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Abstract 

Describing complex ecosystems as networks of interacting components has proved fruitful – revealing many 

distinctive patterns and dynamics of ecological systems. Of these patterns, three have often been brought up in 

literature, including species degree distribution, compartmentalization and nestedness, due largely to their 

implications for the functionality and stability of communities. Here, using 61 empirical antagonistic networks, 

we aim to settle the inconsistency in literature by (i) fitting their node degree distributions to five different 

parametric models and identifying the one fits the best, (ii) measuring the levels of nestedness and 

compartmentalization of these 61 networks and testing their significance using different null models, and (iii) 

exploring how network connectance affects these three network architecture metrics. This research showed 

that most antagonistic networks do not display power law degree distributions and that resource species are 

generally uniformly distributed. We also clearly showed that the conclusion of whether a network is 

significantly compartmentalized or nested depends largely on the null model used. 
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1 Introduction 

Complex ecosystems can be depicted either as co-occurrence patterns of species distributions (Gaston and 

Blackburn, 2000; Hui and McGeoch, 2007a, 2008, 2014), or networks of interacting components, known as 

ecological networks (Zhang, 2011, 2012a,b). Of the most widely reported network structures, three have often 

been emphasized: species degree distribution, compartmentalization and nestedness, as these network 

structures could potentially signal the functionality and stability of communities. Species degree distribution 

depicts the proportion of species that interacts with a given number of other species. In mutualistic networks, 

the degree distribution follows a power law (Jackson, 2008; Minoarivelo et al., 2014). While in antagonistic 

networks, it is usually uniform (Boccaletti et al., 2006; Dunne et al., 2002a; but see, Hui and McGeoch, 2006). 
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Evidence has shown that networks whose degree distribution follows a power law are vulnerable to species 

loss (Boccaletti et al., 2006). In contrast, uniform degree distribution often increases species persistence 

(Estrada, 2007; Dunne et al., 2002b), implying that the species degree distribution is crucial for ecosystem 

stability. In fact, most studies on network properties are centered on this property. It is assumed that the shape 

of the degree distribution shows how co-evolutionary processes constrain the number of specialists and 

generalists in a network (Williams, 2011). In these studies especially on social, biological or even ecological 

networks, there has been a tendency of investigating whether the network degree distribution fits to a power 

law, thereby exhibiting the scale-free property. This is indeed an important network property due to its 

implications for community structure (such as its influence on network robustness). However, as observed 

from literature, many ecological networks do not possess this property. A general assessment of whether the 

degree distribution of antagonistic networks follows any other parametric functions of node degree distribution 

is needed. 

Compartmentalization is characterized through organizing species into clusters so that interactions are more 

likely to happen between species within the same cluster than across clusters (Guimera et al., 2010; Newman 

and Girvan, 2004) while nestedness depicts that species interacting with specialists form only a subset of those 

interacting with generalists (Bascompte et al., 2003). The two patterns (compartmentalization and nestedness) 

have been detected in many systems such as mutualistic networks of pollination and seed dispersal (Bascompte 

et al., 2003; Bastolla et al., 2009; Olesen et al., 2007; Dormann, 2011; Zhang et al., 2011), antagonistic 

networks of parasitism and predation (Krasnov et al., 2012; Vacher et al., 2008; Thebault and Fontaine, 2010), 

species co-distributions (Hui et al., 2013) and multi-trophic food webs (Dunne et al., 2002a; Kondoh et al., 

2010; Meskens et al., 2011). These patterns of ecological networks can have profound effects on the 

functionality and stability of communities (Bastolla et al., 2009; Stouffer and Bascompte, 2011; Thebault and 

Fontaine, 2010). For instance, nested structure can reduce species persistence in mutualistic networks (James 

et al., 2012) and destabilize the community (Allesina and Tang, 2012). However, contending works show that 

nested mutualistic networks can foster high species richness (Bastolla et al., 2009) and enhance resilience 

against perturbations (Burgos et al., 2007; Fortuna and Bascompte, 2006; Memmott et al., 2004). In contrast, 

compartmentalization tends to stabilize antagonistic networks (Fortuna et al., 2010) by containing the effect of 

perturbations within modules (Guimera et al., 2010; Stouffer and Bascompte, 2011). However, for the same 

networks, different metrics so far have yielded inconsistent results based on comparisons with networks 

generated from null models. 

