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Abstract 

Species abundance distribution (SAD) is one of the most important metrics in community ecology. SAD 

curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common 

species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this 

particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and 

three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric 

forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The 

mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of 

proportionate effect.  
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1 Introduction 

Ecology studies the abundance and distributions of living organisms, as well as their relationships and 

feedbacks with the environment (Odum and Barrett, 1953). Species are not alone in an ecosystem; as such, 

ecological community is often considered a confined unit of interest, and how community patterns and 

functions emerge from species interactions has become the overarching question in ecology (Zhang et al., 2011; 

Hui et al., 2013; Minoarivelo et al., 2014; Nuwagaba et al., 2015). In particular, the number of individuals of 

species constituting a given ecological community is not evenly distributed, often with many rare species but 

only a few common ones (Bowler and Kelly, 2010; Hui et al., 2009, 2011), as also observed in fine scale 

occupancy frequency distributions (Hui and McGeoch, 2007a, 2007b, 2008, 2014). Factors affecting 

population size of a given species in a community and thus the frequency distribution of species abundance 

have become a focal point of discussion in ecology (Harte, 2011).  

Species abundance distribution (SAD)can be an indicator of commonness and rarity in a community (Harte, 

2011); it is a community-level metric, denoted by Φ(n) hereafter, that represents the number of species with n 
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individuals, or the probability of detecting an individual being from a given species of n individuals in the 

community (Sognnæs, 2011). SAD is the most straightforward community-level metric that deals with the 

collective pattern of individuals belonging to different species. In general, species abundance is measured 

within a confined landscape where multiple species coexist (McGill and Magurran, 2011). It often only depicts 

species of a similar taxonomic group in a relatively large piece of land with sufficient environmental 

heterogeneity to facilitate species coexistence (Harte, 2011). Basically, a typical SAD is right skewed and 

different approaches have been put in place for fitting this SAD. We discuss the parametric forms and 

mechanistic models for explaining the particular shape of SAD in the following sections. 

 

2 Parametric Forms of SAD 

Parametric forms are those approaches aimed at describing the shape of SAD precisely. They are mainly 

probability distributions that can be interpreted, under some constraints or assumptions, as the probability of 

finding an individual of a particular species in a random draw (McGill and Magurran, 2011). Ecologists 

normally build the SAD from data collected through random or systematic samples, by assuming that species 

are randomly distributed in the community. Under this assumption of random distribution, the number of 

individuals of species j in a sample will follow a Poisson distribution with the intensity parameter λi  indicating 

the average number of individuals of species j in samples. As such, the probability of species j having r 

individuals in a sample can be given as follows (Pielou, 1977): 

!/)Pr( rer r
j

j .     

 (1) 

This is only the probability for species j. Species distributions can also follow other non-random patterns that 

cannot be depicted as a Poisson distribution (Hui, 2009; Hui et al., 2006, 2010), and here we will not venture 

into such complexity. Now suppose that we are interested in studying the SAD for the entire community, then 

the probability showed above needs to be modified. The modification of the probability is due to the variation 

of species densities or abundances in samples. Let us assume that the total number of species in the community 

is ST, and the value of λ can be considered a number of ST samples from a continuous probability distribution 

of λ that has a probability density distribution of f(λ). Now, the probability of finding a species with r 

individuals in a sample is the expectation of the probability of a species from the distribution of f(λ) having r 

individuals (Pielou, 1977): 
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Now suppose that nr is the frequency of species with r individuals, we thus have nr = ST·Pr(r) (Pielou, 1977). 

This serves as the basic parametric form of SAD. The first parametric form is Logarithmic distribution which 

is one of the most widely used approaches put in place for describing species abundance distribution. It is 

defined as follows (McGill and Magurran, 2011).  

 
xkc

p X x
x

  ,      (3) 

where k= -1/log(1-c). Logarithmic distribution is derived by assuming that the value of λ for different species 

sampled from a community follows a Pearson Type III distribution (Gamma distribution); that is, f(λ) is 

defined as follows: 
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where λ ≥ 0 and k, p > 0. From equation (4), we can easily compute the probability that a species is represented 

by r individuals in the collection (Pielou, 1977): 
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The solution to equation (5) is nothing but a negative binomial distribution given by: 
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By further simplifying equation (6) and letting X = p/(1+p), we have: 
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where 0 <X< 1. Equation (7) represents the probability of species being represented by r individuals in the 

sample without ignoring zero class species (missing species in the sample). We now define truncated negative 

