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Abstract 

In current publication within the framework of method of extreme points various characteristics of feasible sets 

are applied for forecast of population dynamics. Following characteristics were used: maximum, minimum and 

average values for all trajectories with parameters belonging to feasible set, trajectory with best characteristics 

for Kolmogorov - Smirnov criterion, and trajectory with lowest value of sum of squared deviations between 

theoretical and empirical values. Analyses were provided for larch bud moth population (Zeiraphera diniana 

Gn.) time series (GPDD 1407; sample size is 38) and for Moran – Ricker model. Time series was divided onto 

two parts: for first part (first 21 values or more) feasible sets were determined and for tails of time series 

pointed out characteristics were applied. Forecasting properties of used characteristics are under discussion.  

 

Keywords larch bud moth population dynamics; time series; statistical analysis; Moran-Ricker model; fitting, 

forecast; method of extreme points.  

 

 

 

 

 

 

 

 

1 Introduction 

Search of suitable mathematical model and estimation of model parameters using empirical datasets are among 

of main elements of population dynamics analysis (McCallum, 2000; Isaev et al., 1984, 2001; Turchin, 2003; 

Wood, 2001; Nedorezov et al., 2008; Tonnang et al., 2009 a, b, 2010, 2012; Gao et al., 2012). Without finding 

of suitable model (or without constructing of new suitable model) it is impossible to prepare scientifically 

based forecasts of population size changing, optimal methods of its management etc. But up to current moment 

there are no criterions, which can help in finding suitable model before comparison of theoretical and 

empirical results (Isaev et al., 1984, 2001; Nedorezov and Utyupin, 2011; Nedorezov and Sadykova, 2010). In 

such a situation various methods of preliminary statistical analysis, which can help in creation of plausible 

hypothesis about the character of population fluctuations, can play important, key role in choosing of 

mathematical models (Nedorezov, 2012, 2013a, 2014). Moreover, in various situations comparison of 

theoretical and empirical/experimental datasets doesn’t allow choosing of best model: several models with 
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similar properties can demonstrate very close final results (see, for example, Tonnang et al., 2009 a, b, 2010, 

2012).  

Time series on population dynamics of larch bud moth (Zeiraphera diniana Gn.) is very popular object of 

scientific investigations (Auer, 1977; Baltensweiler and Fischlin, 1988). In our previous publications 

(Nedorezov, 2011; Sadykova and Nedorezov, 2013; Nedorezov and Sadykova, 2015) it was proved that it is 

possible to obtain good fitting of empirical time series of larch bud moth population using well-known Moran 

– Ricker model (Moran, 1950; Ricker, 1954): 

kx
kk eAxx 

 1 .                                                             (1) 

In model (1) kx  is population density at moment k ; parameter A  is a maximum birth rate which is 

observed when population density is close to zero;   is a coefficient of self-regulation; both model 

parameters are non-negative, 0,  constA  . This model (1) has very rich set of dynamic regimes 

including cycles of various lengths and chaos, and it led to very wide application of this model to description 

of dynamics of various populations (McCallum, 2000; Nedorezov and Nedorezova, 1994; Turchin, 2003 and 

many others). 

In current publication we use model (1) in the following manner. For part of time series (21 first elements 

of initial sample or more, 30,...,21m ) we determine points of feasible set (for 5% significance level). 

After that we use points from feasible sets for determination of various forecasting characteristics (for tails of 

time series): maximum and minimum values of population density, and average values. Trajectories with some 

extreme properties (with minimum value of characteristics of Kolmogorov – Smirnov test and with minimum 

value of sum of squared deviations) were also used for forecast.  

It is assumed additionally that subsets of negative and positive deviations between theoretical and 

empirical values must contain 40% or more of all points of set of deviations. It isn’t obligatory condition and 

percentages can be changed. On the other hand, it is much better to compare samples with close sample sizes 

than in situation when difference of sample sizes is rather big. Respectively, use of this additional condition 

leads to decreasing of measures of feasible sets and to changing of behavior of used for forecast characteristics. 

