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Abstract 

To elucidate the mechanisms for the evolution of cooperation has been a core problem in biology, economics 

and sociology. Evolutionary game theory has proven to be an efficient approach to investigate the problem by 

using models based on so-called social dilemmas. Spatial structure is indicated to have an important effect on 

the evolution of cooperation and has been intensively studied during recent years. From this perspective, we 

review our studies in evolutionary dynamics based on a repeated game with three strategies, ‘always defect’ 

(ALLD), ‘tit-for-tat’ (TFT), and ‘always cooperate’ (ALLC). With mathematical analysis and numerical 

simulations, the results show that cooperation can be promoted in spatially-structured populations. Cooperators 

prevail against defectors by forming stable clusters, which is called the `spatial selection'. Meanwhile, lattice 

structure also inhibits cooperation due to the advantage of being spiteful. Furthermore, simulations 

demonstrate that a slight enforcement of ALLC can only promote cooperation when there is weak network 

reciprocity, while the catalyst effect of TFT on cooperation is verified. 

 

Keywords evolutionary game theory; social dilemma; spatial structure; repeated game; enforcement; network 

reciprocity. 

 

 

 

 

 

 

 

 

1 Introduction 
The traditional framework of evolutionary dynamics rests on the ideal assumption of infinitely large, well-

mixed populations and deterministic dynamics. However, the real population has finite number of individuals 

and not any of the two meet with the same probability. For instance, the interaction among neighbors is likely 

than distant ones. Besides, the real spatial configuration always takes on some degree of heterogeneity, which 

Computational Ecology and Software 
ISSN 2220­721X 
URL: http://www.iaees.org/publications/journals/ces/online­version.asp 
RSS: http://www.iaees.org/publications/journals/ces/rss.xml 
E­mail: ces@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Computational Ecology and Software, 2015, 5(4): 299-316 

 IAEES                                                                                     www.iaees.org

also causes the randomized interactions of individuals. These realizations lead to the study of spatial structure 

on the evolutionary ecology, which has been the hotspot of research in recent years. 

Cooperation is essential for evolution but may be difficult to achieve within the classic Darwinian 

framework of evolutionary theory (Zhang, 2015; Zhang and Liu, 2015). Cooperators have to succeed in the 

struggle for survival with defectors, who by definition have a certain fitness advantage. So the question of how 

natural selection can lead to cooperation has fascinated evolutionary biologist for a longtime. Evolutionary 

game theory(Maynard Smith and Price, 1973) has always being used as a standard tool to investigate the 

problem of cooperation, two most famous metaphors are the Prisoner's Dilemma game (PD) (Rapoport and 

Chammah, 1965) and the Snowdrift game (SD) which is also known as the Hawk-Dove game, or the Chicken 

game (Maynard Smith and Price, 1973). 

Direct reciprocity (Trivers, 1971) which goes beyond the restriction of kinship was reported as a powerful 

mechanism for the evolution of cooperation. The game theoretic framework of direct reciprocity is the 

repeated Prisoner's Dilemma game (repeated PD), which is one type of solution to the dilemma (Axelrod and 

Hamilton, 1981). The most famous strategy of this type is `tit-for-tat' (TFT), the most basic conditional 

strategy, which consists of cooperating in the first round of the interaction, and taking the opponent's strategy 

in the previous round in each of the following round. In Axelrod's (1984) seminal computer tournaments, TFT 

was proven as the only successful strategy against a range of other strategies, such as the two extreme 

unconditional strategies, `always cooperate' (ALLC) and `always defect' (ALLD). In a well-mixed population, 

ALLC is dominated by ALLD, which is bistable with TFT if average number of rounds is sufficiently high. 

TFT and ALLC are neutral if there is no noise (Nowak and Sigmund, 2004). 

Network reciprocity has been shown to be an important mechanism for the evolution of cooperation, which 

is the generalization of spatial reciprocity (Nowak and May, 1992) to evolutionary graph theory (Lieberman et 

al., 2005; Ohtsuki and Nowak, 2006a, b; Ohtsuki et al., 2006; Szabó and Föth, 2007). They assume that 

individuals are arranged in a spatial configuration and that interactions between neighboring individuals on 

this configuration are more likely than between distant individuals. The fitness of individuals is based on 

interactions with their local neighbors (Nowak and May, 1992,1993; Lindgren and Nordahl, 1994; Killingback 

and Doebeli, 1996; Nakamaru et al., 1997; Szabó and Töke, 1998; van Baalen and Rand, 1998; Brauchli et al., 

1999; Mitteldorf and Wilson, 2000; Nowak and Sigmund, 2000; Hauert, 2002; Le Galliard et al., 2003; Hauert 

and Doebeli, 2004; Doebeli and Hauert, 2005; Roca et al., 2009a; Nowak et al., 2010a b; Wu et al., 2010). 

