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Abstract 

A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, 

appearance of the embedding parameter, different choices of the linear operator to the approximated solution 

to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the 

linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger 

equation allow us whether to apply any numerical technique on the discritisation forms or proceed for 

perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the 

linear parts of the components of the solution series and hence a new discretised form is obtained. The general 

discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form. 

 

Keywords discrete homotopy perturbation method; nonlinear models; discretisation.  

 

 

 

 

 

 

 

 

1 Introduction 

Erwin Schrödinger was born on 12 august 1887 in Vienna Austria- Hungry. In the field of quantum mechanics, 

Schrödinger developed a basic result and was awarded by the noble prize as Austrian physicist, by which the 

basis of wave mechanics is formed. Schrödinger suggested the new interpretation of physical meanings of 

wave function. Moreover in different fields of physics, he was the author of many remarkable works; such as 

color theory, electrodynamics theory, statistical mechanics, Physics of dielectrics, cosmology and general 

relativity. He also made a number of attempts to describe and establish the unified theory. In his known book 

“What is Life?” Schrödinger lectured the problem of Genetics while looking at the phenomena of life on the 

basis of the physical point of view. Schrodinger also made experiments in the fields of atmospheric electricity, 
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atmospheric radioactivity, electrical engineering, and studied theory of vibrations. He performed his last 

physical experiment on coherent light and mainly focused subsequently on theoretical aspects in 1919. The 

Schrödinger quantum mechanical wave function is described as   

.i H
t


 


h  

Here the quantities are; 

  Hamiltonian operator Ĥ  

  Imaginary unit i  

  Wave function   

  Plank’s constant h  

The Schrödinger equation being a partial differential equation describes the quantum state of a physical 

system and the changes in that system with respect to time.  It was first time formulated by Schrödinger in 

1925(Schrödinger, 1926) . In the sense of classical mechanics, the governing equation predicts the behavior of 

a system mathematically at any time after the initial state of the system is set and this corresponds to the 

Newton’s law  F ma . In the language of quantum mechanics, the Schrödinger equation is analogous to 

Newton’s law for quantum mechanical system (which usually involves molecules, atoms, sub-atomic particles, 

whether moving freely, bounded or localized). It is not as simple algebraic operation but in general form it is a 

linear partial differential equation that describes the evaluation of time of the wave function system (Griffiths, 

2004). 

The basic postulate of quantum mechanics is the idea of wave function. The Schrödinger equation may 

also be presented as separate postulate, by the statement of some authors it can also be derived from symmetry 

principle. Commonly, for describing the wave particle duality, the Schrödinger equation (SE) comes to define 

its mathematical probability. The most general form of Schrödinger equation is either consisting in special 

relativity or classical mechanics. According to Schrödinger himself, the original invention was non relativistic. 

In quantum mechanics, the Schrödinger equation is not only a way to make its prediction but other 

applications can also be considered, such as matrix mechanic by Werner Heisenberg and path integral 

formulation by Richard Feynmans. 

We have developed the discrete models of predator prey interactions (Shakil, 2014), where the quasi-

chemical approach has been use for modeling the predator prey interactions. These discrete models have 

nonlinear systems of partial differential equations for different types of mechanisms. The idea of discrete 

homotopy perturbation method can be surely extended to these models as it is applicable here. The other 

models of ecology and mathematical biology can also be dealt with this approach. 

 

2 The Problem  

In this work, we want to present a discrete homotopy perturbation method (DHPM) applied to the non-linear 

Schrödinger equation (NLS) with cubic non-linearity. In 1998, J.H. He of Shanghai University introduced the 

homotopy perturbation method to solve the nonlinear ordinary and partial differential equations. This method 

gives an efficient analytical approximate solution with high accuracy in the presence of prescribed conditions. 