For some particular cases one more criterion was used: it was assumed that in 60% cases sign of 

increment/decrement of model trajectory must be equal to sign of increment/decrement of time series. It is 

important to note that this assumption looks strange for situation when we observe stochastic fluctuations near 

stable level. Respectively, before use of this criterion we have to be sure that observed population fluctuations 

don’t correspond to this dynamic regime: it was demonstrated in our previous publications (Nedorezov, 2011, 

2013b, 2014; Sadykova and Nedorezov, 2013; Nedorezov and Sadykova, 2015). It was also proved that larch 

bud moth dynamics doesn’t correspond to strong 8- or 9-year cycle.  

 

2 Datasets 

Regular observations of larch bud moth fluctuations had been started in Swiss Alps (in Upper Engadine Valley) 

in 1949 (Auer, 1977; Baltensweiler and Fischlin, 1988). Used in current publication time series can be free 

downloaded in Internet (NERC Centre for Population Biology, Imperial College (1999) The Global Population 

Dynamics Database, N 1407). Population densities are presented in units “number of larvae per kilogram of 

branches”. Data were collected in Upper Engadine Valley on 1800 m above the sea level. Total sample size is 

38 values (from 1949 to 1986).  
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3 Statistical Tests 

Let }{ *
kx , Nk ,...,1,0 , be empirical time series of population density changing in time; 1N  is sample 

size. Using this sample }{ *
kx  we have to estimate model parameters A ,  , and initial population size 0x .  

Use of least square method (Bard, 1974; Borovkov, 1984) is based on assumption that best estimations of 

model parameters can be found with minimizing of sum of squared deviations between theoretical (model) and 

empirical datasets. If time series is approximated by model (1) trajectory loss-function can be presented in the 

following form (note, that presented form is one of particular cases, and it is possible to present a lot of other 

forms which is used in practice): 
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Following a traditional approach of solution of considering problem of estimation of nonlinear model 

parameter estimation (Bard, 1974; Borovkov, 1984; Draper and Smith, 1981) after determination of parameter 

estimations ),( **
0

**

x


  (3) analysis of set of deviations }{ ke  between theoretical (model) and empirical 

time series must be provided:  

***
0

**

),( kkk xxxe 


 .                                                       (4) 

Model (1) is recognized to be suitable for fitting of considering time series if following conditions are 

truthful: deviations }{ ke  (4) are values of independent stochastic variables with Normal distribution with 

zero average. Following these assumptions Kolmogorov – Smirnov, Lilliefors, Shapiro – Wilk or other 

statistical tests are used for checking of Normality of deviations (Bolshev and Smirnov, 1983; Lilliefors, 1967; 

Shapiro et al., 1968). For checking of independence of stochastic variables Durbin – Watson and/or Swed – 

Eisenhart tests are used (Draper and Smith, 1981; Hollander and Wolfe, 1973; Likes and Laga, 1985).  

If in a sequence of residuals (4) serial correlation is observed (for selected significance level) it gives a 

background for conclusion that considering model isn’t suitable for fitting and needs in further modification 

(or we have to use other model). It means also that some of important factors or processes were not taken into 

account within the framework of used model. Similar conclusion about model and its applicability to fitting 

can be made in situation when hypothesis about Normality of deviations must be rejected (it is also for 

selected significance level). In other words, final conclusion about suitability of model for approximation of 

considering time series is based on analysis of properties of unique point ),( **
0

**

x


  in a space of model 

parameters.  

In our opinion, this is one of basic problems of least squared method: a’priori it is impossible to exclude 

from consideration a situation when nearest to ),( **
0

**

x


  points have required properties. Below we’ll 
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consider situations when deviations between theoretical and empirical datasets are satisfied to following 

conditions. First of all, distribution of deviations (4) must be symmetric with respect to origin. Branches of 

density function must be monotonic curves – it must increase in negative part of straight line, and it must 

decrease in right part. In other words, density function must be symmetric with respect to ordinate line. 

Hypotheses about existence of serial correlation in sequences of residuals must be rejected (for selected 

significance level).  