Here, using 61 empirical antagonistic networks, we aim to settle the inconsistency in literature by (i) fitting 

their node degree distributions to five different parametric models and identifying the one fits the best, (ii) 

measuring the levels of nestedness and compartmentalization of these 61 networks and testing their 

significance using different null models, and (iii) exploring how network connectance affects these three 

network architecture metrics. 

 

2 Materials and Methods 

The data sources are listed in Nuwagaba et al. (2015) and also below, with most of the data being used for 

analyses in recent publications (Krasnov et al., 2012; Fortuna et al., 2010). The data used here represent both 

terrestrial and aquatic systems and include networks with species richness (also known as network size) 

ranging from 18 to 130, the number of interactions ranging from 33 to 736, and network connectance (Co, 

defined for bipartite networks, the ratio of the number of realized interactions to the number of all possible 

interactions) ranging from 9.87 to 55.56% (i.e. Co ranges from 9.87 to 55.56). These ranges lie within those 

commonly used in ecological analyses, suggesting that the data are reliable and representative.  
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For each network, we fit the following parametric models to the degree distribution of these empirical 

networks, and also separately for degree distributions of the resource species only and the consumer species 

only. These models have been widely used for fitting monotonic rank curves in ecology (Hui, 2012; Hui and 

McGeoch, 2007b). The power law distribution is given by: p(k) = Ck-α, where C is the normalising constant, k 

(> kmin) a specified node degree, and α the scaling constant (Seal, 1952). The truncated power law distribution 

is given by, p(k) = Ck-αe-k/λ, where λ is the truncation parameter (Seal, 1952). The exponential distribution is 

defined as, p(k) = Ce-λk, where λ is the rate parameter. The negative binomial distribution is of the form: p(k) = 

binomial (k – r – 1, r – 1)pr(1-p)k, where r > 0 is a positive discrete parameter. Given that the minimum value 

of k for the data is 1, we consider a zero-truncated negative binomial distribution. The uniform distribution is 

given by, p(k) = 1/(b – 1) for a ≤ k < b and p(k) = 0 otherwise. For convenience, the continuous form of these 

parametric functions was used; however, discrete values were used for model fitting. 

All the above distributions were fitted to data numerically and the best-fitting distribution was selected as 

its degree distribution. This model selection was determined by comparing the corrected Akaike Information 

Criterion (AICc) score for each of the model distributions (Burnham and Anderson, 1992): 
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where L is the maximum value of the likelihood function for a specific model, β is the number of parameters in 

the model and s is the total number of species in a network. One needs to note that the AICc score is not used 

for rejecting or accepting a model but rather to compare the performance of different models. In other words, it 

only provides a relative goodness of the fit. AICc scores were computed for the node degrees of the general 

network, consumer species alone and resource species alone. 

Although a number of measures have been proposed to quantify the level of compartmentalization in a 

network, the measure proposed by Newman and Girvan (2004) has been most widely used. Fortuna et al. 

(2010) pointed out that this measure may fail to detect well-defined small communities in large networks; 

however, we chose to use it because we excluded large networks from the study. This measure assumes that 

nodes in the same module have more links between them than one would expect for a random network. The 
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where Aij = 1 if i and j have a link between them and 0 otherwise, l is the total number of links in the network, 

kikj/(2l) is the expected number of links between nodes i and j, Ci denotes the community (module) in which 

node i belongs and δ(CiCj) = 1
 
when i and j belong to the same module and 0 otherwise. Different algorithms 

have been developed although their optimisation techniques are quite different. In this study, we use the 

software NETCARTO, which uses the simulated annealing as the modularity optimisation technique (Guimera 

and Amaral, 2005a,b). The modularity can also be measured using the R package modMax (Schelling and Hui, 

2015) which has implemented 38 algorithms for maximizing the above modularity measure.  

