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Abstract 

The two step reversible chemical reaction involving five chemical species is investigated. The quasi 

equilibrium manifold (QEM) and spectral quasi equilibrium manifold (SQEM) are used for initial 

approximation to simplify the mechanisms, which we want to utilize in order to investigate the behavior of the 

desired species. They show a meaningful picture, but for maximum clarity, the investigation method of 

invariant grid (MIG) is employed. These methods simplify the complex chemical kinetics and deduce low 

dimensional manifold (LDM) from the high dimensional mechanism. The coverage of the species near 

equilibrium point is investigated and then we shall discuss moving along the equilibrium of ODEs. The steady 

state behavior is observed and the Lyapunov function is utilized to study the stability of ODEs. Graphical 

results are used to describe the physical aspects of measurements. 
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1 Introduction 

Chemical materials play an effective role, not only in our daily life, such as plastics and different types of 

drinks, but they are also used for manufacturing defense equipments. The chemical industry is a necessary part 

of our development as it deals with diverse chemical reactions such as catalytic reactions, which have 

numerous applications in chemical industries including newly emerging applications in fine chemicals and 

pharmaceuticals (Roy and Chaudhari, 2005). So, the analysis of such chemical reactions has great importance. 

These chemical reactions vary from simple to complex depending on their corresponding nature. Gas-solid 

catalytic reactions are complex reactions taking place in industrial chemical processes. So it needs their 

theoretical and experimental investigations. Different approaches and methods have been developed for 

analyzing different aspects of linear chemical reactions by several researchers (Gorban and Karlin, 2003; 

Hangos, 2010; Roy and Chaudhari, 2005). On the other hand, due to the complexity of nonlinear chemical 

reactions, less attention is given to their studies. In this paper, an attempt is made to reduce the complexity and 

explore hidden aspects of some nonlinear chemical reactions (either fast or slow).  
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2 Paper Organization 

Most chemical reactions have two steps in terms of the rate of occurrence i.e. fast processes and slow 

processes. The fast processes relax much faster than slower ones. During the relaxation, trajectories in the 

phase space move towards lower dimensions and converge towards the equilibrium point and after that, they 

start moving along it (Chiavazzo et al., 2007). This concept is represented with the help of LDM in section 2 

where the system is reduced into two species in sub-section 2.2. While the steady state behavior (Bothe and 

Pierre, 2010; Segel and Slemrod, 1989) of the species also approaches towards the equilibrium point after 

completing the transition period (Fig. 3), the flow of a vector field near the equilibrium is combined with the 

initial approximate solution of QEM (Fig. 5). 

The general idea of grid construction is given in section 3 to measure a one/higher dimension manifold. 

While for stability measure we use Lyapunov function is described in section 3.1. 

As the solution given by QEM (Fig. 2) is far away from the exact solution shown in  section 4, it is 

refined with the MIG (Fig. 4a, 4b). The other way left is to apply a more accurate method, for which, we apply 

the SQEM method (Fig. 6a) because it gives a better approximation than QEM. This is then proved by 

applying MIG over it and no change in the approximated 1D solution is observed (Fig. 6b). Therefore, we 

proceed towards the two dimensional manifold by applying the concept of SQEM and measure the 2D surface 

(Fig. 7). The variation in eigen values during the whole process, which is given by fast and slow processes, is 

calculated (Fig. 8). Finally, we conclude results in section 5. 

 

3 Background 

Different chemical reactions have different structural natures as well as distinct kinetic behaviors depending on 

the type of species. As a consequence of the diverse nature of chemical kinetic structures, corresponding 

equations can be associated with several time scales. Many physical aspects of chemical reactions are 

described by Slow Manifold (SM) in a better way. Thus SM plays a key role in the analysis of kinetics in 

chemical reactions of associated species. There are various approaches, (Chiavazzo and Karlin, 2008; Maas 

and Pope, 1992b; Muhammad Shahzad, 2015; Succi, 2006) which eliminate fast variables and reduce 

corresponding equations of the considered system into Slow Manifold (SM). Few of them are recently 

introduced and they are discussed in this paper in detail. 

Slow Invariant Manifold (SIM) provides a simple way to study the dissipative systems of chemical kinetics 

and the computation of SIM after reducing the system in lower dimensions does not affect the accuracy of 

results.  