The nonlinear Schrödinger equation (NLS) is the nonlinear partial differential equation which contributes to 

the various fields of Mathematical Physics. This reveals the spatio-temporal evolution of a complex field

 ,x t    £  and its general form is given as,  
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2
2

2
0,           ,  0,i q x t

t x

  
      

 
¡                                            (1)       

 ,0 ( ),x f x       
(2) 

where the parameter ,q ¡ and which corresponds to the focusing  0q  or defocusing  0q  effect of the 

nonlinearity. The above form of the equation (1) describes many problems in mathematical Physics. The 

variety of the applications of this field varies from optics (Kivshar and Agrawal, 2003), the electric field 

propagation in optical fibers (Hasegawa,1995), the collapse of Langmuir waves and self-focusing in plasma 

physics (Zakharov, 1972) for the modeling of deep and freak water waves (so-called rogue waves) in the 

oceans (Onorato et al., 2001). Now we know that the equation (1) is completely S- integrable (in the sense of 

Calogero, 1991) which is the inverse scattering method (ISM) (Zakharov  and  Shabat, 1972) and the 

solution of the single soliton is given by, 

   
1

12
2 2

2
, sec ,

c
i x ta

x t e h a x ct
q

      
  

    
      

(3) 

where 
2

4

c

a
 


 . For a fixed t , the function   in equation (3) exponentially decays as x   . It travels 

in the envelope speed  c  and its amplitude is obtained by parameter a R . Then an  N – soliton solution 
for 0q   is given by 

   
1

12
2 2

1

2
, sec ,

p
p p

c
N i x t

p p
p

a
x t e h a x t

q




  

      



  
    

   
  (4) 

Where
2

,
4

c

a
 


   is the position of p -  soliton and   its  velocity  is pc .  At last the particular simple 

solutions of the Schrödinger equation (1) are then become plane wave solutions. 

 

3 The Homotopy Perturbation Method 

The homotopy perturbation method (HPM) will be briefly sketched in this section for the application to the 

nonlinear Schrödinger equation (NLS). To do this we consider (1) as,  

 2 ;          ,   0,t xL i iqF x R t       
                                      

 (5) 

where the notation are t tL    and the nonlinear cubic term is   2
F     . Then the inverse operator of 

tL  is designated as a definite integral, 

   1

0

;       
t

tL t t dt t                                                         (6) 

 2 0,        ,  0,t xL i iqF x t       ¡                                          (7) 

The homotopy perturbation method assumes a solution in the form of series,
0

l
l





   , where each 
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component of  ,x t can be determined recursively. The term  F  which is nonlinear is decomposed into 

infinite series of sub-linear terms while making the nonlinear problem as the series of sub-linear problems.  

Now, we construct homotopy for the equation (7) which is assumes the following form as, 

        0, 1 0H p p L L p N f r            (8)  

where  0,1p  is termed as an embedding parameter, 0  is the initial approximation and  f r  is as an 

analytic function. Then  

      2 2
0, 1 0.xH p p L p L i iq                  (9)      

Suppose that   can be expressed in series of power p  given as,  

2
0 1 2 ...p p        

Thus from equation (9), we then have, 

     
    2

2 2 3
0 1 2 0 0 0 1 2 3

22 3
0 1 2 0 1 2 3

, ... ...

             ... ... 0.

xx xx xx xxH p L p p L pL ip p p p

ipq p p p p p

         

      

          

        
 

Equating the coefficient of 0 1 2 3, , ,p p p p  

   0
0 0;           0;        ,0 ,p L L x f x        (10)

   
0

1 2
1 0 0 0 1;        0;           ,0 0,

xx
p L L i q x            (11)

    2 2
2 1 0 0 1 0 1 2;      2 0,          ,0 0,xxp L i q x                (12)

 

   3 2 2
3 2 1 0 0 0 2 0 1 1 0 2 3;     2 2 2 0;   ,0 0,xxp L i q x                      

and so on. The above equations are recursively solved using the initial approximation, and a series of solutions 

will be obtained step by step iterations.  

