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Abstract 

In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. 

The existence and local stability of positive fixed point of the discrete dynamical system is analyzed 

algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the 

interior of 2
R  by using bifurcation theory. Numerical simulation results not only show the consistence with 

the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, 

period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading 

to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. 

The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors. 

 

Keywords discrete-time predator-prey system; chaos; flip and Neimark-Sacker bifurcations; Lyapunov 

exponents. 

 

 

 

 

 

 

 

 

1 Introduction 

It is well known the Lotka-Voltera predator-prey model is one of the fundamental population models; a 

predator-prey interaction has been described firstly by two pioneers Lotka (1924) and Voltera (1926) in two 

independent works. After them, more realistic prey-predator model were introduced by Holling suggesting 

three types of functional responses for different species to model the phenomena of predation (Holling, 1965). 

Qualitative analyses of prey-predator models describe by set of differential equations were studied by many 

authors (Brauer and Castillo, 2001; Hastings and Powell, 1991; Klebanoff and Hastings, 1994; Murray, 1998; 

Zhu et al., 2002). Another possible way to understand a prey-predator interaction is by using discrete-time 

models. In recent years, many authors (Brauer and Castillo, 2001; Murray, 1998; Agiza et al., 2009; Danca et 

al., 1997; Elsadany et al., 2012; Hasan et al., 2012; He and Lai, 2011; Jing and Yang, 2006; Li and Yorke, 

1975; Liu and Xiao, 2007; Hu et al, 2011; He and Li, 2014) have suggested that discrete time models governed 

by difference equations are more appropriate than the continuous ones, especially when the populations have 
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non-overlapping generations. These models are more reasonable showing that the dynamics of the discrete-

time prey-predator models can present a much richer set of patterns than those observed in continuous-time 

models and lead to unpredictable dynamic behaviors from a biological point of view. However, there are few 

articles discussing the dynamical behaviors of predator-prey models, which include bifurcations and chaos 

phenomena for the discrete-time models. The authors (He and Lai, 2011; Jing and Yang, 2006; Liu and Xiao, 

2007; Hu et al, 2011) obtained the flip bifurcation and Hopf bifurcation by using the center manifold theorem 

and bifurcation theory, while in Agiza et al. (2009), Danca et al. (1997), Elsadany et al. (2012), the authors 

only showed the flip bifurcation and Hopf bifurcation by using numerical simulations. But in (Wang and Li, 

2014; Ghaziani, 2014; Rana, 2015), the authors showed that the system undergoes a flip bifurcation and/or a 

Neimark-Sacker bifurcation by using bifurcation theory. 

 

In this paper, we consider the following system of ordinary differential equations of generalized Gauss-

type as a model (Freedman and Wolkowicz, 1986) of predator-prey interaction with group defense exhibited 

by the prey: 

 

))((

)(),(

xqdyy

xypKxxgx







  (1) 

 
where x and y  are functions of time representing population densities of prey and predator, respectively; 

0K  is the carrying capacity of the prey and 0d  is the death rate of the predator. The function 

),( Kxg represents the specific growth rate of the prey in the absence of predator. A prototype is the logistic 

growth, 





 

K

x
rKxg 1),( ,with intrinsic growth rate r . The function )(xp  denotes the predator 

response function and we assume it is of the Holling type II form, 
x

mx
xp





)( . The rate of conversion of 

prey to predator is described by )(xq . In Gause’s model, )()( xcpxq   for some positive constant c . 

 

Without loss of generality, by scaling the parameters, we first write the system (1) in the specific form 

(Rosenzweig and MacArthur, 1963) 
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where ,,, dKr  and   are positive parameters. Applying the forward Euler scheme to system (2), we 

obtain the discrete-time predator–prey system as follows: 
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where  is the step size. In this paper, we only restrict our attention to investigate this version as a discrete-

time dynamical system in the closed first quadrant 2
R by using bifurcation theory and center manifold theory 

(see section 4, Kuznetsov, 1998). We rigorously prove that this discrete model possesses the flip bifurcation 

and the Neimark-Sacker bifurcation. Meanwhile, numerical simulations are presented not only to illustrate our 

results with the theoretical analysis, but also to exhibit the complex dynamical behaviors such as the cascade 

periodic-doubling bifurcation in periods 7, 20-orbits, quasi-periodic orbits and chaotic sets. These results 

reveal far richer dynamics of the discrete model compared with the continuous model. In particular; we 

observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. 

The computations of Lyapunov exponents confirm the dynamical behaviors. The analysis and results in this 

paper are interesting in mathematics and biology. 