 

4 Experiments   

 

Fig a. General example of two steps, reversible reaction involving five chemical species. In the first step, 
2O  react with Z 

(catalyst) and transformed into Z -oxide. Second step, OZ  oxidizes sulphur dioxide into sulphur tri-oxide and re obtain Z. 
While +, - are the forward and backward reactions and 1, 2 indicates first and second step reactions. 
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In this two-step heterogeneous nonlinear 2SO  oxidation reaction, five chemical components  

2 2 3( , , , , )O Z OZ SO SO  are involved, which are formed by three chemical elements (O, Z and S). All these 

chemical species participating in the mechanism can be divided into two groups (i.e.1: reactants and products 

and 2: intermediates). Intermediates are not involved in the overall reaction as they are generated in one step 

and consumed in another step and hence they are just a part of the cycle (Gorban and Shahzad, 2011). Now, let 

us explain these two steps with some details. 

In the first step, oxidizing agent 2O  react together with catalyst Z and here Z is oxidized gaining oxygen 

atom and transformed into Z-oxide and in the second step, oxidizing agent is OZ  which oxidizes sulphur 

dioxide into sulphur tri-oxide and we reobtain catalyst Z. Catalyst Z is only used to proceed the reaction, 

which takes part in the reaction, but at the end, we recovered it. Here surface intermediates are Z and OZ while 

the overall reaction step involved species 2 2,   O SO and 3SO . 

We apply Horiuti method for finding the rate equation for reversible reaction at known rates of forward 

reaction as well as for obtaining equilibrium coefficient of the overall reaction (Marin and Yablonsky, 2011). It 

uses Horiuti numbers by means of multiplying the reaction equation in step one and step two with the Horiuti 

numbers 1 and 2 respectively, and afterwards, adding the equations. Every participating intermediate will be 

either vanished or cancelled out, i.e. 

 

2 2 31. 1(2 ) 2. 2. 1(2 ) 2. 2.O Z OZ SO OZ SO Z       

  2 2 32 2 2 2 2 2O Z OZ SO OZ SO Z       

  2 2 32 2SO O SO      

(i.e., Intermediates are cancelled from both sides) 

 

4.1 Linear algebra and law of mass conservation 

The following relationship is valid in a regular chemical mixture:  

T
c eA                                                                          (1) 

For a molecular matrix TA ( A transpose) of the substances 2 2 3, , , ,O Z OZ SO SO  we have, 
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Consequently; 

2 2 3

2 3

,

,

,

2 2 3t O O OZ SO SO

t Z Z OZ

t S SO SO

    

  

  

   

 

 

                                                      (2) 

where , ,,t O t Z    and ,t S  are total number of moles of O, Z and S atoms respectively. A catalytic surface 

reaction proceeds by means of surface intermediates, which includes active site. In this mechanism, Z and OZ 

are surface intermediates involving active site Z. The total amount of concentration of surface intermediates is 

preserved and it can be expressed as: 

,Z OZ t Z                                                                          (3) 

,AZ t Zz                                                                         (4) 

As in this case there is only one active site (i.e 1asN Z  ), which is part of each of intermediates (Z, OZ). 

In generalized form, it can be written as: 

int

,
1

N

ik i t k
i

b  


  and     
int

,

1

N

t kik
i

b j


                                                    (5)              

where ikb   is the number of active sites of type k  which are parts of surface intermediates, i.e. i  and 

i   are the amounts (Mol) and concentrations ( 2
catmolm  ) respectively, of the ith surface intermediates. 

While ,t k  and ,t k  are the total amount (Mol) and total concentration (Mol) respectively, for active sites 

of type k . 

Now let us check the relation between the stoichiometric matrix S and a molecular matrix A. 

(2 5)

(5 3)

2 0 0

0 1 0
1 2 2 0 0

. 1 1 0
0 1 1 1 1

2 0 1

3 0 1

SA




 
 
   
       
 
  
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(2 3) (2 3)

2 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0

0 0 1 2 3 0 1 1 0 0 0 0 0 1 1 0 0 0
 

               
                  

              (6) 

 

4.2 Key components 

Such components, for which we need to know the concentration, by which we are able to determine the 

amounts of all other components, are called Key Components and they are denoted by kcN . We can find the 

number of key components by using the following equation:  

( )kc cN N rank A                                                                    (7) 

cN  are the total number of components involved in the mechanism. A is a molecular matrix while its rows 

represent the component participates in the reaction and the columns represent the chemical elements which 

form components (i.e. ( )c eA N N   ). Rank (A) is the rank of molecular matrix, which represent the 

maximum number of linearly independent variables in a row or column. It is important to note that

( ) min( , )c erank A N N . 