 

4 The Standard Discrete Nonlinear Schrödinger Equation (NLS)  

When we apply the discretization to (1) and 
2  is replaced by diagonal discretization  

2

j j   , then 

we obtain Discrete Nonlinear Schrödinger equation (DNL) as; 

22 0,    ,     0,t j h j j ji D q j t        ¢                                  (13)  

 0 ,       ,j jf j  ¢                                                        (14)  

where   ,j j t    = ,h x  and 
 1 12

2

2j j j

x jD
h

    
  represents the quotient of the second 

order difference. The parameters q and 2h   are called (discrete) dispersion and a harmonicity 
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respectively. The equation (13) defines uncoupled set of an harmonic oscillators when 0  . But the 

standard discrete nonlinear Schrödinger (DNLS) equation is not an accurately integrable discrete nonlinear 

Schrödinger (DNLS). The particular discrete plane wave solution for the discrete nonlinear Schrödinger 

(DNLS) equation (13) is given by 

    ,       ,   0.i jkh t
j t e j t   ¢

                                               (15)   

Put (15) into the discrete nonlinear Schrödinger (DNLS) equation (13) then we get, 

 

 
 

         2 2
2

2
cos 1 cos sin 0,

i jkh t
i jkh t i jkh t i jkh te

e kh q jkh t e q jkh t e
h


    


          

 

Or we find that,  
2

2

4
sin .

2

kh
q

h
    

 
  (16) 

Also,  
 1 12

2

2
,

j j j

x jD
h

     
    (17) 

5 The Ablowitz- Ladik Equation  

From equation (1), when we discretize the cubic nonlinear term 
2

j j  ,  then it is replaced by the off-

diagonal discretization as; 

    
 2 21 1

,
2

j j

j j j

   
     

and the Ablowitz-Ladik equation (Ablowitz, 1976) is obtained when the time variable is continuous, that is 

 
21 12 0,        ,   0,

2
j j

t j x j ji D q j t    
         

 
¢  (18) 

With   0 ,       ,j jf j  ¢  (19) 

And 1 1 ,
2

j j
j

    
   

 
(20) 

Put    i jkh t
j t e    in equation (18), and then we have, 

 

     2 1 12
2

2
cos 1 cos ,

2

i jkh t
j j i jkh t

t j x j j

e
i D q kh q kh e

h





     

                 
 

 

  

    2

4
sin cos

2

kh
q kh

h
    

 
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6 The Semi-Discrete Homotopy Perturbation Method (HPM)  

The discretized form of the homotopy perturbation method is simply the solution to the discrete nonlinear 

Schrödinger equation (DNLS) (13) or the AL-equation (18). Since we have constructed a homotopy for the 

equation (7), then from the equations (10), (11), (12), we have; 

   0 0 0;        ,0 ,L L x f x                                               (21) 

   
0

2
1 0 0 0 10;           ,0 0,

xx
L L i q x                                   

(22) 

    2
2 1 0 0 1 0 1 22 0,          ,0 0,xxL i q x                                       

(23) 

   2 2
3 2 1 0 0 0 2 0 1 1 0 2 32 2 2 0;   ,0 0,xxL i q x                               

(24) 

From equation (21) and using the given condition we have the so called zero-th order equation which contains 

the initial approximation to start the analysis for the proposed method. Then we have, 

0 0 .    

where 0  is the initial approximation. The equation (22) yields, 

   
0

1 2
1 0 0 0 1;           ,0 0,

xx
iL q x        

                             (25) 

Similarly, the equations (23)- (24) yield the following set of equations; 

    1 2
2 1 0 0 1 0 1 22 ;          ,0 0,t xxiL q x               (26) 

   1 2 2
3 2 1 0 0 0 2 0 1 1 0 2 32 2 2 ;         ,0 0,t xxiL q x                       

(27) 

Since we know that 
 2 21 1

,
2

j j

j j j

   
    then the equations (25)-(27) take the following 

forms accordingly as; 

 
0

1, 1,1
1 0 ,0 1

0

;           ,0 0,
2xx

j l j l
t jiL q x   
    

                        

(28) 

 