binomial distribution, which is the probability of a given species in the sample when the zero class species is 

ignored: 
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where r = 1,2,… and p0 is the probability of zero class species calculated from (7): 
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By collecting like terms in equation (8) and substituting them by C, we have: 
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,
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where C = (1- X)k/((1 – (1 – X)k) × Γ(k)). In equation (9), k measures variability in the densities of different 

species. Large and small k values imply small and large variability in species densities, respectively. However, 

since there are different species in any given ecological communities, this implies that there is a high variation 

in species abundance. As such, we could let k → 0 in (9). In doing so, we have: 
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According to (10) we now have an SAD explained by the logarithmic distribution (Pielou, 1977): 
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Lognormal is another important parametric form of SAD. It has the following probability density function 

(Aitchison & Brown, 1957); 

2
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where ln λ follows normal distribution with mean ln µ and variance σ2. Suppose that the λ value sampled from 

the community follows a lognormal distribution, then probability of a species being represented by r 

individuals in the sample is given by (Pielou, 1977): 
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where λ>0.We could further simplify the Poisson lognormal distribution by letting ln λ = x: 
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Basically, the probability distribution in (15) has no explicit expression for the integral. However, Frank W. 

Preston was the first to test this distribution against field observations, and proposed a theoretical lognormal 

frequency distribution to approximate observed frequencies. According to Preston, a given species is 

represented by its expected number of individuals in the sample, and this number is not affected by the 

variation during sampling. Preston grouped values of r into groups called octaves such that the midpoint of 

each group is double that of the proceeding one (i.e. r = 1, 2, 4, 8, 16, 32…). The grouping of r implies that if a 

species falls on the boundary of a group, for example 2x individuals, then it is considered to contribute half a 

species to the octave (2x-1to 2x) and the other half to the octave (2x to 2x+1),  similar to transforming species 

abundance when using log2. When the observation is grouped in this way, the histogram fits well by a 

symmetrical normal curve. This clearly explains that different values of λ for different species will generate a 

lognormal distribution of SAD. 

Negative binomial distribution is another model that plays a key role in modelling SAD. It is defined as 

follows (Furbes et al., 1957), 
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where y = r, r+1, r+2, … and 0 ≤ p  ≤ 1. Unlike the lognormal distribution which assumes that ln λ follows a 

lognormal distribution, a negative binomial distribution assumes that the parameter λ of species sampled 

follows a Pearson Type III distribution (Pielou, 1977), 
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Equation (17) implies that the expected frequency of a species having r individuals without letting k → 0 
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follows a negative binomial distribution. Given a negative binomial distribution, the main interest is to 

investigate whether equation (17) is a monotonically decreasing function at λ = 0 or whether it has an internal 

mode at λ > 0. This is only possible by letting p in (17) to be a constant and then having the derivative of f 

with respect to λ. In doing so we have (Pielou, 1977), 
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It is clear that if k>1, then f(λ) will have its maximum at λ= p(k-1); this is a clear indication that if the SAD is 

fitted using the negative binomial distribution with k>1, then some intermediate species will be more frequent 

than the rare or common species. On the other hand, as df(λ)/d(λ) is negative for all values λ when 0 ≤ k ≤ 1, 

rare species are more frequent than more abundant species (Pielou, 1977). 

Besides the above distributions, SAD can also be modelled by the geometric distribution which is a special 

case of the negative binomial distribution. First, we have, 

1( ) yp y q p ,      (19) 

where y = 1, 2, … and 0 ≤ p ≤ 1. Unlike above cases where the value of λ follows a Pearson Type III 

distribution and the SAD becomes the negative binomial distribution and log series distribution, respectively, 

based on the behaviour of k, here we let k=1 which gives us the following probability distribution function 

(Pielou, 1977), 
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Equation (21) is the probability density function of an exponential distribution. However, by substituting again 

k = 1 in (19) yields the geometric distribution which is the discrete case of an exponential distribution, 
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SAD can not only be modelled by the above discussed distributions, but also by other parametric models such 

as the broken-stick and shared sub-niche models. However, these two parametric models are beyond the scope 

of this article. An example of the fit of these parametric forms to an observed SAD is shown in Fig.1. Clearly, 

the lognormal distribution is the best in fitting and describing the observed SAD. As all curves decreases with 

the abundance ranking, it implies that rare species are more frequent than common species. In the next section, 

we examine a few mechanistic models that can give rise to the skewed SADs. 
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Fig. 1 The fit of four parametric models to the observed abundance ranking of trees on the Barro Colorado Island, data from 1982 

(Condit et al., 2000; Zillio and He, 2010). 