For checking of these properties of residuals we used Kolmogorov – Smirnov test, Lehmann – Rosenblatt 

test, and Mann – Whitney test (for checking of symmetry of distribution; Bolshev and Smirov, 1983; 

Hollander and Wolfe, 1973; Likes and Laga, 1985). For checking of monotonic behavior of branches of 

density function Spearman rank correlation coefficient was used. For testing of absence of serial correlation 

Swed – Eisenhart test (Draper, Smith, 1981) and test “jump up –jump down” (Likes and Laga, 1985) were 

used. Note that below non-parametric statistical tests were used only. 

Point of space of model parameters ),,( 0 Ax  belongs to feasible set if and only if for selected 

significance level all statistical tests show requirement results: hypotheses about symmetry of density function 

with respect to ordinate line cannot be rejected, hypothesis about equivalence of Spearman rank correlation 

coefficient   to zero must be rejected (with alternative hypothesis 0 ), hypotheses about existence of 

serial correlation must be rejected. It is obvious that geometry of feasible set depends on statistical criterions 

we use for checking of properties of deviations and on selected significance level. Note, that for various tests 

we can use different significance levels.  

As it was pointed out in Introduction, for some particular cases one more non-statistical (deterministic) 

criterion was used: it was assumed that in 60% cases sign of increment or decrement of model trajectory must 

be equal to respective sign of increment or decrement of time series. This assumption looks very strange for 

situation when we have stochastic fluctuations of population density near stable level. Respectively, before use 

of this deterministic criterion we have to be sure that observed population fluctuations don’t correspond to this 

dynamic regime: it was demonstrated in our previous publications (Nedorezov, 2011, 2013b, 2014; Sadykova 

and Nedorezov, 2013; Nedorezov and Sadykova, 2015). Moreover, it was also proved that larch bud moth 

dynamics doesn’t correspond to strong 8- or 9-year cycle. On the other hand, we have no reasons to say that 

we have good model if for every increment of time series model demonstrates decreasing of density and vice 

versa. We cannot talk about good model if number of cases with inverse changing of time series and model is 

rather big. 

Below we used this criterion in deterministic form (with fixed 60%). But it can be used in standard 

statistical form: under an assumption that cases of equality and inequality of signs of increment/decrement of 

time series and model trajectory are independent events, we can calculate frequency of cases when we have 

equivalence for signs (in such a situation we can talk about Bernoulli trials). After that we can check Null 

hypothesis about equivalence of probability to 0.5 with alternative hypothesis “probability is bigger than 0.5”. 

For good model Null hypothesis must be rejected for selected significance level.  

 

4 Results 

Stochastic points ),,( 0 Ax  were determined in set ]100,0[]1000,0[]1000,0[   with uniform 

distribution. First two limits of set   were determined from condition that observed values in two times less 

than pointed out amounts. Maximum of population density is 450, k  450* kx , maximum value of birth 
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rate is 333.33, 33.333A . It was additionally assumed that number of positive and negative deviations (4) 

cannot be less than 40% of considering sample. For every stochastic point ),,( 0 Ax  properties of 

deviations between model trajectory and time series were determined (with statistical tests pointed out above). 

4.1 Variant: 21 points 

First sample contained 21 points of initial sample (values from 1949 and up to 1969). Respectively, in this case 

forecast was prepared for time interval 1970-1986. If it was checked that point belongs to feasible set (all 

statistical tests were satisfied), for these parameters trajectory of model (1) was determined, and obtained 

values were used for maximum, minimum and average forecasting values. All these values were determined 

for all 150000 stochastic trajectories (for 150000 elements of feasible sets). 

Results of calculations for considering variant are presented in Fig. 1. Minimum values cannot be 

presented in this figure: all obtained values are rather small and less than 10-81. As we can see in this figure, 

behaviors of presented curves are qualitatively different. 

 

 

 

Fig. 1 Forecast of changing of larch bud moth dynamics for time interval 1970-1986. Curve 1 is maximum forecasting values of 

population density. Curve 2 contains average values of population densities. Curve 3 is empirical time series. Results are presented 

in logarithmic scale. 

 

 

Correspondence between increments/decrements of maximums (curve 1, Fig. 1) and 

increments/decrements of empirical time series is observed in 0.375 cases. For minimums this characteristics 

is equal to 0.4375. The best result was obtained for average line (curve 2, Fig. 1): frequency of cases when 

signs of increments/decrements of this curve are equal to increments/decrements of time series is equal to 0.5. 