Besides the two mechanisms mentioned above, group selection, kin selection, and indirect reciprocity have 

also been proposed for the evolution of cooperation (for a review, see Nowak, 2006). The most fundamental 

requirement for the evolution of cooperation is to construct assortative interactions between cooperative 

individuals (Eshel and Cavalli-Sforza, 1982; Fletcher and Doebeli, 2009), which can guarantee a close 

relatedness between the actor and recipient, and thus essential for Hamilton rule (Hamilton, 1964). Hamilton 

rule means that cooperation can be favored by natural selection if the benefit of cooperator, after discounted by 

the relatedness between players, is larger than the cost. 

Our work focuses the attention on systematic and extensively investigations about spatial effect on the 

evolutionary dynamics of the three strategies, ALLD, TFT, and ALLC. The ultimate goal is to answer the 

question, how spatial structure influences the evolution of cooperation and what impact it has on the 

evolutionary dynamics of spatially-structured models. 

The article is arranged as follows. In section 2, we present the social dilemma games and replicator 

dynamics of a non-spatial game model. In section 3, different types of spatial game models are presented, 

where the spatiotemporal dynamics of the three strategies are studied. Section 4 offers a conclusion. 
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2 Non-spatial Game Models 

2.1 Social dilemma game models 

Generally, considering a game with two strategies, cooperate or defect, the payoff matrix is denoted as follows, 

C D

C R S

D T P

 
 
 

       (1) 

If both players cooperate, they will be rewarded with R points. If they both defect, they get the punishment P . 

If one player defects while the other cooperates, the defector gets the temptation payoff T, while the other gets 

the sucker's payoff S . 

With T > R > P > S and 2R >T  + S  (Hofbauer and Sigmund, 2003), we have an obvious dilemma, in 

any round, the strategy D  is unbeatable no matter what the opponent does. The four parameters can be 

reduced to R = 1, T = b (1 < b < 2), S = 0, P = 0 (substituting this into Eq.1 gives Eq. 2) for the purpose of 

analytical simplicity, the only one parameterb characterizes the advantage of defectors against cooperators 

(Nowak and May, 1992,1993). 

1 0

0

C D

C

D b

 
 
 

.       (2) 

While for parameters satisfying T > R > S > P , it is the so called SD game. Parameterized payoff matrix 

below is commonly used (Hauert and Doebeli, 2004). 

1 2

0

C D

C b

D b

 
 
 

.        (3) 

Define ω as the probability that the same two players interact in the following step as well, then ߱௡ିଵሺ1 െ

߱ሻis the probability that they interact exactly n times (n= 1,2,3ڮ). Theexpected number of times that the two 

players interact is 1 ሺ1 െ ߱ሻ⁄  (Nakamaru et al., 1997).We get the payoff matrix for the three strategies ALLD, 

TFT, and ALLC as follows, 

     
     

     























111

111

111

RRS

RRPS

TPTP

ALLC

TFT

ALLD
ALLCTFTALLD

  (4) 

Particularly, the parameter settingR = 1, T= b (1 <b< 2), S = 0, P = 0 previously preserved in the PD is also 

used for Eq. 4. 

2.2 Replicator equation of non-spatial game model 

Traditionally, evolutionary game model always assumes randomly interacting populations; it does not include 

the effect of spatial structure on population dynamics. Replicator equation is introduced as a corresponding 

mathematical tool to describe evolutionary game dynamics in the deterministic limit of an infinitely large and 

well-mixed population (Taylor and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980; Weibull, 1995; 

Hofbauer and Sigmund, 1998, 2003). 

ௗ௫೔
ௗ௧
ൌ ሻ௜ܺܣ௜ሾሺݔ െ ,ሿܺܣ்ܺ ܺܣ்ܺ ൌ ∑ ሻ௝ܺܣ௝ሺݔ

௡
௝ୀଵ ݅ ൌ ڮ,1,2 , n          (5) 
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The ݅௧௛ element ݔ௜of x is denoted as the frequency of the strategy i, A is the payoff matrix. Substituting Eq. 

4 into Eq. 5, a dynamic system can be obtained. Through the classical equilibrium stability and phase plane 

analysis, the dynamics was summarized in Table 1, with Fig. 1illustrating an example.  

 

Table 1 The stability of the equilibria of the replicator dynamics. 