 

 

3 Mechanistic Models of SAD 

3.1 Maximum Entropy Theory of Ecology (METE) 

Maximum entropy is one of the most fundamental theories in physics and ecology. It is based on maximising 

the available information entropy of a system under certain constraints. Information entropy is the measure of 

confusion for a given system. In a thermodynamic system, entropy is described as the number of specific 

micro-ways in which the system can be arranged for observed macro-states. In ecology, this theory has been 

used for inferring SADs under constrains of the area occupied by species, the number of species, the number of 

individuals per species and the total rate of metabolic energy required by all the individuals in the system. This 

section discusses the application of Lagrange multiplier method in maximizing entropy information for 

deriving the SAD (Harte, 2011). In a thermodynamic system, the Maximum Entropy theory is defined for 

some state variables, and the same rationale is also applied in the maximum entropy theory of ecology (METE). 

State variables are properties of a given system that need to be specified in order to fully describe the system. 

In the METE we lay our calculations and arguments on the following state variables (Sognnaes, 2011).  

 A0: total area of ecological community. 

 S0: total number of species from any specified taxonomic category contained in areaA0. 

 N0: total number of individuals of all species in the confined area. 

 E0: total rate of metabolic energy consumed by all the individuals in area A0. 

The above state variables have been chosen for a variety of reasons. For example, A0has been chosen due to 

the fact that it is the metric used in measuring physical scale of a given system. Similarly,S0is chosen due to 

the fundamental role played by species richness in any ecological communities. The total abundance of all 

species, N0, and the total metabolic rate of individuals, E0, are chosen since they set the carrying capacity of 

the system (Sognnaes, 2011). The METE can not only be used in deriving SADs, but it can also be used in 
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deriving different ecological metrics such as species area relation, energy distribution among species and the 

probability density of intra-specific metabolic energy (Harte, 2011).Deriving an SAD using the METE is based 

on some constraints defined by the state variables A0, S0, N0, E0 and the ecosystem structure function, R(n,ε). 

Here, ecosystem structure function, R(n,ε), is a joint conditional probability distribution function that is 

defined over species and individuals of a given species in a confined ecological community with an area A0, 

with respect to the metabolic rate of each individual. Metabolic rate is defined as the rate of energy 

consumption at which the basal metabolism occurs in a living organism (Sognnaes, 2011). In this function n 

represents species abundance and ε the metabolic energy rate of each individual in a community. In addition, 

this function is discrete over species abundance n and continuous over metabolic energy rate ε (Harte, 2011). 

In the METE we set the minimum metabolic rate to 1 (ε = 1) which implies that the metabolic rate of any 

individuals cannot be less than one. The normalization condition on R(n,ε)  is given by(Harte, 2011), 

00

0 0 0 0
1 1

( , | , , , ) 1.
EN

n

R n A S N E d


 
 
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State variables further define two new constraints: the average species abundance, N0/S0 and the average total 

metabolic rate of individuals defined over species, E0/S0. These two constraints are expressed as follows (Harte, 

2011). 
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From (22) to (24) it is clear that A0 has not played any role in defining new constraints; therefore it does not 

give much insight in the derivation of an SAD. As such, we ignore its effect and drop it at this stage as we will 

not use it in the rest of calculation. In addition, from now henceforth, we are going to denote our ecosystem 

structure function by R(n,ε) instead of R(n,ε|A0,S0,N0,E0). At this stage, we cannot assume anything about the 

species abundance; that is, we cannot claim that the species of interest have the same abundance. The only 

information we have is about the state variables. As a result, we are going to use this limited knowledge to 

help us to infer and describe the shape of an SAD. By applying the maximum entropy principle that maximizes 

the information entropy of R(n,ε), we get (Sognnaes, 2011). 
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By maximizing (25) subjected to constraints (23) and (24) further taking into account of the normalization 

condition in (22)have the expression of R(n,ε), after which an SAD can be easily obtained from R(n,ε) by 

integrating the energy requirement of individuals as below(Harte, 2011). 
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In equation (26), it is clear that we need to have the expression of R(n,ε) in order for the integration to be 

possible. This can be done by using the Lagrange multiplier function (L(R,λ,µ)) given by, 
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where λ1 and λ2 are Lagrange multipliers and µ some arbitrary constant (λ0-1). By substituting for IR and 

integrating (26) with respect to R(n,ε) and setting the derivative to zero, we get, 

 