This paper is organized as follows. In Section 2, we discuss the existence and local stability of positive 

fixed point for system (3) in 2
R . In Section 3, we show that there exist some values of the parameters such 

that (3) undergoes the flip bifurcation and the Neimark-Sacker bifurcation in the interior of 2
R . In section 4, 

we present the numerical simulations including the bifurcation diagrams, the phase portraits at neighborhood 

of critical values and the maximum Lyapunov exponents corresponding to the bifurcation diagrams. Finally a 

short discussion is given in Section 5. 

 

2 Existence and Stability of Fixed Points 

In this section, we first determine the existence of the fixed points of the system (3), then investigate their 

stability by the eigenvalues for the Jacobian matrix of (3) at the fixed point. 

It is clear that the fixed points of (3) satisfy the following equations: 
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By a simple algebraic computation, it is straightforward to obtain the following results: 

 

Lemma 1. 

(i) For all parameter values, (3) has two fixed points,  0,00E  and  0,1 KE ; 

(ii) if K
d

d







0 , then (3) has, additionally, a unique positive fixed point,  **
2 , yxE , where

d

d
x




*  and   *** 1 xKxry   . 

Fig. 1 shows the distribution of the fixed points for 1K  in the space  d,, . There is an unique 
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In the following we deduce the local dynamics of the positive fixed point  **
2 , yxE  only (we left the 

others). Note that the local stability of the fixed point  **, yx  is determined by the modules of eigenvalues 

of the characteristic equation at the fixed point. 

The Jacobian matrix due to the linearization of (3) evaluated at 2E  is given by 

 

  
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



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
22

11**
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1
,

ba

ba
yxJ




  (9) 

and the corresponding characteristic equation of (9) can be written as 

 

0det)( 2  JtrJF    (10) 

where trJbaba ,,,, 2211  and Jdet  are determined by (6) and (8) with yx &  are replaced by ** & yx

respectively. 

Therefore, the eigenvalues of (10) are  

 

 
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2,1

JtrJtrJ 
   (11) 

where    22 det4 JtrJ  and   12
2

21 4 baba  . 

 

Using Jury’s criterion (Elaydi, 1996), we have necessary and sufficient condition for local stability of the 

fixed point 2E  which are given in the following proposition. 

Proposition 1.Let 2E  be a positive fixed point of (3). Then  

(i) it is a sink if one of the following conditions holds: 
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(ii) it is a source if one of the following conditions holds: 
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 . 

(iii) it is non-hyperbolic if one of the following conditions holds: 
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(iii.1) 0 and 
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(iv)  it is a saddle for the other values of parameters except those values in (i)–(iii). 

 

Following Jury’s criterion, we can see that one of the eigenvalues of  2EJ  is 1  and the others are 

neither 1 nor 1  if the term (iii.1) of Proposition 1 holds. Therefore, there may be flip bifurcation of the 
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2

1EFB  or
2

2EFB  where 

   















 K

d

d
d

baba

ba
dKrFB E 

 &,,0,:),0(,,,,,1
1221

21
2

 

or 

   
.&,,0,:),0(,,,,,2

1221

21
2
















 K

d

d
d

baba

ba
dKrFB E 

  

Also when the term (iii.2) of Proposition 1 holds, we can obtain that the eigenvalues of  2EJ are a pair 

of conjugate complex numbers with module one. The conditions in the term (iii.2) of Proposition 1 can be 

written as the following set: 
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and if the parameter   varies in the small neighborhood of 
2ENS ; then the Neimark-Sacker bifurcation will 

appear. 

 

3 Flip Bifurcation and Neimark-Sacker Bifurcation 

In this section, we choose the parameter   as a bifurcation parameter to study the flip bifurcation and the 

Neimark-Sacker bifurcation of 2E  by using bifurcation theory in (see Section 4 in Kuznetsov, 1998; see also 

Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003). 

 

We first discuss the flip bifurcation of (3) at 2E . Suppose that 0 , i.e., 
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then the eigenvalues of J given by (11) are 1)( 11  and  21112 3)( ba   . 

The condition 1)( 12   leads to 

  4,2211 ba .  (13) 

Let *~ xxx  , *~ yyy   and    ** , yxJA  , we transform the fixed point  **, yx  of system 

(3) into the origin, then system (3) becomes 
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We know that A  has simple eigenvalue 1)( 11  , and the corresponding eigenspace cE  is one-

dimensional and spanned by an eigenvector q R2 such that qqA )( 1 . Let p R2 be the adjoint 

eigenvector, that is, ppAT )( 1 . By direct calculation we obtain 
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 Tabq 2121 ,2~  , and 

 

 Tbbp 1121 ,2~   . 