Like with the modularity measures, scientists have also proposed various measures of nestedness, among 

which the matrix temperature (Atmar and Patterson, 1993) has been used the most (Almeida-Neto et al., 2008). 

However, the recent measure of nestedness which relaxes the weaknesses of the matrix temperature has been 

proposed by Almeida-Neto et al. (2008) and has quickly become the most popular measure of nestedness 

(Boyero et al., 2015). This new measure, known as the NODF, is based on two fundamental properties as per 

the meaning of nestedness: the decreasing fill and the paired overlap (for details, see Almeida-Neto et al, 2008). 
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We chose to use this measure due to its consistence in quantifying the level of nestedness as reported by 

Almeida-Neto et al. (2008). Here, we calculate the level of nestedness using the software package 

ANINHADO 3.0 (Guimera and Amaral, 2005a) that has implemented the NODF metric. 

A null model is defined as “a pattern generating model that is based on randomization of ecological data or 

random sampling from a known or imagined distribution” (Gotelli and Graves, 1996). As mathematical 

models often include assumed mechanisms to capture reality, null models deliberately exclude these potential 

mechanisms in order to test the importance of these mechanisms on system behavior. To reach an affirmative 

conclusion from analyzing these network structures, we need to compare the observed structures with those 

random ones generated from null models for statistical significance (Guimera et al., 2004; Gotelli, 2000). As 

such, we investigated the significance of nestedness and modularity for these networks using the following 

null models where applicable. 

The Erdos-Renyi random graph (Er or R) assumes that all nodes of a graph are equally important and 

therefore randomly assigns presences or 1’s in an interaction matrix. This model generates networks whose 

connectance is the same as the testing network. Probabilistic model (CE or P) assumes that the probability of 

having an interaction is proportional to the degree of both nodes of the interaction (Bascompte et al., 2003). In 

particular, the probability of a link between a consumer and a resource is taken to be the arithmetic mean of the 

interacting probabilities of the focal consumer and resource species (Kondoh et al., 2010). In other words, 

nodes with more links have a higher chance of being connected with in the null model. Fixed null model (F) 

can be implemented in three different ways hence three different models. It can generate networks which have: 

(i) the same column sums (Fc), (ii) the same row sums (Fr), or (iii) the same row and column sums 

simultaneously (F) as the testing network (Gotelli, 2000). The three varieties of the fixed null model imply, 

respectively, that the number of resources per consumer, the number of consumers per resource and the 

number of interacting partners per species do not change. All the null models maintain the connectance of the 

network, and the third variety of the fixed null model (F) is the most conservative of them all since it maintains 

the row and column sums simultaneously. Consequently, it is not prone to type II error, unlike the other 

models (Gotelli, 2000).  

 

3 Results 

3.1 Degree distribution 

Most of the antagonistic networks in this study did not display power law degree distributions regardless of 

whether the network was considered as a whole or the consumer or resource species only (Fig. 1). In total, 

8.2% of the networks showed power law degree distribution, 15.3% truncated power law, 31.15% exponential, 

12.02% negative binomial and 33.33% uniform degree distribution.  

To understand the details of these distributions, we divided these networks into three groups depending on 

their connectance (Co < 19, 19 ≤ Co < 30 and Co ≥ 30) and found that different forms of node degree 

distributions were dominant in specific ranges of connectance. The truncated power law distribution dominated 

the node degree distribution in the networks with lower connectance Co < 19; the exponential distribution 

dominated the networks with the middle range of connectance 19 ≤ Co < 30, and the uniform distribution 

dominated the networks with the upper range of connectence (Co ≥ 30). We also investigated the connectance 

ranges for specific parametric forms. The power law was equally concentrated in the ranges Co < 19 and 19 ≤ 

Co < 30, the exponential distribution in the ranges 19 ≤ Co < 30, the truncated power law in the range Co < 19, 

and the negative binomial and the uniform distributions were concentrated in the range Co ≥ 30 (Table 1).  