0 0 00 0 0

00

1 2
1 1 11 1 1

0
1 1

1 log( ( , ) ) . . .
( , , )

0
( , )

1 1

E E EN N N

n n n

EN

n

R n d n d n d
dL R

dR n
d

  



      
 


 

    

 

      
                       

      
  

    

 
(28) 

After some simplifications of equation (28), we get the ecosystem structure function as follows (Harte, 2011), 
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where Z(λ1,λ2) is a partition function given by, 
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Accordingly, the SAD can be easily calculated from (26) by integrating out energy required by individuals as 

shown above (Harte, 2011), 
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where β and n are model parameter and abundance of species respectively. Equation (30) is actually following 

the log series distribution. Having discussed the METE, we move to the Neutral theory in the next section for 

modelling the SAD. 

3.2 Neutral theory of SAD 

The neutral theory also plays a fundamental role in generating species abundance distribution in local and 

meta-communities (He and Hu, 2005).A meta-community is a self-contained evolutionary biogeographic unit, 

within which most members of a given species originate, live, grow and die, whereas a local community is a 

unit embedded in the meta-community and is characterised by the exchange of migrants with other local 

communities (He, 2005). As the name suggests, the concept of neutrality in neutral theory implies that species 

share the same trophic level in the community are ecologically similar especially with respect to their 

population demography (i.e. death, birth, speciation and dispersal rates) (Chave, 2004). This theory is 

primarily based on four major population dynamics: birth, death, immigration and emigration. The stochastic 

dynamics of population growth can be given by a Markov chain model (He, 2005): 
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where 

 Pn,k is the probability of species k having n individuals at time t. 

 bn,k is the probability for the birth of an individual of species k. 

 dn,k is the probability for the death of an individual of species k. 

The population growth presented in (31) is subjected to the following boundary condition (McKane and Sole, 

2000). 

1, 0, 0k kP d   ,     (32) 

The above boundary condition (32) implies that the probability of death in species k with no individual is zero 

and this is equal to the probability of species k containing -1 individual. By assuming that the community has a 

total of S species, we can define the SAD as follows (He, 2005): 
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Equation (33) can be interpreted as the average number of species with n individuals (He, 2005). It only makes 

sense if the expression for stationary probability distribution Pn,k is known. This is only possible by setting 

dpn,k(t)/dt to zero in (31): 

1, 1, 1, 1, , , , ,( ) ( ) ( ) 0n k n k n k n k n k n k n k n kp t d p t b p t b p d          (34) 

  1, 1, , , , , 1, 1, .( ) ( ) ( ) ( )n k n k n k n k n k n k n k n kp t d p t b p t d p t b         (35) 

Equation (35) is true for all values of n. For simplicity let us define J as follows; 

, , 1, 1,( ) ( ) .n k n k n k n kp t d p t b J        (36) 

By imposing the boundary condition to (36) we have J = 0 and thus, 

, , 1, 1,( ) ( ) ,n k n k n k n kp t d p t b        (37) 

1,
, 1,

,

( ) ( ),n k
n k n k

n k

b
p t p t

d


       (38) 

where n = 0,1,..,N and dn,k> 0. Based on Moran’s (2008) argument, this then leads to; 

1, 2, 0,
, 0,

, 1, 1,

...
( ) ( ),n k n k k

n k k
n k n k k

b b b
p t P t

d d d
 



      (39) 

where n=1,…,N. Equation (39) can be further simplified to: 

1
,

, 0,
0 1,

,
n

i k
n k k

i i k

b
P P

d



 

        (40) 

Accordingly, the SAD is easily obtained from (40) by considering (33) as below, 

 
1

,
0,

1 0 1,

nS
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348



Computational Ecology and Software, 2015, 5(4): 340-353 

 

 IAEES                                                                                                                                                                          www.iaees.org

 
1

,
0,

0 1,

n
i k

k
i i k

b
n SP

d



 

   ,     (42) 

In deriving an SAD using the neutral method, several assumptions can be made about death and birth 

processes in both local and meta communities. Here, we consider birth and death as linear processes. In doing 

so we have the following (He, 2005); 

0 ( )( )(2 )...(( 1) )
( ) ,

( )(2 )...( )

Sp v b b n b
n

d d nd

   
  

    
 

  
   (43) 

where λ and µ are immigration and emigration rates respectively. Here, b0=(v+λ) implies that when species 

become extinct, it can only be replaced through speciation with rate v or via immigration with rate λ. 