4.3 Matrices and independent routes of complex reactions 

The existence of intermediates in complex reaction can be affected by the stoichoimetric matrix for the 

intermediates ( intS  ) where the size of intS  matrix is ( intsN N  ). Where, 

sN  = number of steps in detailed mechanism 

intN = number of intermediates. 

intS  = stoichoimetric matrix of intermediates 

As intermediates are not present in the overall reaction so we have to multiply the stoichiometric matrix of 

intermediates and the Horiuti matrix by linear algebraic method i.e. int int( ) ( )s s rrS N N N N    where 

rrN  = number of the linearly independent reaction routes. And when we multiply T  and intS  matrices, 

we get matrix int int( )T
rrS N N   that is equal to zero, i.e. int 0T S  .  

int int( ) asrank S N N                         (8) 

asN  = number of active sites in mechanism. 

Also, we can find the rank int( )S  by the following relation, 
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int( ) s rrrank S N N                             (9) 

Combining relation (a) and (b) we get: 

intrr s asN N N N                             (10) 

This is the Horiuti rule. Let us consider an example (a), we have 2sN   , int 2N  . As size of 

int intsS N N     Intermediate matrix would be (2 2) . 

               Z      OZ 

         int

2 2 1

1 1 2

Step
S

Step

 
   

  

Similarly, the size of the Horiute matrix (  ) = ( )s rrN N  implies, 

    
2

1
sN

Nrr




    ( ) (2 1)s rrN N   ,   i.e. (2 1)

1

2
 

 
  
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.  

As we multiply int
T S  we take transpose on both sides 

(2 1)

1

2

T
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 
  
 

,  (1 2)
1 2T


  ,    int (1 2) (1 2)

(2 2)

2 2
. 1 2 . 0 0

1 1
T S

 
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   

 

  
int

( )( ) int( ) int.
intrr s s

T
N NN N N N rr

TS S      . 

 

4.4 Rate equation by Horiuti and Borekov 

If we take 2SO  oxidation reaction, there is a two-step mechanism and all the involved components can be 

categorized into two groups: reactants and products. Both of them are controllable species, which means that 

their concentration can be set during an experiment, while it is evident that intermediates are uncontrollable 

species. Boreskov analyzed the oxidation of 2SO . According to both Boreskov and Horiuti, second step is the 

rate limiting step, which is potentially much faster than the first step, where lim 2    is the Horiuti number 

for the rate limiting step. Boreskov used the empirical power law to define the ratio of forward and reverse 

rates as: 

Rate equation = difference between the forward and reverse reaction rates, i.e. 

1( ) / ( ) /r p

r
r k f c w k f c w

r


   

    

259



Computational Ecology and Software, 2015, 5(3): 254-270 

 IAEES                                              www.iaees.org

1 ( )( ) / ( )
( )

r
r p eq

p

f ck f c k f c k
f c


   

  ,          eq

k
k

k



  . 

Hence, 

1

1

( )

( )

m

r
eq

p

f cr
k

r f c



 

 
  
  

 Here m  is boreskov molecularity: a number relating to the rate limiting step. 

Therefore, for considering nonlinear mechanism, rate equation can be written as: 

1

1

( )
1

( )

m

r
eq

p

f c
r r k

f c






       
    

. 

 

5 Formalism of Invariant Manifold 

The solution of the variation problem minG  (i.e., Lyapunov function), under consideration of the 

constraints (2) along with the reduced decrypted form represents QEM (Chiavazzo et al., 2007). The initial 

approximations given by QEM or SQEM are not exact and need refinement. For this, the best available 

method is a ‘method of invariant grids’ (MIG). This is basically an iterative procedure used for the 

construction of slow invariant manifold (SIM). Therefore, we apply this method over the initial approximation 

given by QEM and SQEM and observe changes. 

5.1 Grid construction 

The method of invariant grid (Gorban et al., 2004) has recently been suggested by Gorban and Karlin while it 

was applied by many authors. The principle idea behind this construction is ‘construct such an approximated 

grid, which lies on the invariant manifold (when refined)’ with the mapping of finite dimensional grids into a 

dynamical phase space. Furthermore, the construction strategies have been defined in (Chiavazzo and Karlin, 

2008).  

By having the known node (equilibrium) the next node is calculated by the addition of shift vector;
0
phc  

i.e., 
0 0 0

1p p pc c hc   , which also satisfies the same condition (the condition of atomic balance). For this, the 

best way is to express this shift vector in the form of linear combination of vectors iv , i.e. 