It means that presented characteristics (Fig. 1) cannot be used for prediction of increasing or decreasing of 

population density (on qualitative level). Correlation coefficients for pointed out variables (maximum, 

minimum and average curves) are following: -0.15108, -0.23665, -0.00033. It shows also that considering 

characteristics are not suitable for forecast.  
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Fig. 2 Forecast of changing of larch bud moth dynamics for time interval 1970-1986. Curve 1 is model (1) trajectory 

corresponding to minimum value of characteristics of Kolmogorov – Smirnov test. Curve 2 is model (1) trajectory corresponding 

to minimum value of functional (2)-(3) on feasible set. Curve 3 is empirical time series. Results are presented in logarithmic 

scale.  

 

 

In Fig. 2 there are the trajectories of model (1) with parameters from feasible set: curve 1 corresponds to 

minimum value of Kolmogorov – Smirnov test (0.457738; hypothesis about symmetry cannot be rejected with 

98.4% significance level; in other words, this hypothesis must be accepted), curve 2 corresponds to minimum 

value of functional (2)-(3) within the limits of 5%-feasible set. Correspondence between 

increments/decrements of curve 1 (Fig. 2) and increments/decrements of empirical time series is observed in 

56.25% (9 of 16 cases), for curve 2 it is equal to 31.25%. Correlation coefficients for pointed out variables are 

following: 0.4485, 0.1031. Thus, we can conclude that best results were obtained for curve which corresponds 

to minimum value of Kolmogorov – Smirnov test. On the other hand, even for this curve we cannot say that 

this curve has good forecasting properties. 

It is naturally to assume that forecast can be organized better if for prediction we’ll use trajectories 

(within the limits of feasible set) which follow changes of time series. Below we consider the situations when 

in 60% (or more) cases increasing/decreasing of model trajectory is the same like it is observed in time series.  

Results of calculations for these variants are presented in Fig. 3. Like in previous case, minimum values 

cannot be presented in this figure: all obtained values are rather small and less than 10-15 (it is better than in 

previous case but it has no sense for forecast). Correspondence between increments/decrements of maximums 

(curve 1, Fig. 3) and increments/decrements of empirical time series is observed in 43.75% of all cases; for 

minimums we have the same value. The best result was obtained for average line (curve 2, Fig. 3): frequency 

of cases when signs of increments/decrements of this curve are equal to increments/decrements of time series 

is equal to 0.5. It means that presented characteristics (Fig. 3) cannot be used for prediction of increasing or 

decreasing of population density (on qualitative level). Correlation coefficients for pointed out variables 

(maximum, minimum and average curves) are following: -0.07886, -0.1774, -0.03919. It shows also that 

considering characteristics are not suitable for forecast. 
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Fig. 3 Forecast of changing of larch bud moth dynamics for time interval 1970-1986. Curve 1 is maximum forecasting values of 

population density. Curve 2 contains average values of population densities. Curve 3 is empirical time series.  

 

In Fig. 4 there are the trajectories of model (1) with parameters from feasible set: curve 1 corresponds to 

minimum value of Kolmogorov – Smirnov test (0.561769; hypothesis about symmetry cannot be rejected with 

90.13% significance level; value of Lehmann – Rosenblatt test is equal to 0.08557; Null hypothesis cannot be 

rejected with 68% significance level).  

 

Fig. 4 Forecast of changing of larch bud moth dynamics for time interval 1970-1986. Curve 1 is model (1) trajectory 

corresponding to minimum value of characteristics of Kolmogorov – Smirnov test. Curve 2 is model (1) trajectory corresponding 

to minimum value of functional (2)-(3) on feasible set. Curve 3 is empirical time series.  

 

Curve 2 corresponds to minimum value of functional (2)-(3) within the limits of 5%-feasible set (value of 

Kolmogorov – Smirnov test is 1.007905; hypothesis about symmetry cannot be rejected with 25.94% 

significance level; value of Lehmann – Rosenblatt test is equal to 0.345238; Null hypothesis cannot be rejected 

with 9.833% significance level).  