1,1 1,1 1,0 1,0 1.0 1,01
2 1 ,0 ,1 ,0 ,0 ,1

2

;
2 2 2

         ,0 0,

j j j j j j
t xx j j j j jiL q

x

 



     
         

          
    


 

       (29) 
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 

1,2 1,2 1,0 1,0 1,1 1,11
3 2 ,0 ,2 ,0 ,1 ,0

1,1 1,1 1,0 1,0 1,0 1,0
,0 ,1 ,1 ,0 ,2

3

2 2 2

    ;  
2 2 2

       ,0 0,

j j j j j j
t xx j j j j j

j j j j j j
j j j j j

iL q

x

 



      

     

        
         

  
       

        
  


 

       (30)

 

 1,3 1,3 1,0 1,01
4 3 ,0 ,3 ,0

1,2 1,2 1,1 1,1 1,2 1,2 1,0 1,0
,1 ,2 ,0 ,0 ,2 ,1

1,1 1,1 1,0
,0

2 2

     
2 2 2 2

     
2

j j j j
t xx j j j

j j j j j j j j
j j j j j j

j j j j
j

iL q     

       

  

       
      

 
              

            
   

     
  

 

1,0 1,1 1,1 1,0 1,0
,1 ,2 ,1 ,1 ,0 ,3

4

,.. ;
2 2 2

,0 0,

j j j j
j j j j j j

x

             
           

   


                 (31) 

and so on. 

Now we are going to discuss an ordinary example to the plane wave solution (15) to the discrete nonlinear 

Schrödinger equation (13) with the help of our analysis of homotopy perturbation method and using the 

relation,  
2

2

4
sin

2

kh
q

h
        

   
 from the semi-discrete dispersion given in (16).  

On the other hand, we can calculate the x -independent solution     2
iq f t

j t fe   . The DNLS equation 

(13) and the AL equation (18) agree in this special case and it is properly easy to see that HPM produces 

exactly the wanted solution. Now we are going to consider the plane wave solution (15) and AL equation 

(18).Now we start with the initial condition given below as,  

    ,0
ijkh

j jt f e  
                                          (32) 

From Equation (25) and (28), we can write in connection with the equation (32) 

   

 

1 2 1 2
,1 ,0 0 0

1,0 1,01 2 1
,0 ,02

2
2

,

4
       sin , 

2 2

4
       - sin cos - .

2

j t x j t

j jijkh
t t j j

ijkh ijkh

iL D t iqL

kh
iL e iqL

h

kh
ite q kh it e

h

   

 
 



 

  

 

       
   

        

 

From Equation (26) and (29), we can write in connection with the equation (32)   
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7 Conclusion 

As a general analysis, we have seen that the homotopy perturbation method has the advantage over the other 

methods that we are free to choose the initial guess of different types, not bounded to apply this technique in 

spite of the existence of the large parameter because of the appearance of the embedding parameter, different 

choices of the linear operator. The solution is approximated by the series in the form of the parameter which is 

supposed to be small and takes the values between 0 and 1. The approximate solution gives, in some cases, 

closed form or the exact solution of the problems when the parameter is equal to 1.  

 Here, we have applied the homotopy perturbation method to the non-linear Schrodinger equation. In 

387



Computational Ecology and Software, 2015, 5(4): 380-388 

 IAEES                                                                                    www.iaees.org

Adomian decomposition method, we have to tackle with the so called Adomian polynomials and their hectic 

calculations. But in our analysis, we are not dependent upon these terms and find the linear forms of the 

components without these calculations. 

 We deal with the discretised forms of the nonlinear Schrodinger equation. Then at this stage, we are free 

whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of 

the problem. The discretised forms are obtained directly from the constructed homotopy, which on the first 

step provides the linear parts of the components of the solution series and then the partial derivatives are 

discretised using the standard technique. And hence a new discretised form is obtained with the help of this 

technique and the other standard method to discretise the derivatives. 

We have seen that we consider the general form for the NLSE and then chose a general form of the initial 

guess and find the solution in the closed form. 
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