Equilibrium bሺ1 െ ߱ሻ>1 bሺ1 െ ߱ሻ<1 

 ଷ=0 Stable Higher order odd pointsݔ+ଶݔ

ଶݔଷ=1ቀݔ+ଶݔ ൐
௕ିଵ

௕ఠ
ቁ 

Unstable Stable 

ଶݔଷ=1ቀݔ+ଶݔ ൏
௕ିଵ

௕ఠ
ቁ 

Unstable Unstable 

ଷݔ ൌ
1 െ ܾሺ1 െ ߱ሻݔଶ

ܾ െ 1
 

Non-Equilibria Fixed points 

1If the parameters chosen satisfy ܾሺ1 െ ߱ሻ> 1, the evolutionary stable state is ALLD. If ܾሺ1 െ ߱ሻ< 1, the evolutionary 

dynamics is a bistable case depending on the initial state. That is, except ALLD is the evolutionary stable state, the mixed state of 

TFT and ALLC can also be evolutionary stable for ݔଶ>ሺܾ െ 1ሻݔଷ ሺ1 െ ܾ ൅ ܾ߱ሻ⁄  ଷindicate the frequencies of TFT andݔଶandݔ)

ALLC, respectively). 

 

 

3 Spatial Game Models 

3.1 Games on grids 

Axelrod (1984) already pointed out the potential role of spatial structure, but it was really the seminal paper by 

Nowak and May (1992) that spawned a large number of investigations of ‘games on grids’ (Nowak and 

Sigmund, 2000), i.e. individuals are assumed to distribute on rigid spatial structures as specified by regular 

lattices. Each individual takes up a single lattice site and engages in pairwise interactions with its local 

neighbors. The total payoff accumulated in all interactions during one time step is the score of an individual. In 

the replacement process, each individual changes its strategy according to the score of itself and its neighbors. 

The lattice is evolved in time by considering successive generations. Each individual has the opportunity to 

update its strategy according to a concrete updating rule. There are a number of different ways in which such 

updating procedures can be implemented, which can be deterministic or probabilistic, synchronous or 

asynchronous. Four updating rules below are often used in simulations. 

(1) Best takes over (Nowak and May, 1992). In biological terms, this means that only the most successful 

neighbor has the opportunity to reproduce and the individual under consideration is replaced by a clonal 

offspring having the same strategy as its parent. This is a fully deterministic rule. 

(2) Proportional update (Nowak et al., 1994). This stochastic updating rule is more realistic, in which one 

individual adopts the strategy of a neighbor with a probability proportional to the neighbor's score. Describe 

the probability of the lattice j is taken up by strategy x as follows 

  pሺ݆, ሻݔ ൌ
∑ ௦೔ೣ஺೔

೘ೡೕ
೔సభ

∑ ஺೔
೘ೡೕ

೔సభ

, 

where ݏ௜௫= 1 if i is taken up by x, or else, ݏ௜௫= 0. Parameter ܣ௜ denotes the total score of individual iby 

interacting with himselfand other local neighbors. Parameter m is the measurement of stochasticity. For m= 

0, it is neutral evolution; m= 1 is called proportionalupdate, note that under this situation, an individual 

occasionally switches to a strategy that returned a lower score to one of its neighbors than his own strategy has 
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achieved. m ՜ ∞ returns to the best takes over rule. 

(3) Imitate the better. In analogy to the imitation rule proposed by Weibull (1995) and Schlag (1998), an 

individual considers the difference between the scores of its neighbors and its own. With a probability 

proportional to this difference it imitates the neighbor's strategy, provided that the difference is positive, with a 

probability of zero otherwise. 

(4) Stochastic update. In order to emphasis the link between evolutionary game theory and theoretical 

physics, physicists have revised the imitation probability. Denote the probability of an individual ximitates the 

neighbor ݔᇱ as (Szabó and Toke, 1998; Hauert and Szabó, 2005)  

  pሺݔ ՚ ᇱሻݔ ൌ
ଵ

ଵା௘௫௣ൣି൫஺ೣᇲି஺ೣ൯ ௞⁄ ൧
, 

where ܣ௫ and ܣ௫ᇲrepresent the payoff of x and ݔᇱ, respectively. The uncertainty in the imitate process 

(arising from change of payoff or the failure in determining process) is the noise ݇. Thisillustrates a good 

strategy will be easily taken, while it's unlikely to take a bad strategy. When ݇ ՜ ∞, the payoff has no use 

(information lost), individuals will take a strategy stochastically. 