0

1

z

p i i
i

hc v s


        (11) 

Here, is  are the null basis given by atomic balances having dimension z n l  .  Thus the space 

perpendicular to this is given by the tangent space T  that lies over the surface at each QEM node and 

provides the linear constraints for the system.  The reason behind this partition is simple that we are looking 

for those points, which minimize the Lyapunov auxiliary function G .  

In this way, while starting from equilibrium point 0
pc  we proceed towards the next point 1

pc until we 

reach its maximum values in one direction 0
1

i
p pc c   while in another direction, our approach is to get the 
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points ( , ) 0, ( , ) 0j j slt A t v  . i  are unknown variables and  is Gradiant. The solution of the above 

system at each grid point delivers two real solutions ,I II
p pc c  as shown in Fig. 1 above while extending the 

idea for 2D, we need another directional vector slv .   

As the first slow trajectory is obtained by the selection of slowest left eigenvector 1
slv  at each point in the 

system (12), similarly with the help of second slow vector 2
slv , we get another trajectory measured at each grid 

point of 1D curve shown in Fig. 1. 

In a dynamic system and while dealing with the system of differential equations, various types of stability 

may be described. Our concern for stability is closer to an equilibrium point. This may be discussed by the 

theory of Lyapunov. In simple words, we can say that the system starts out near an equilibrium point 0
pc   and 

it stays near to it forever, then it can called as  Lyapunov stable. Moreover, it is asymptotically stable if all 

solutions that start out near 0
pc  converge towards 0

pc . 

 

6 Result and Discussion 

In the above mechanism (a) the involved chemical components are five (i.e. 5cN   ) formed by the three 

elements (i.e. 3eN   ). Thus, for the system the key component (7) we have 2kc c eN N N   . Also, 

( ) min( , )c erank A N N    ( ) min(5,3)rank A     2 3 . 

While, intN  =2 (i.e. Z, OZ), asN  = 1 (i.e. Z) and sN  = 2 (i.e. two steps, reversible reaction) give the 

equation (8) as int int( ) 2 1 1asrank S N N     . And number of reaction routes can be found by the 

relation (9) as intrr s asN N N N   , 2 2 1rrN    , 1rrN  . Also, we can verify the rank of an 

intermediate stoichiometric matrix by relation (10) int( ) 2 1 1s rrrank S N N       (Verified). 

Now, we are able to reduce the system to two dimensions and for this purpose, the possible outcome can be 

found by the relation
!

!( )!
n
r

n
X

r n r



 . 

As a first step we have applied the quasi equilibrium manifold method over the example (a) after reducing 

the species. Then, according to variation problem (Chiavazzo et al. 2007; Gorban and Karlin 2005) we have: 

  G min                 ( , )  v c x             eAc  .     

  (13) 
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While under constant volume and pressure or for a (fixed) closed system, the reaction mechanism is supported 

by the Lyapunov function G  and thus, the system will acquire the following form: 

1c x , 2 2 .5c x y   , 3 2 0.7c x y   , 4c y ,  5 0.5c y  , i.e. 

5

1

ln 1
eq

i i

i
i

c
G c

c

  
      
 ,  

2

2

( , ) ( , )
0, 0

G x y G x y

y y

 
 

 
.    (14) 

y  is the relation between 1c  and 4c  while (1,0,0,0,0)v  . 

Solving the system (14), the initial approximations are shown in Fig. 2. 

 

 
 

Fig. 2 The initial approximation measured by QEM in its reduced form 1 4,c c  of chemical species. A black circle shows an 
equilibrium point (0.5, 0.4). 

 

 

Fig. 3 After completing the transition period, the solution trajectories ( 1 4,c c )  goes to steady state after starting from (0,1). 

 

The reduced mechanism with respect to 1 4,c c  also approaches towards its equilibrium point after 

completing its transition period as shown in Fig. 3. Similarly, other possible outcomes can be obtained and 

they can be shown in the same manner. 
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Fig. 4a Refinement of the Initial approximation  (measured by QEM) using the method of the Invariant Grid at each point. 

 

  
Fig. 4b The second refinement (measured by MIG) lays over the first refined trajectory. This means only first refinement gives 

the exact solution. 

 

 

Now, refining the initial QEM in Fig. 4 the behaviour of the initial trajectories near an equilibrium point 

can be seen in Fig. 5. 

 

 
Fig. 5a Phase flow near the equilibrium point; i.e. lines along with the arrows (vector field) indicate the direction of solution 

trajectories converging towards the equilibrium point (black circle). 
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Fig. 5b The phase flow near the equilibrium point along with qem approximation passing through it, i.e (0.5, 0.4). 