Correspondence between increments/decrements of curve 1 (Fig. 4) and increments/decrements of 

empirical time series is observed in 50% (8 of 16 cases), for curve 2 it is equal to 37.5% (6 of 16 cases). 

Correlation coefficients for pointed out variables are following: -0.06586, 0.24472. Thus, we can conclude that 

all considered curves haven’t good forecasting properties. For first 21 elements of initial sample we had a 
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situation when in 60% cases model trajectory followed to changing of time series; for forecasting tail of time 

series this property wasn’t saved.  

4.2 Variant: 22 points 

Let’s consider a situation when starting sample contains 22 points of initial sample (values from 1949 and up 

to 1970). In this case forecast was prepared for time interval 1971-1986. If it was checked that point belongs to 

feasible set, for these parameters trajectory of model (1) was determined, and obtained values were used for 

maximum, minimum and average forecasting values. Like in previous case all these values were determined 

for all 150000 stochastic trajectories (for 150000 elements of feasible sets). 

 

 

Fig. 5 Forecast of changing of larch bud moth dynamics for time interval 1971-1986. Curve 1 is a set of maximum forecasting 

values of population density. Curve 2 contains average values of population densities. Curve 3 is empirical time series.  

 

 

Results of calculations for considering variant are presented in Fig. 5. Minimum values cannot be 

presented in this figure: all obtained values are rather small and less than 10-76. As we can see in this figure, 

behaviors of presented curves are qualitatively different.  

Correspondence between increments/decrements of curve 1 (Fig. 5) and increments/decrements of 

empirical time series is observed in 53.33% of all cases (8 of 15); for curve of minimums we have the same 

result; for curve 2 frequency of cases when signs of increments/decrements of this curve are equal to 

increments/decrements of time series is equal to 0.6. Correlation coefficients for pointed out variables 

(maximum, minimum and average curves) are following: 0.215725, -0.18991, and 0.390333. It means that 

presented characteristics (Fig. 5) haven’t good forecasting properties.  
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Fig. 6 Forecast of changing of larch bud moth dynamics for time interval 1971-1986. Curve 1 is model (1) trajectory 

corresponding to minimum value of characteristics of Kolmogorov – Smirnov test. Curve 2 is model (1) trajectory corresponding 

to minimum value of functional (2)-(3) on feasible set. Curve 3 is empirical time series.  

 

In Fig. 6 there are the trajectories of model (1) with parameters from feasible set: curve 1 corresponds to 

minimum value of Kolmogorov – Smirnov test (0.426401; hypothesis about symmetry cannot be rejected with 

99.26% significance level; in other words, this hypothesis must be accepted; value of Lehmann – Rosenblatt 

test is equal to 0.055785; Null hypothesis cannot be rejected with 81.14% significance level). Curve 2 

corresponds to minimum value of functional (2)-(3) within the limits of 5%-feasible set (value of Kolmogorov 

– Smirnov test is equal to 0.985521; hypothesis about symmetry cannot be rejected with 28.09% significance 

level; value of Lehmann – Rosenblatt test is equal to 0.245726; Null hypothesis cannot be rejected with 18.84% 

significance level). 

 

Fig. 7 Forecast of changing of larch bud moth dynamics for time interval 1971-1986. Curve 1 is a set of maximum forecasting 

values of population density. Curve 2 contains minimum forecasting values of population density. Curve 3 contains average values 

of population densities. Curve 4 is empirical time series.  

 

 

Correspondence between increments/decrements of curve 1 (Fig. 6) and increments/decrements of 

empirical time series is observed in 53.33% (8 of 15 cases), for curve 2 it is equal to 66.67% (10 of 15 cases). 
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Correlation coefficients for pointed out variables are following: 0.059764, -0.31821. For these curves we 

cannot also say that curves have good forecasting properties. 

Below we consider the situation when in 60% (or more) cases increasing/decreasing of model trajectory is 

the same like it is observed in time series.  