                    (a)                                            (b) 

Fig. 1 The replicator dynamics of the three strategies in the completely well-mixed population. Parameters are: (a) 

b=9 5⁄ ω=1 3⁄ , and b>
ଵ

ଵିఠ
;(b) b=9 5⁄ , ω=2 3⁄ , and b<

ଵ

ଵିఠ
.The lines with arrows are the trajectories, where the arrows indicate 

the direction of the trajectories. The solid lines without arrows are stable fixed sets, while the dashed lines are unstable manifold. 

The dotted line is an invariant set in (b). 

 

An unambiguous conclusion has been reached from studies of the spatial PD is that spatial structure 

promotes cooperation (Nowak and May, 1992, 1993; Hubermann and Glance, 1993; Nowak et al., 1994; 

Killingback et al., 1999). However, in stark contrast to the spatial PD, spatial structure is generally detrimental 

to cooperation (Hauert and Doebeli, 2004). Moreover, the conclusion that spatial structure is beneficial for 

cooperation has also been reached for spatial versions of the IPD (Lindgren and Nordahl, 1994; Grim, 1995; 

Brauchli et al., 1999). 

Zhang et al. (2009a) studied the spatiotemporal dynamics of the three strategic players arranged in a two-

dimensional spatial lattice by using the best takes over updating rule. Nine representative regions are identified 

through computer simulations (see Fig. 2). For example, stable coexistence state of the three strategies, 
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spatiotemporal chaos (Nowak and May, 1992) (take Fig. 3 as an example), stable percolation network, 

evolutionary kaleidoscope, irregular frozen state (Lindgren and Nordahl, 1994) and so on. The spatial game 

model gives rise to amazing evolutionary diversity where cooperation could be promoted. Spatial structure is 

illustrated as the keystone of the evolution of intraspecific diversity.  

3.2 Lattice-structured population and approximation method  

In the last twenty years, statistical physics have inspired new modelling techniques to ecologists (Dieckmann 

et al., 2000). Individuality is preserved and space is considered explicitly, either as a continuous arena, or as a 

network of sites. These models give a deterministic analytical representation of individual-based spatial 

models. Lattice models as one approach of them are attracting increasing attention from theoretical ecologists 

for study the relationship between spatially localized interactions and overall population and evolutionary 

dynamics (Liggett, 1985; Durrett, 1988). Because they are more realistic for many ecological and social 

phenomena than the classical modelling approaches, such as reaction-diffusion models and patch-structured 

models (metapopulations, coupled-map lattices, and deme-structured populations), which have various 

simplifying assumptions that limit their applicability, in particular in evolutionary contexts (Hui and McGeoch, 

2007; Lion and van Baalen, 2008). 

 

 

Fig. 2 Based on computer simulations, the parameter areas can be summarized into nine different dynamic regions, each 

characterized by a distinct temporal dynamics and a corresponding spatial distribution. The horizontal axis is ω and the vertical 

axis is b. All the nine regions are indicated in bold numbers. 

304



Computational Ecology and Software, 2015, 5(4): 299-316 

 IAEES                                                                                     www.iaees.org

 
(a) 

              (b)                 (c) 
 

Fig. 3 Spatiotemporal dynamics for b = 1.45; ω= 0.08 in region 3 (Zhang et al., 2009a) .Fig. 3.(a)is the temporal dynamics of 

frequencies of the three strategies over 1000 generations, Fig. 3.(b) and 3.(c)are the spatial patterns at G = 100 and G = 1000, 

respectively.  

 

The most promising approach for understanding the dynamics of lattice models analytically involves the 

technique of pair approximation (Matsuda et al., 1992; Sato et al., 1994; Satō and Iwasa, 2000). This method 

devotes to construct a closed dynamical system of overall densities and correlation between nearest neighbors, 

while neglecting higher order terms. This approach is efficient to gain insight into a model's behavior and 

avoids the large cost of computation time in direct computer simulations, it often proves very successful in 

predicting system's behavior even when the mean-field approximation fails dramatically (Harada and Iwasa, 

1994; Harada et al., 1995; Kubo et al., 1996; Nakamaru et al., 1997; Iwasa et al., 1998; Dieckmann et al., 

2000). 

