and 1 . It is found that the uptake concentration of pollutant by population 

increases if we increase the growth rate coefficient of Q due to P (i.e. ), and it decreases if we increase the 

values of natural depletion rate coefficient of Q and U respectively (see Fig. 3).  

 

 

 

                        (a)                                                                                 (b) 
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                                                           (c) 
 Fig. 3 Temporal evolution (t vs. U) for the model system (5) with variation of parameters (a)  , (b) 0 , (c) 1 , and other 
parameters are given in Eq. (51). 

 

 Now if we compare the nature of Fig. 2 with Figs.3(a)-(b), it is found that the growth rate and the natural 

depletion rate of Q have almost same impact on the dynamics of the pollutant formed by Q in the atmosphere 

and on the uptake concentration of pollutant by the population.  

 To study the dynamical behaviour of model system  (40) without diffusion, we select the same particular 

form of the function as given in Eq. (50) and values of parameters are given below in Eq. (53): 
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0 0 0 0 0with initial conditions  ( , , , , ) (5.0, 5.0, 5.0, 5.0, 5.0).P Q T U F   

 With above values of parameters, it is found that condition (42) for the existence of interior equilibrium 
*E  is satisfied and is given by 

)9893.31,1229.0,2390.0,9680.2,9511.59(),,,,(  FUTQP . (54) 

 By choosing 50.0mK   , we note that all conditions of Theorem (6.1) and (6.2) are satisfied.  This shows 

that equilibrium *E  is locally as well as globally asymptotically stable. The time series of model (40) without 

diffusion is presented in Fig.4 which shows that the positive equilibrium *E  is a stable focus.   
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Fig. 4 Time-series corresponding to the individuals of the model system (40) without diffusion with parameter values given in eq. 
(53). 

 

 By comparing Figs.1 and 4, we note that due to effort F, the equilibrium level of the population has 

increased whereas equilibrium level of the concentration of precursor pollutant, concentration of pollutant in 

the environment and population have decreased. 

  

 
Fig. 5 Graph of F  versus Q  for the different initial starts for the set of parameter value given in Eq. (53). 

 

The phase plane analysis of the model system (40) without diffusion in the (Q, F) plane is shown in Fig. 5 

which also shows that the positive equilibrium is a stable focus.  

 The time series analysis of F, the effort applied to control the undesired level of precursor pollutant 

formed by the population is shown in Fig.6. It shows the positive and negative impact as we increase the value 

of growth rate of Q due to P (i.e.,  ) and the depletion rate of Q due to F (i.e., 1r ) respectively. 
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                                     (a)                                                                       (b) 
Fig. 6 Temporal evolution (t vs. F) for the model system (40) without diffusion with variation of parameters (a)  , (b) 1r , and 
other parameters are given in Eq. (53).      

  

 The effect of different control parameters on the dynamical behaviour of the conservation model is 

presented in Table 1. After varying one of the control parameter in its range, while keeping all others constant, 

we monitor the changes in the dynamical behaviour of the model system, thereby fixing the regimes in which 

the system exhibit either stable focus or stable limit cycle solution. We have varied the control parameters in 

the following ranges: 

                     0 10 0 115 53 26 49 57 149 0 01 0 34 3 6 12 5r , r , K , . h . , . μ .          . 

 From Table 1, it is found that for the parameters 0r  in the ranges [22.0, 53.0], 10r  in the range [26.0, 27.0], 

0K  in the range [57.0, 92.0], h in the range [0.01, 0.28] and 1  in the range [3.6, 8.5], the system dynamics 

converging to the stable equilibrium and for other ranges it exhibits limit cycle solution. For the lower values 

of all the control parameters except for 0r , the intrinsic growth rate of population, the dynamics settled on 

equilibrium position and for higher values it shows the periodic nature. 

 

 

9 Discussions and Conclusions 

The proposed nonlinear model is analysed to study the effect of pollution on a population, which is living in an 

environment polluted by its own activities. The model has been studied with and without diffusion. In the case 

of no diffusion, it has been shown that population density settles down to its equilibrium level, the magnitude 

of which depends upon the equilibrium levels of emission and washout rates of pollutant as well as on the rate 

of precursor formation and its depletion. It has been noted that the rate of precursor formation is critical in 

effecting the population. It has further been noted that if the concentration of pollutant increases unabatedly, 

the survival of the population would be threatened. 

In case of a model with diffusion, it has been shown that the uniform steady state of the system is 

globally asymptotically stable if the corresponding steady state is globally asymptotically stable in case of 

without diffusion.  It has further been noted that if the positive equilibrium of the system with no diffusion is  
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unstable, then the corresponding uniform steady state of the system with diffusion can be made stable by 

increasing diffusion coefficients appropriately. Thus, it has been concluded that the global stability is more 

plausible in the case of diffusion than the case of no diffusion. It is found that the uptake concentration of 

pollutant by population increases if we increase the growth rate coefficient of Q due to P, and it decreases, if 

we increase the values of natural depletion rate coefficient of Q, T and U respectively. 

 

Table 1 Simulation experiment of model (40) without diffusion with parameter values 1 40,K   1,   

0 0.01,  1 0.3,r   0 0.2,h   1 0.02,   0 0.01,   1 7.0,   0.06,   1 0.4,   and 0.14cQ   with 

initial condition 0 0 0 0 0( , , , , ) (5.0,5.0,5.0,5.0,5.0)P Q T U F  and SF: Stable Focus; SLC: Stable Limit Cycle. 

 

 
Parameter varied 

Range in 
which 
parameter 
varied 

                                       Dynamical outcome 

 
(P,Q) 

 
(P,T)

 
(P,U)

 
(P,F)

 
(Q,T)

 
(Q,U)

 
(Q,F) 

 
(T,U) 

 
(T,F)

 
(U,F)

 

0

015 53

r

r 
 

 
15-21 
 
22-53 
 

 
SLC 
 
SF 
 

 
SLC
 
SF 
 

 
SLC 
 
SF 
 

 
SLC
 
SF 
 

 
SLC 
 
SF 
 

 
SLC 
 
SF 
 

 
SLC 
 
SF 
 

 
SLC 
 
SF 
 

 
SLC
 
SF 
 

 
SLC 
 
SF 
 

 

10

1026 49

r

r 
 

 
26-27 
 
28-49 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 

0

057 149

K

K 
 

 
57-92 
 
93-149 

 
SF 
 
SLC 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 

0.01 0.34

h

h 
 

 
0.01-0.28 
 
0.29-0.34 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 

1

13.6 12.5


 

 

 
3.6-8.5 
 
9.0-12.5 
 

 
SF 
 
SLC 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC 
 

 
SF 
 
SLC
 

 
SF 
 
SLC 
 

 

 

 In case of conservation model, it has been shown that if the rate of formation of the precursor pollutant is 

controlled by some external means, its effect on the population can be minimised. All the above results in the 

absence of diffusion are well supported by computer simulations as explained in Section 8. It is also found that 

the system dynamics converging to the stable equilibrium for lower values of all the control parameters except 

for the intrinsic growth rate parameter 0r  of the population and for the higher values it exhibit the limit cycle 

solution.  

 From this study, it can be concluded that the uncontrolled human activities that polluting the environment 

may be harmful to itself. Therefore some kind of efforts must be adopted to control the further deterioration of 
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the environment. This study also gives some idea about how to prevent the biological species living in an 

environment polluted by its own activity and to develop the model related to socio-ecological problems and 

about its solution. 
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