 
In order to normalize p  with respect to q , we denote 
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It is easy to see 1, qp , where ,  means the standard scalar product in R2: 
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Following the algorithms given in (Kuznetsov, 1998), the sign of the critical normal form coefficient 

 1c , which determines the direction of the flip bifurcation, is given by the following formula: 

      qqBIAqBpqqqCpc ,)(,,
2

1
,,,

6

1 1
1

  (16) 

From the above analysis and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson, 

1999; Wiggins, 2003), we have the following result. 

 

Theorem 1. Suppose that  **, yx  is the positive fixed point. If the conditions (12), (13) hold and 

  01 c , then system (3) undergoes a flip bifurcation at the fixed point  **, yx  when the parameter   

varies in a small neighborhood of 1 . Moreover, if   01 c  (respectively,   01 c ), then the period-2 

orbits that bifurcate from  **, yx  are stable (respectively, unstable). 

 

In Section 4, we will give some values of the parameters such that   01 c , thus the flip bifurcation 

occurs as   varies (see Figure 2). 

 

We next discuss the existence of a Neimark-Sacker bifurcation by using the Neimark-Sacker theorem in 

(Kuznetsov, 1998; Guckenheimer and Holmes, 1983; Robinson, 1999; Wiggins, 2003). 

 

It is clear that the eigenvalues 2,1  given by (11) are complex for   0det42  JtrJ , which leads to 

0 , i.e., 

 

  04 12
2

21  baba   (17) 

Let 
1221

21
2 baba

ba




 , 

then we have 1)(det 2 J . 
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For 2  , the eigenvalues of the matrix associated with the linearization of the map (14) at 

   0,0~,~ yx  are conjugate with modulus 1, and they are written as 

 

 222
2 )()(det4

22

)(
,  trJJ

itrJ
    

   22112
2

21
2 4

22
1 baba

i
ba 


  (18) 

and 1)( 2  ,   0
2

1)(
21

2




ba
d

d





. 

In addition, if 1,0)( 2 trJ , which leads to 

  3,2212  ba , 

then we have 1)( 2 k  for .4,3,2,1k  

 

Let q C2 be an eigenvector of )( 2A  corresponding to the eigenvalue )( 2  such that 

 

qqA ))( 22   ,  qqA )()( 22   . 

 

Also let p C2 be an eigenvector of the transposed matrix )( 2
TA  corresponding to its eigenvalue, 

that is, )( 2 , 

 

ppAT )()( 22   ,  ppAT )()( 22   . 

 

By direct calculation we obtain 

 

 Tabq 2222 ,1~   , 

 

 Tbbp 1222 ,1~   . 

 

In order to normalize p  with respect to q , we denote 

 

 Tbbp 12222 ,1    

 

where 

  12
2
2

2

22

2
1

1

bab 



 . 

 

It is easy to see 1, qp , where ,  means the standard scalar product in C2: 
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2211, qpqpqp  . 

 

Any vector X R2 can be represented for   near 2 as qzqzX  , for some complex z . Indeed, 

the explicit formula to determine z is Xpz , . Thus, system (14) can be transformed for sufficiently 

small   (near 2 ) into the following form:  

 

),,()(  zzgzz  , 

 

where )(  can be written as   )()(1)(  ie  (where )(  is a smooth function with 

0)( 2  ) and g is a complex-valued smooth function of ,, zz and  ,whose Taylor expression with 

respect to ),( zz contains quadratic and higher-order terms: 

 





2

)(
!!

1
),,(

lk

lk
kl zzg

lk
zzg  , with klg C, ,1,0, lk .  

 

By symmetric multilinear vector functions, the Taylor coefficients klg  can be expressed by the formulas 

 

   qqBpg ,,220  ,     qqBpg ,,211  , 

   qqBpg ,,202  ,     qqqCpg ,,,221  , 

 

and the coefficient  2a , which determines the direction of the appearance of the invariant curve in a 

generic system exhibiting the Neimark-Sacker bifurcation, can be computed via 

   
 

2

02

2

111120)(

)(2)(
21

)(

2 4

1

2

1

12

21
Re

2
Re

2

222

gggg
e

eege
a

i

iii





























 , 

where )( 2
)( 2  ie . 

 

For the above argument and the theorem in (Kuznetsov, 1998; Guckenheimer and Holmes, 1983; 

Robinson, 1999; Wiggins, 2003), we have the following result. 