The dynamics of the three strategies on lattice-structured populations was also studied, where the score-

dependent viability model (Nakamaru et al., 1997) is used to describe the life history process, and pair 

approximation is used to mathematical analysis. Simulations show that lattice structure promotes the evolution 

of cooperation compared with non-spatial populations, which is also confirmed by invasion probability 

analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of 

being spiteful, which indicates the key role of specific life history assumptions. Mean-field approximation fails 

to predict the outcome of computer simulations. Pair approximation is accurate in two-dimensional space but 

fails in one-dimension. Fig. 4 is an example. 
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                    (a)                       (b) 

                    (c)                      (d) 

Fig. 4 The dynamics under the pair approximation, parameters values are b= 1.1, ω= 0.3.Fig.4.(a) is the dynamics in one-

dimension, Fig. 4.(b), Fig. 4.(c), and Fig. 4.(d) are the dynamics in two-dimension with neighborhood size are 4, 8, and 25, 

respectively. 

 

 

3.3 Evolutionary dynamics on regular graphs 

More generally, spatial game belongs to the category of evolutionary graph theory, in which individuals 

occupy the vertices of a graph, and the edges denote who interacts with whom. A number of different updating 

mechanisms can be used to determine the evolving state of the graph, specifying how the composition of the 

population changes under natural selection. A considerable body of researches have been devoted to this 

subject (Abramson and Kuperman, 2001; Santos and Pacheco, 2005; Antal et al., 2006; Ohtsuki et al., 2006; 

Ohtsuki and Nowak, 2006a,b; Pacheco et al., 2006; Santos et al., 2006a,b; Ohtsuki and Nowak, 2007; Ohtsuki 

et al., 2007; Szabó and Fäth, 2007; Taylor et al., 2007; Fu and Wang, 2008; Roca et al., 2009b; Tarnita et al., 

2009a,b; Perc and Szolnoki, 2010; Fehl et al., 2011; Allen et al., 2012; Cavaliere et al., 2012). Remarkably, 
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Ohtsuki et al. (2006) have derived a simple rule as a good approximation for general graphs, which means that 

natural selection favors cooperation when the benefit of the altruistic act,b, divided by it cost, c, exceeds the 

average number of neighbors, k(i.e. ܾ ܿ⁄ >kimplies cooperation). Particularly, in most studies, the interaction 

network is assumed to be a regular graph, which is indeed the case if the players are spatially confined. 

Ohtsuki and Nowak (2006b) developed a new framework of replicator equation on a regular graph of 

degree k in the limit of weak selection for large population size: 

ௗ௫೔
ௗ௧
ൌ ܣ௜ሾሺݔ ൅ ௜ݔሻܤ െ ݔܣ்ݔ         ,ሿݔܣ்ݔ ൌ ∑ ௝ݔ

௡
௝ୀଵ ሺݔܣሻ௝i ൌ  n.         (6)ڮ,1,2

Compared with Eq. (1), a new payoff matrix B is added, which describes the local competition of strategies 

(elements ܾ௜௝ depend on the concrete update rule). Typically, three kinds of update rules of evolutionary 

dynamics: `birth-death' (BD), `death-birth' (DB) and `imitation' (IM) were introduced. Respectively, the 

elements of matrix Bare defined as 

ܾ௜௝ ൌ
௔೔೔ା௔೔ೕି௔ೕ೔ି௔ೕೕ

௞ିଶ
,  (7) 

ܾ௜௝ ൌ
ሺ௞ାଵሻ௔೔೔ା௔೔ೕି௔ೕ೔ିሺ௞ାଵሻ௔ೕೕ

ሺ௞ାଵሻሺ௞ିଶሻ
,                   (8) 

ܾ௜௝ ൌ
ሺ௞ାଷሻ௔೔೔ା௔೔ೕି௔ೕ೔ିሺ௞ାଷሻ௔ೕೕ

ሺ௞ାଷሻሺ௞ିଶሻ
,                   (9) 

The evolutionary dynamics of the three strategies on regular graphs are studied. The results show that spatial 

structure promotes the evolution of cooperation, especially for DB and IM (Zhang et al., 2009b). The 

mathematical results for stability analysis under the DB updating rule are summarized in Tab. 2, Fig. 5 is an 

example.  

 

 

Table 2 The stability of the equilibria and the replicator dynamics for DB updating rule. 

b ሺ0,0ሻ absorbing state 

݇ଶ െ 1
ሺ1 െ ߱ሻሺ݇ଶ െ ݇ െ 1ሻ

൏ ܾ ൏ 2 
stable ሺݔ෤ଶ, 0ሻ 

݇ଶ െ 1
݇ଶ െ 1 െ ݇ െ ߱

൏ ܾ ൏
݇ଶ െ 1

ሺ1 െ ߱ሻሺ݇ଶ െ ݇ െ 1ሻ
 

unstable Equilibria between തܲଶ and (1,0) 