Results of calculations for considering variant are presented in Fig. 7. As we can see in this figure, curves 

1 and 2 may have a certain sense for long-term forecast: sometimes values of maximums of set of trajectories 

are very close to values of time series (1972-1974 and 1981-1983) and minimums are also close to values of  

time series (1976-1977, 1979). In a result of additional condition for samples of deviations (4) that sizes of 

samples of negative and positive deviations cannot be less than 40% of initial sample size, we got rather small 

feasible set and maximum value (1974) for all trajectories with parameters from feasible set is less than 

respective value from time series. Anyway, during several years values of time series are close to values of 

curve 1 (Fig. 7).  

Correspondence between increments/decrements of curve 1 (Fig. 7) and increments/decrements of 

empirical time series is observed in 46.67% of all cases (7 of 15); for curve 2 we have 40% only; for curve 3 

frequency of cases when signs of increments/decrements of this curve are equal to increments/decrements of 

time series is equal to 0.6. Correlation coefficients for pointed out variables (maximum, minimum and average 

curves) are following: 0.034029, -0.305, -0.09706. It means that presented characteristics (Fig. 7) can 

sometimes be used for prediction of changing of population density.  

In Fig. 8 there are the trajectories of model (1) with parameters from 5%-feasible set: curve 1 corresponds 

to minimum value of Kolmogorov – Smirnov test (0.639602; hypothesis about symmetry cannot be rejected 

with 80.73% significance level; value of Lehmann – Rosenblatt test is equal to 0.130165; Null hypothesis 

cannot be rejected with 45% significance level). Curve 2 corresponds to minimum value of functional (2)-(3) 

within the limits of 5%-feasible set (value of Kolmogorov – Smirnov test is equal to 1.024941; hypothesis 

about symmetry cannot be rejected with 23.92% significance level; value of Lehmann – Rosenblatt test is 

equal to 0.258936; Null hypothesis cannot be rejected with 17.6% significance level). Note, that pointed out 

results were obtained for starting part of initial sample which was used for finding elements of feasible set. 

 

Fig. 8 Forecast of changing of larch bud moth dynamics for time interval 1971-1986. Curve 1 is model (1) trajectory 

corresponding to minimum value of characteristics of Kolmogorov – Smirnov test. Curve 2 is model (1) trajectory corresponding 

to minimum value of functional (2)-(3) on feasible set. Curve 3 is empirical time series.  
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Let’s consider results which were found for tail of sample. Correspondence between 

increments/decrements of curve 1 (Fig. 8) and increments/decrements of empirical time series is observed in 

40% (6 of 15 cases), for curve 2 it is equal to 60% (9 of 15). Correlation coefficients for pointed out variables 

are following: -0.27527, 0.00221. Thus, like in previous variants we haven’t a background for conclusion that 

considering curves can play important role in forecasting of population density changing. 

 

5 Conclusion 

Constructing of feasible sets in space of model parameters allows obtaining and using for forecast various 

characteristics of these sets. In particular, it allows using trajectories with extreme properties (of sets of 

deviations between theoretical and empirical datasets). In ideal situation we have one trajectory only which has 

extreme properties for deviations. But such situations are very rare. In most cases we can find trajectories 

which have, for example, symmetric distribution for deviations with a certain guarantee (in a case when 

hypothesis about symmetry cannot be rejected with 99.999% or bigger significance level). It is also possible to 

use least squared method within the limits of feasible sets etc. But up to current moment it isn’t obvious what 

kind of characteristics of feasible sets we have to use for constructing best forecasts. 

Results obtaining for feasible sets with 5% significance level (and with some additional conditions: it was 

assumed that samples of deviations between theoretical and empirical values must contain 40% values of total 

sample; for special cases it was assumed that model trajectory must follow empirical dataset in 60% cases of 

changing of population density) are presented in current publication. Note that all requirements 

(correspondence to statistical criterions plus additional conditions) were applied to first parts of initial sample: 

these parts contain 21 and 22 values of changing of larch bud moth density in Swiss Alps. Forecasting 

properties of Moran – Ricker model were tested using tails of samples (total number of points in sample is 38).  