When we investigated the degree distributions for the resource and consumer species separately, the degree 

distributions for resource species were different in most cases from these for the consumer species. The 
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resource species had an exponential degree distribution in networks with low connectance (Co < 19) and 

changed to the uniform form in networks with moderate and high connectance (19 ≤ Co < 30 and Co ≥ 30; 

Table 1). All parametric forms were concentrated in the range Co < 19 except for the uniform distribution 

which dominated the high connectance range Co ≥ 30 (Table 1). The consumer species in networks with low 

and moderate connectance (Co < 19 and 19 ≤ Co < 30) were dominated by the exponential distribution, while 

the uniform distribution dominated networks with high connectance (Table 1). The power laws and truncated 

power law were concentrated in consumer species of networks with low connectance (Co < 19), the 

exponential in networks with moderate connectance (19 ≤ Co < 30) and the negative binomial and uniform 

distributions in networks with high connectance (Co ≥ 30; Table 1). In general, high connectance implied 

uniform or negative binomial degree distribution, low connectance implied power law or truncated power law 

degree distribution, and moderate connectance implied exponential degree distribution. 

 

Table 1 Parametric forms of node degree distributions in 61 antagonistic networks. Five forms are included: power law (pl), 
truncated power law (tpl), uniform (un), negative binomial (nb) and exponential (exp). Network connectance (Co) is divided into 
three groups. Section 1: percentage of networks belonging to different parametric forms in each connectance group; section 2: 
percentage of best-fitting forms belonging to different connectance groups; section 3: percentage of resource species of networks 
belonging to different parametric forms in each connectance group; section 4: percentage of best-fitting forms of resource species 
in different connectance groups; section 5: percentage of consumer species of networks belonging to different parametric forms 
in each connectance group; section 6: percentage of best-fitting forms of consumer species in different connectance groups. 
 

Range  pl tpl un nb exp 

Co < 19  8.7 60.87 13.04 17.39 0 
19 ≤ Co < 30 11.11 5.56 61.11 16.67 5.56 
Co ≥ 30  0 10 20 25 45 

Co < 19    50 82.35  16.67  33.3  3 0 
19 ≤ Co < 30  50 5.88  61.11  25 10 
Co ≥ 30     0 11.76  22.22  41.67 90 

Co < 19  17.37 13.04 52.17 13.04 4.35 
19 ≤ Co < 30 5.56 11.11 27.78 5.56 50.0 
Co ≥ 30  0 0 5 10 85 

Co < 19  80 60 66.67 50 3.7 
19 ≤ Co < 30 20 40 27.78 16.67 33.33
Co ≥ 30  0 0 5.56 33.33 62.96

Co < 19  21.74 26.09 34.78 4.35 13.04
19 ≤ Co < 30 5.56 0 55.56 5.56 33.33
Co ≥ 30  0 0 15 10 75 

Co < 19  83.33 100 38.1 25.0 12.5 
19 ≤ Co < 30 16.67 0 47.62 25 25 
Co ≥ 30  0 0 14.29 50 62.5 

 

3.2 Modularity 

The modularity of networks ranged from 0.140 to 0.547. Although the average modularity of the networks was 

quite high (M = 0.327), the networks were not significantly modular compared to random networks from null 

models. Eleven of the 61 networks were significantly more modular than null model networks, 26 were not 

significantly different from null model networks while 24 were significantly less modular than null model 

networks. Regardless of the insignificance, we observed a pronounced relationship between the modularity and 

connectance in these networks (Fig. 2a), suggesting that generally, less connected networks are modular or 

more compartmentalized. 

3.3 Nestedness 

The level of nestedness (measured as NODF) ranged from 13.07 to 74.31, with an average of NODF=42.97. 

Most of the networks were significantly nested regardless of the null model used. In fact, the fixed and 
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probabilistic null models identified 55 and 49 networks, respectively, as significantly nested. There is an 

obvious negative correlation between the NODF and modularity (Fig.2b), suggesting that there should also be 

a pronounced relationship between nestedness and connectance: highly connected networks are less 

compartmentalized but more nested. 