1
1 െ ߱

൏ ܾ ൏
݇ଶ െ 1

݇ଶ െ 1 െ ݇ െ ߱
 

unstable ݔଶ ൅ ଷݔ ൌ 1 

݇ଶ െ 1
݇ଶ െ 2

൏ ܾ ൏
1

1 െ ߱
 

unstable Equlibria between തܳଶ and (1,0) 

1 ൏ ܾ ൏
݇ଶ െ 1
݇ଶ െ 2

 
unstable ݔଶ ൅ ଷݔ ൌ 1 

1ሼݔଵ, ,ଶݔ  ଷሽare the fractions of ALLD, TFT and ALLC, respectively, b is the advantage of defectors over cooperators, ω is theݔ

probability that the same two players interact in the following step as well, and kis the degree of the regular graph. തܲଶ ൌ

ቀ
ሺ௕ିଵሻሺ௞ିଶሻሺ௞ାଵሻା௕ሺଵିఠሻିሺ௞ାଵሻ

௕ఠሺ௞ିଶሻሺ௞ାଵሻ
, 1 െ

ሺ௕ିଵሻሺ௞ିଶሻሺ௞ାଵሻା௕ሺଵିఠሻିሺ௞ାଵሻ

௕ఠሺ௞ିଶሻሺ௞ାଵሻ
ቁand തܳଶ ൌ ቀ

ሺ௞ିଵሻሺ௕ିଵሻ

௕ఠሺ௞ିଶሻ
, 1 െ

ሺ௞ିଵሻሺ௕ିଵሻ

௕ఠሺ௞ିଶሻ
ቁ. 
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 (a)                          (b) 

Fig. 5 The replicator dynamics of the three strategies for DB updating on regular graph of degreek. Parameter values: (a) b= 

9 5⁄ , ω=7 33⁄ , k= 4, and b>ሺ݇ଶ െ 1ሻ ൫ሺ1 െ ߱ሻሺ݇ଶ െ ݇ െ 1ሻ൯ൗ ; (b) b= 29 28⁄ ,ω=25 29⁄  , k= 4 and 1 < b<ሺ݇ଶ െ 1ሻ ሺ݇ଶ െ 2ሻ⁄ . 

The lines with arrows are the trajectories, where the arrows indicate the direction of the trajectories. The solid lines without 

arrows are stable fixed sets, while the dashed lines are unstable manifold. 

 

3.4 Evolutionary dynamics on regular graphs with external constraints 

External constraint denotes the case where a vacant site on a network adopts a particular strategy with a 

predefined probability. This behavior can be linked to zealots in social dilemmas and has been shown to 

change the evolutionary outcome to some extent (e.g. Masuda, 2012; Mobilia, 2012; Liu et al., 2012). 

A modified `death-birth (DB) updating' rule is used for renewing the network (Zhang et al., 2014). In terms 

of social learning, a randomly chosen individual decides to update his strategy. He is forced to adopt a 

cooperative strategy with probability p, while with probability 1 െ p,chooses among his neighbor’s strategy 

proportional to their fitness. 

Mathematical analyses are conducted via pair approximation and diffusion approximation methods. The 

results show that the condition for cooperation to be favored on graphs with constraint is  തܾ ܿҧ⁄ ൐ ݇ ⁄ҧܣ ሺܣҧ ൌ 1 ൅

݌݇ ሺ1 െ ⁄ሻ݌ ሻ, where  തܾ and  ഥܿ  represent the altruistic benefit and cost, respectively, k is the average degree of 

the graph and pis the probability of compulsory cooperation by external enforcement. It illustrates that the 

external constraint enforced on graph favors the fixation of a cooperative strategy in population. The parameter 

p has a monotonic effect on ݇ ⁄ഥ ܣ for a specific k value, hence the larger p, the easier it is for cooperation to 

be favored. The effect of p is relatively obvious for a large k value, which means external constraint will 

have a much more pronounced effect on the evolution of cooperation under weak network reciprocity (Ohtsuki 

and Nowak, 2007). 