 

Theorem 2. Suppose that  **, yx  is the positive fixed point. If   02 a  (respectively, 0 ) the 

Neimark-Sacker bifurcation of system (3) at 2   is supercritical (respectively, subcritical) and there 

exists a unique closed invariant curve bifurcation from  **, yx  for  2  , which is asymptotically stable 

(respectively, unstable). 

 

In Section 4 we will choose some values of the parameters so as to show the process of a Neimark-Sacker 

bifurcation for system (3) in Figure 3 by numerical simulation. 

 

4 Numerical Simulations 

In this section, by using numeral simulation, we give the bifurcation diagrams, phase portraits and Lyapunov 

exponents of the system (3) to confirm the previous analytic results and show some new interesting complex 

dynamical behaviors existing in the system (3). It is known that Maximum Lyapunov exponents quantify the 
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observe that there is a cascade of period doubling bifurcations for 31667.1 . The maximum Lyapunov 

exponents corresponding to Fig. 2(b) are computed and plotted in Fig. 2(c), confirming the existence of the 

chaotic regions and period orbits in the parametric space. 

 

For case (ii). The bifurcation diagrams of system (3) in the ( yx ) space, the ( x ) plane and the 

( y ) plane are given in Fig. 3(a-b-c). After calculation for the fixed point 2E  of map (3), the Neimark-

Sacker bifurcation emerges from the fixed point  85893.1,323077.0  at 58217.12  and

 
2

,,,, ENSdKr  .  It shows the correctness of proposition 1. For 2  , we have 

,671682.0740839.0, i ,1,1   ,0163801.0
)(

2







d

d

  ,3,2518321.0212 ba ,275425.014989.220 ig  ,26846.1571595.011 ig 

,39002.200135796.002 ig  ,425716.009682.221 ig   and   31917.32 a . Therefore, the 

Neimark-Sacker bifurcation is supercritical and it shows the correctness of Theorem 2. 

 

From Fig. 3(b-c), we observe that the fixed point 2E  of map (3) is stable for 58217.1  and loses 

its stability at 58217.1  and an invariant circle appears when the parameter  exceeds ,58217.1  we 

also observe that there are period-doubling phenomenons. The maximum Lyapunov exponents corresponding 

to Fig. 3(b-c) are computed and plotted in Fig. 3(d), confirming the existence of the chaotic regions and period 

orbits in the parametric space. From Fig. 3(d), we observe that some Lyapunov exponents are bigger than 0, 

some are smaller than 0, so there exist stable fixed points or stable period windows in the chaotic region. In 

general the positive Lyapunov exponent is considered to be one of the characteristics implying the existence of 

chaos. The bifurcation diagrams for x  and y  together with maximum Lyapunov exponents is presented in 

Fig. 3(e). Fig. 3(f) is the local amplification corresponding to Fig. 3(b) for ]2206.2,005.2[ . 

 

The phase portraits which are associated with Fig. 3(a) are disposed in Fig. 4, which clearly depicts the 

process of how a smooth invariant circle bifurcates from the stable fixed point  85893.1,323077.0 . When 

 exceeds ,58217.1  there appears a circular curve enclosing the fixed point 2E , and its radius becomes 

larger with respect to the growth of  . When   increases at certain values, for example, at 04.2 , the 

circle disappears and a period-7 orbits appears, and some cascades of period doubling bifurcations lead to 

chaos. From Fig. 4, we observe that as   increases there are period-7, 20-orbits, quasi-periodic orbits and 

attracting chaotic sets. See that for 5.2&45.2,3357.2 , where the system is chaotic, the value of 

maximal Lyapunov exponent is positive that confirm the existence of the chaotic sets. 
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5 Discussion 

In this paper, we investigated the behaviors of the discrete-time predator-prey system (3) involving group 

defense with Holling type II functional response and showed that it has a complex dynamics in the closed first 

quadrant 2
R . We showed that the unique positive fixed point of (3) can undergo a flip bifurcation and a 

Neimark-Sacker bifurcation under certain parametric conditions. Moreover, as the parameters varying, the 

system (3) exhibits the variety of dynamical behaviors, including period-7, 20-orbits, invariant cycle, cascade 

of period-doubling, quasi-periodic orbits and the chaotic sets, which imply that the predators and prey can 

coexist in the stable period-n orbits and invariant cycle. Finally, simulation works showed that in certain 

regions of the parameter space, the model (3) had a great sensitivity to the choice of initial conditions and 

parameter values. These results reveal far richer dynamics of the discrete model compared to the continuous 

model. 
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