 

 

Fig. 1 An example of a network fitted with the five degree distribution forms. Panels (a), (b), and (c) are the degree distribution 
for the entire network, the consumers only and the resources only, respectively, for network PH11 (Nuwagaba et al., 2015).  
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Fig. 2 Relationships (a) between modularity (the level of compartmentalization) and connectance and (b) between modularity and 
nestedness for 61 real networks.  

 

4 Discussion 

The degree distribution, among other network properties, has attracted the attention of conservation biologists 

due to its implications for community robustness. Different types of networks (such as mutualistic and 

antagonistic) often display different degree distribution patterns, although there exists networks of the same 

type following different degree distributions. For example, while the degree distribution of bipartite 

mutualistic networks mostly follows power laws, whether as a network (considering both the resource and 

consumer species together) or as resource or consumer species, results from this study have shown that 

antagonistic networks display a variety of degree distributions. But mostly, they are either uniformly or 

exponentially distributed, consistent with previous studies (Dunne et al., 2002a). As a consequence, 

antagonistic networks could be more robust to the loss of species as compared to mutualistic networks that 
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display skewed degree distribution. 

 

Table 2 Literature findings on the modularity and nestedness of antagonistic networks. CP:Compartmentalized and ND: nested 
architecture of antagonistic networks in literature of the past ten years. Network types: HP, host-parasite; PH, plant-herbivore; 
FW, food web; IR, individualresource; PP, plant-plant [parasitic]; MU, mutualistic networks(eg. Pollination networks (PN)). 
Measures of modularity, M and Qd (for directed networks), are given in Newman and Girvan (2004); the metrics of nestedness, 
NODF (N) and matrix temperature (T; also Tr stands for the relative nestedness based on T) are given in Almeida-Neto et al. 
(2008). Null models: F, fixed row and column marginal totals (SIM9 as described in Gotelli (2000); Fc; Fr, fixed column or row 
marginal totals respectively as defined in Gotelli (2000); P, the probably of an interaction is assigned proportional to the average 
of corresponding row and column marginal totals; R, randomly placed interactions; Rd, randomly placed interactions, with 
directions and root node properties preserved. Numbers in the first column give the total number of networks in the study; 
characters and numbers (when available) in brackets of other columns show the null model and the number of significant 
networks. References: 1: Krasnov et al. (2012); 2: Fortuna et al. (2010); 3: Thebault and Fontaine (2010); 4: Piazzon et al. (2011); 
5: Kondoh et al. (2010); 6: Bellay et al. (2011); 7: Cagnolo et al. (2011); 8: Genini et al. (2012); 9: Meskens et al. (2011); 10: 
Pires et al. (2011); 11: Vacher et al. (2008); 12: Graham et al. (2009); 13: Patterson et al. (2009); 14: Timi and Poulina (2008); 15: 
Dunne et al. (2002a); 16: Alcantara and Rey (2012). 

Type 
Network structure 

Conclusion Ref 
CP ND 

HP(27) M(F,24) - HP is significantly modular 1 

HP(39) M(F,26; P,15) T(F,5; P,27) Low connectance enhances M and N; general conclusions depend on 
the null model used 

2 

PH&PN(57) M(P) N(P) PN are as modular as PH, however, they are more nested than PH 3 

HP&MU(59) - N(P,R,Fr) Antagonistic networks are as nested as mutualistic ones 4 

FW(31) - N(P,20) No significant difference of nestedness between antagonistic and 
mutualistic networks 

5 

HP(1) M(F,1) N(F,1) HP is both modular and nested due to low connectance  6 

HP&PH(2) M(F,2) N(F,0) Both PH and HP are significantly modular although PH is more 
modular than HP  

7 

HP (1) M(P,1) N(P,0) HP is significantly modular but not nested  8 

FW (1) M(P,1) T&Nr(P,0) FW is significantly modular d but not nested 9 

IR(10) M(P,0) N(P,10) IR is significantly nested but less modular than null model expectation 10 