Furthermore, the evolutionary dynamics of the three strategies under regular graph with external 

constraints are also studied, by using a similar analysis to the previous one and by referring to the work of 

Ohtsuki and Nowak (2006b), the dynamics can be described as, 

ሶ௜ݔ ൌ ߱௦ሺ1 െ ሻ݌
ሺ௞ାଵሻሺ௞ିଶሻమ

௞ሺ௞ିଵሻ
௜ሺݔ ௜݂ ൅ ݃௜ െ ሻ׎ െ ௜ݔ݌ ൅  ௜ଷ,                       (10)ߜ݌

where i א ሼ1,2,3ሽ, 1, 2 and 3 represents ALLD, TFT and ALLC, respectively.߱௦ is the selection 

coefficient.  ௜݂ ൌ ∑ ௝௝ݔ ܽ௜௝,݃௜ ൌ ∑ ௝௝ݔ ܾ௜௝, ׎ ൌ ∑ ௜௜ݔ ௜݂ ൌ ∑ ௜௜,௝ݔ  ௝ܽ௜௝,              (11)ݔ

ܾ௜,௝ ൌ
ሺ௞ାଵሻ௔೔೔ା௔೔ೕି௔ೕ೔ିሺ௞ାଵሻ௔ೕೕ

ሺ௞ାଵሻሺ௞ିଶሻ
௜ଷߜ , ൌ ቄ

 0,   ݅ ് 3
1,   ݅ ൌ 3 .                                    (12) 
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Numerical simulations demonstrate that a slight enforcement of ALLC can only promote cooperation when 

there is weak network reciprocity (Fig. 6 is an example), while the catalyst effect of TFT on cooperation is 

verified. In addition, the interesting phenomenon of stable coexistence of the three strategies can be observed. 

The model can represent evolutionary dynamics on a network structure which is disturbed by a specified 

external constraint. 

Fig. 6 The evolutionary dynamics of the repeated game by enforcement of ALLC.߱௦is fixed at 0.1. For Fig.a(1)-c(1), parameters 

are b=9 5⁄ ;ω= 1 3⁄ , and k= 4; For Fig.a(2)-c(2), b=9 5⁄ ;ω= 7 33⁄ , and k= 4; For Fig.a(3)-c(3), b=9 5⁄ ;ω= 7 33⁄ , and k= 40; 

From top to bottom of every row, the enforcement strength p are 0, 0.001, and 0.1.  
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4 Discussion 

In this work, I reviewed our works about the spatial game models combing direct reciprocity and spatial 

reciprocity together to investigate how cooperation is influenced in spatially-structured populations. The 

spatiotemporal dynamics of the three strategies ALLD, TFT, and ALLC were investigated by both 

mathematical analysis and computer simulations. The results show that evolution of cooperation can be 

promoted in spatially-structured populations (e.g. rigid grid, lattice structure, regular graphs). Meanwhile, 

lattice structure also inhibits cooperation due to the advantage of being spiteful. Furthermore, the external 

enforcement of cooperation on graphs illustrates that it cannot always promote cooperation. 

In line with some previous studies, it was observed that the survival of cooperators in spatially-structured 

populations was based on forming clusters which allowed them to persist despite exploitation by defectors 

along the cluster boundaries (Doebeli and Hauert, 2005). A detailed analysis by Langer et al. (2008) presented 

that how a few cooperators invade and expand in a world of defectors. The expansion process takes place once 

the invasion succeeds. Firstly, cooperators and defectors quickly establish a local equilibrium and then they 

uniformly expand in space. Simulations show that cooperators typically form a single ever growing cluster 

interspersed with specks of defectors under hospitable conditions. Whereas under more hostile conditions, 

cooperators form isolated, compact clusters that minimize exploitation by defectors. More precisely, the 

impact of geometry of cluster formation to the spatiotemporal dynamics in spatially structured population was 

revealed (Zhang et al., 2009a). In particularly, simulations have shown the coexistence of strategies might be 

achieved by forming stable spatial domains. Generally, any compact domain formation would be preferable for 

TFT players, however, ALLD players make them become rare. Domain formation is inevitably changed by 

competition between these mutual invasion processes of the three types of players, which varies in different 

parameter regions. For example, TFT and ALLC players can invade the territory of ALLD players along 

straight boundaries, while ALLD players gain along irregular boundaries for some given interval of b and ω. 

Visualizing the time dependent configuration, we can observe that the center, size, shape and location of a 

domain change continuously and a segregated domain may disappear without any trace. 

Lattice-structured population has a tendency to make clusters of the same strategy when individuals 

interact with neighbors repeatedly. However, a negative effect caused by it cannot be neglected. This is due to 

the spiteful behavior (Gadagkar, 1993) by killing neighbors and replacing them. A player of a lower score is 

more likely to die and then offers a higher opportunity to colonize the vacant site by a spiteful individual who 

reduces the player's payoff, which is under the specific life history assumption of the score-dependent viability 

model. It was demonstrated that pair approximation is accurate to two dimension but failure to one dimension 

due to the spatial continuity of a two-dimensional lattice (Zhang et al., 2011). Other approximation method 

such as pair-edge approximation (Ellner et al., 1998) may be needed which deserves further research. 