 

 

Now let us discuss another approximation method (SQEM), which not only reduced the system dimension, 

but also gave a better approximation as compared to QEM. Thus, according to system (13) and (14) we will 

obtain an explicit form 

1 0.6043696330 .3721407402 .7599361654c y x   , 

2 0.7087392659 1.744281480 1.519872331c y x   ,

3 0.5087392659 1.744281480 1.519872331xc y   , 4c y , 5 0.5c y  , 

after the selection of vector v (slowest left eigenvector) while Jacobin matrix J is measured at an equilibrium 

point  

.01 .10 .10 0 0

.02 .40 .40 .05 .2

.02 .40 .40 .05 .2

0 .2 .20 .05 .2

0 .2 .20 .05 .2

J

  
    
   
 

  
   

        (15) 

delivere the first and second slowest eigenvectors, i.e.,  

1 [ -0.1171   -0.2997    0.2997   -0.2178   0.8713]slv   

2 [0.0278    0.6522   -0.6522   -0.0935   0.3739]slv                  (16) 
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Fig. 6a Initial approximation measured by SQEM started from the equilibrium point (black circle) to both directions, using 

Euclidean norm 22 1 0 ò . 

 

 
Fig. 6b Refining the initial trajectory (measured by SQEM) with the method of invariant grids shows no difference, i.e. lies over 

the same approximated curve. 

 

 

This is now obvious from the above results (refinement Fig. 6b) that SQEM is much better than QEM 

approximation. Therefore, one dimensional (SQEM) curve (Fig. 6) can be extended to two dimensions by 

applying the method discussed in (3.1). For this purpose, we first take all the measurements (12) with respect 

to second slowest vector 2
slv  and obtain 1D curve. Then, starting from each grid point of 1D curve, we repeat 

the process with vector 1
slv . In this way, we obtain a surface, which lies in a phase space as shown in Fig. 7. 
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Fig. 7 Initially approximated 1D SQEM (circle line) is further extended (at some of its grid point) for 2D SQEM (black plus) in 

the second slowest eigen space. The equilibrium is indicated in square and the Euclidean norm in this case is . 

 

 

 
Fig. 8a Above figure indicates the variation in eigenvalues (absolute) measured at each grid point (before and after the 

equilibrium point) with respect to time in case of SQEM. 

 

 

 
Fig. 8b Above figure indicates the variation in eigenvalues (absolute) measured at each grid point during the whole process with 

respect to time measured with respect to SQEM. 
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Fig. 9a. Error analysis of the Initial QEM with the MIG are shown for some grid points. 

 

Fig. 9b. In case of SQEM the initial and the refined curve shows no difference. 

 

Table 1 The above tables shows the difference (positive) between the initial (I) and refined (R) values of the eight  

grid point, which are presented in Fig.9. 

Fig. 

9a. 

|I-R1| |I-R2| 

1 0.0234 0.0234 

2 0.0219 0.0219 

3 0.0195 0.0197 

4 0.0163 0.0166 

5 0.0119 0.0123 

6 0.0063 0.0067 

7 0.0004 0.0005 

8 0.0076 0.0085 
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7 Conclusion 

In this paper, the model reduction is done by employing a slow manifold approach, for which, different 

techniques of QEM including steady state approximation and SQEM are used. Although the Intrinsic Low 

Dimensional Manifold (ILDM) method, which has been presented by Maas and Pope, 1992 (Maas and Pope, 

1994; Maas and Pope, 1992a; Schmidt and Maas, 1996), is one of the efficient methods used to compute SIM. 

But the refinement (with MIG) of the QEM, SQEM gives the same results. 

The present paper gives an idea that after measuring an equilibrium point, a researcher can move to the 

point in a phase space near it and then towards one dimensional curve. After that, two dimensional curves can 

be measured while the one dimensional curve lies as a part of it.  

By utilizing these approaches, five different species are reduced into some sets of two/three species, which 

are included in a model of a particular chemical reaction. The convergence of species also depends on their 

transient nature. During the implementation, it is observed that all species have a property that they converge 

towards their equilibrium points and then move along it. The equilibrium of ODE’s are stable, which is then 

represented by the steady state. The stability of ODE’s can be measured by Lyapunov scalar function G  

while the variation in eigenvalues indicates our selection of slowest variation at each point. This approach can 

be utilized for analyzing different chemical reactions associated with species with diverse physical nature.   
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