HP(1) C(R&P,1) - HP are clustered [modular]. The nested structure is observed only in 
compartments 

11 

HP(29) - N(P,17) Antagonistic and mutualistic networks are nested at the same level 12 

HP(31) - T(R,31;Fc,31&P,16) Nestedness is best developed in HP 13 

HP(31) - T&Nr Significance of nestedness depends on the measure and null model used 14 

FW(16) C(R,5) - Some real FWs are less clustered [modular] than random FWs; others 
more clustered 

15 

FW&PP(19) M(Rd,8), 
Qd(Rd,15) 

- Modularity was significant but only slightly higher than null model 
expectation 

16 

 

Connectance being one of the key network properties that determine ecosystem functionality, it has in 

many instances showed remarkable influence on the degree distribution pattern (Estrada, 2007; Dunne et al., 

2002a). The very highly connected among the networks in this study had uniform degree distribution, in 

agreement with previous studies (Estrada, 2007; Dunne et al., 2002b). Intuitively, if a network has got many 

links, it is most probable that each species will have a high degree hence uniform distribution. 

Antagonistic interactions are ubiquitous in nature (Ouyang et al., 2014; Shi et al., 2014; Soufbaf et al., 2012; 

Su and Hui, 2011; Su et al., 2015; Landi et al., 2015; Zhao et al., 2012, 2013, 2015), and the networks formed 

by these kind of interactions have often been regarded as being compartmentalized (Genini et al., 2012; 
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Krasnov et al., 2012; Alcantara and Rey, 2012), we had a rather surprising result when comparing the 

structures of the 61 real networks with those of random networks. Most of the networks studied here are not 

significantly modular. Moreover, of the 17 networks shared by Krasnov et al. (2012) and Fortuna et al. (2010), 

all networks were reported significantly compartmentalized in the former study but only 14 were reported 

significant in the latter study, even though the same null model was used. Of the 27 networks shared here with 

Krasnov et al. (2012), 21 are less compartmentalized than null model expectation, and only one network 

showed a significant sign of modularity; yet Krasnov et al. (2012) reported 24 of the 27 networks as 

significantly modulated [note that the null model F via the swap algorithm in NETCARTO is different from 

the null model used in Krasnov et al. (2012)]. Pires et al. (2011) analyzed 10 individual-resource networks 

(individuals of the same species interacting with different resource species) and found none compartmentalized 

(but all nested). Of the 61 real networks examined here, 11 of the 28 plant-herbivore networks are 

compartmentalized (39%), compared to only 4 being compartmentalized of the 33 host-parasite networks 

(12%), consistent with the conclusion that plant-herbivore networks are more compartmentalized than host-

parasite networks (Cagnolo et al., 2011).  

Although many studies have shown that antagonistic networks are not nested (Thebault and Fontaine, 2010; 

Genini et al., 2012; Meskens et al., 2011), recent studies have reported that antagonistic networks display a 

nested architecture (Bellay et al., 2011; Fortuna et al., 2010; Kondoh et al., 2010; Patterson et al., 2009; Pires 

et al., 2011; Piazzon et al., 2011). Results from this study have demonstrated that antagonistic networks are 

significantly nested. It is however important to note that the probability of detecting nestedness depends on the 

metric and null model used (Timi and Poulina, 2008). For instance, we showed that the Er model depicted a 

higher number of significantly nested networks compared to the CE model. In addition, of the 22 networks 

shared here in and Fortuna et al. (2010), 14 of them are significantly nested when using NODF while 16 are 

significantly nested when using Temperature measure. After reviewing the literature (Table 3.1.7), we think 

categorizing antagonistic networks as being nested represents the majority poll in the literature. Nested 

structure could be best developed in host-parasite networks due to long-term infestation (Patterson et al., 2009) 

and is common in consumer-resource communities (Kondoh et al., 2010). Indeed, further evidence shows no 

difference in nestedness between antagonistic and mutualistic networks (Graham et al., 2009; Kondoh et al., 

2010; Piazzon et al., 2011), with a clear consensus showing the latter being nested (Bascompte et al., 2003).  
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