Considering the evolution of cooperation on regular graph, DB updating rule can promote the evolution of 

cooperation involving the three repeated strategies. Pure cooperation is possible, as well as coexistence of 

ALLD and TFT (Zhang et al., 2009b). Furthermore, the effect of the presence of constraint makes the 

dynamics of the system more diverse, depending on the parameter values. In consistent with the work by Liu 

et al. (2012), external enforcement of cooperation will benefit the evolution of cooperation, as expected. 

However, the presence of the constraint on ALLC may reduce the frequency of cooperators if the enforcement 

of ALLC is not too large under strong network reciprocity. Pure cooperation will never evolve unless external 

constraint of ALLC is strong enough. Moreover, a state of pure cooperation can be reached provided that the 

compulsory force is put on TFT (Zhang et al., 2014). The result can be interpreted in the context of a social 

society: some enforcement can lead to an undesired result betraying its original intention (Szabó et al., 2000). 

An interesting phenomenon of coexistence of the three strategies (Imhof et al., 2005; Brandt and Sigmund, 
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2006; Szöllösi and Derényi, 2008; Chatterjee et al., 2012) has also been an attractive research point. Our 

previous work (Zhang et al., 2009a) has found that there will be a parameter region (ሼሺ߱, ܾሻ|3 ሺ2 െ 2߱ሻ⁄ ሽ ת
ሼሺ߱, ܾሻ|0 ൏ ߱ ൏ 1 4⁄ , 2 3 ൏ ܾ ൏ 2⁄ ሽ) characterized by stable coexistence state with large domains of ALLD 

players in a background of TFT players and ALLC players, the coexistence state can be achieved by forming 

stable domains in spatial configuration. Moreover, starting from a random spatial pattern in lattice-structured 

populations, not only can rapid cluster forming process be observed, but also notably that the coexistence of 

the three strategies for a really long time in one dimensional lattice can be observed (Zhang et al., 2011). 

Especially, when external constraint is introduced into a dynamic system on regular graph, the coexistence 

state of the three strategies can appear as a focus or a node which depends on the parameter values (Zhang et 

al., 2014). This verifies an interpretation for the maintenance of cooperation again, where TFT plays an 

important role, as reported by Imh of and Nowak (2010). TFT is indicated as a weak catalyst for the 

emergence of cooperation, while ALLD is a strong catalyst for the emergence of defection. 

To understand cooperation among humans is surely an extremely complex topic because diverse factors in 

social, physiological, emotional are involved. However, van Veelen et al. (2012) have indicated that the 

essence of conditional strategies under social networks can be summarized in a one sentence recipe of human 

cooperation: \a strong dose of repetition and a pinch of population structure". Social interaction networks also 

display community structure, a kind of assortative structure, in which individuals are divided into groups 

where members within a group are mostly connected to each other (Newman, 2012). How such realistic 

features of social networks influences the evolution of cooperation will be the research direction in future. The 

coevolution of game dynamics and network structure has been indicated as one hotspot in recent years 

(Zimmermann et al., 2005; Fu and Wang, 2008). Furthermore, other complex learning rules could also be 

taken into account when individuals make decisions. Since the complexity of the game model, a large 

proportion results are based on numerical simulations, we thus expect much more theoretical and mathematical 

studies about this area. 

Finally, as Lion et al. (2011) indicated, the study of evolution of cooperation in structured populations has 

the potential to generate insights beyond areas in which it has been traditionally applied, provided that 

theoreticians and empiricists are willing to adopt a more ecological perspective on the field. Incorporating 

ecological dynamics in evolutionary games opens up a much wider window for the evolution of cooperation. 

Mounting studies have documented that ecological and evolutionary dynamics could be commensurate in time 

and interact in a feedback loop (Schoener, 2011). For example, the evolution of cooperation can be facilitated 

by ecological factors such as moderate habitat destruction and fragmentation. In return, this behavior evolution 

can also affect the dynamics and persistence of populations (Hui et al., 2005; Zhang et al., 2005; Zhang et al., 

2010). Especially, Zhang et al. (2010) studied the evolution of cooperation on fragmented landscapes and 

derived a Hamilton rule in the spatial PD, in which the proportion of cooperators among the neighbouring 

individuals of a cooperator serves the same function as relatedness in kin selection. The results suggest 

cooperation could be much easier in the density-dependent ecological games than in the classic frequency-

dependent selection evolutionary games (Zhang and Hui, 2011). Therefore, future studies are expected to 

expand along this direction. 
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