Simplifying equation (43) further leads to the following equation for the SAD: 

(1 )(2 )...(( 1) )
( ) ( ) ,

(1 )(2 )...( )
nn

n x
n

   
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   
 

  
   (44) 
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 
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   

 
   

,    (45) 

where θ=Sp0(v/λ+1), β=µ/d, x=b/d, α=λ/b are model parameters and n=1,2,… is species abundance. As the 

METE and the neutral theory are two major contending theories in ecology, we illustrate their fit to an 

observed SAD in Fig. 2. 

 
Fig. 2 The fit of two mechanistic models to the observed abundance ranking of trees on the Barro Colorado Island, data from 

1982 (Condit et al., 2000; Zillio and He, 2010). 

 

3.3 The theory of proportionate effect 

This theory is based on the genesis of lognormal distribution proposed by Brown and Sanders (1981) which 

was also used for describing the distribution of income in Sydney human population. The theory is based on 
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partitioning an ecological community into groups of species with respect to different characteristics and then 

applying the law of proportionate effect in analysing the distribution of species abundance. Considering a 

given ecological community, since our main aim is to study species abundance in this community, we can 

partition the community into species groups Si with Ni abundance based on the distinct characteristics of each 

species (e.g. based on their functional traits as for classifying morphological species). Then, we determine 

abundance distribution of each distinct species with respect to the elapse of time at the evolutionary time scale 

in the given community. This model is based on the following assumptions: 

 No predator-prey interactions in the community.  

 Abundance of species is jointly contributed by many trivial factors in the community. 

 Change in abundance is proportional to the abundance of previous time step, i.e. an exponential 

growth.  

Now suppose that species i have Xi abundance such that the abundance is a joint effect of a large number of 

mutually independent factors that contribute positively to its increase at some point in time. It follows that 

after some steps in time, changes in abundance of species i is proportional to a function Φ(Xj-1), which is a 

function of species abundance in the previous time step. This proportionality is due to the fact that, we assume 

that species current abundance will depend on the previous abundance. Mathematically, this is to say the 

following (Aitchson and Brown, 1957): 

 1 1j j j jX X X    ,     (46) 

where εj is mutually independent of Xj. The main interest is applying the law of proportionate effect to (46) 

which states that: A variable subjected to a process of change is said to obey the law of proportionate effect if 

the change in the variable at any step of the process is a random proportion of the previous value of the 

variable. In doing so, we have equation (46) reduced to (Aitchison and Brown, 1957); 

1 1,j j j jX X X         (47) 

  11j j jX X   ,      (48) 

Based on (Crow & Shimizu, 1988), equation (48) can be further simplified to: 

 0
1

1
n

n j
j

X X 


  .      (49) 

By introducing the natural logarithm in (49), we have, 

 0
1

log log log 1
n

n j
j

X X 


   .    (50) 

Equation (50) can be easily approximated using Taylor expansion by assuming that the absolute value of εj< 1, 

0
1

log log
n

n j
j

X X 


  ,     (51) 

According to the additive form of the central limit theorem, log(Xn) is asymptotically normally distributed, 

implying that Xn is asymptotically log normally distributed (Aitchison and Brown, 1957). So far we have 

proved that the abundance distribution of species i is log-normally distributed with respect to time. Now 

assume that the total abundance of all the species in the ecological community is  
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1

j

i
i

N N


  ,      (52) 

where i = 1,2,…,j and Ni is abundance of species i. Since we have shown that the abundance of a single species 

is log-normally distributed, the abundance for a number of Si species, where i = 1,2,…,j is also log-normally 

distributed. We now introduce a theorem that was used by Beaulie and Xie (2004) which states that the sum of 

identical log-normally distributed random variables is still lognormal. Consequently, the sum of abundance of 

all species shown in (52) is also lognormal, as explained by the theory of proportionate effect. 

 

4 Conclusion 

The performance of different parametric forms can be evaluated using the rank abundance curves (Fig. 1). It is 

clear that the lognormal distribution is the best fit, although each of these parametric models has its own merits 

as explained in Pielou (1969). In contrast, fitting mechanistic models can give good insights on the potential 

processes behind observed SADs (Fig. 2). Most ecological literature on SAD focus only on the six models 

discussed (lognormal, log series, negative binomial, geometric, METE and neutral), which can be compared by 

using nonlinear regression and related statistics. We also developed the theory of proportionate effect based on 

particular statistical assumptions which might lack ecological realism. It predicts the lognormal distribution as 

the null form of SAD, but these assumptions deserve further investigations. 
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