First of all, for all trajectories with parameters from feasible sets maximum and minimum values were 

determined. In first case (when number of points is equal to 21) these curves have no sense: obtained values 

were much bigger and much smaller than empirical values. But in second case (number of points is equal to 22 

and feasible set was constructed with additional conditions) for some years these curves were rather close to 

empirical values. 

For constructing of forecasts the following curves were also used: averages for all trajectories with 

parameters from feasible sets; trajectories of Moran – Ricker model which corresponds to situation when 

hypothesis about symmetry of deviations cannot be rejected with biggest significance level (Kolmogorov – 

Smirnov test); trajectories of Moran – Ricker model which corresponds to situation when sum of squared 

deviations has its minimum value (within the limits of feasible sets; direct analog of Least Squared Methods 

with restriction on feasible sets). In all these cases pointed out curves had no relation to behavior of tail of 

sample: correlation coefficients were very small, and in some cases these coefficients were negative. 

Obtained results can be explained in two possible ways. First of all, Moran – Ricker model has the 

following property: there are two points (beginning and end) on the phase of population decreasing. At the 

same time empirical time series may contain several points on this phase. It means that a’priori we cannot give 

sufficient approximation of empirical sample with the help of considering model. For better approximation we 

have to use models (may be based on Moran – Ricker model) which take into account influence of time lags in 

reactions of regulative mechanisms on population density changing. The second, may be used curves are not 

the best for forecast, and we must use for it other curves with extreme characteristics.  

 

 

 

399



Computational Ecology and Software, 2015, 5(4): 389-401 

 IAEES                                                                                    www.iaees.org

References 

Auer C. 1977. Dynamik von Larchenwicklerpopulationen langs des Alpenbogens. Mitteilungen der 

Eidgenossischen Anstalt fiir forstliches Versuchswesen, 53: 71-105 

Baltensweiler W, Fischlin A. 1988. The larch budmoth in the Alps. In: Dynamics of Forest Insect Populations: 

Patterns, Causes, Implications (Berryman AA, ed). 331-351, Plenum Press: New York, USA 

Bard Y. 1974. Nonlinear Parameter Estimation. Academic Press Inc., New York, USA 

Bolshev LN, Smirnov NV. 1983. Tables of Mathematical Statistics. Nauka, Moscow, Russia 

Borovkov АА. 1984. Mathematical Statistics. Nauka, Moscow, Russia  

Draper NR, Smith H. 1981. Applied Regression Analysis. Wiley and Sons Inc, New York, USA 

Gao M, Chang XH, Wang XX. 2012. Bayesian parameter estimation in dynamic population model via particle 

Markov chain Monte Carlo. Computational Ecology and Software, 2(4): 181-197  

Hollander MDA, Wolfe DA. 1973. Nonparametric Statistical Methods. John Wiley and Sons Inc, USA 

Isaev AS, Khlebopros RG, Nedorezov LV, Kondakov Yu P, Kiselev VV. 1984. Forest Insect Population 

Dynamics. Nauka, Novosibirsk, Russia 

Isaev AS, Khlebopros RG, Nedorezov LV, Kondakov YuP, Kiselev VV, Soukhovolsky VG. 2001. Population 

Dynamics of Forest Insects. Nauka, Moscow, Russia 

Likes J, Laga J. 1985. Basic Tables of Mathematical Statistics. Finance and Statistics, Moscow, Russia 

Lilliefors HW. 1967. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. 

Journal of American Statistical Association, 64: 399-402 

McCallum H. 2000. Population Parameters Estimation for Ecological Models. Blackwell Sciences Ltd, 

Brisbane, Australia 

Moran PAP. 1950. Some remarks on animal population dynamics. Biometrics, 6(3): 250-258 

Nedorezov LV. 2011. Analysis of cyclic fluctuations in larch bud moth populations with discrete-time 

dynamic models. Biology Bulletin Reviews, 72(2): 407-414 

Nedorezov LV. 2012. Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. LAP Lambert 

Academic Publishing, Saarbrucken, USA 

Nedorezov LV. 2013a. Dynamics of pine hawkmoth (Hyloicus pinastri L.): search for stationary dynamical 

regime// Computational Ecology and Software, 3(4): 81-90 

Nedorezov LV. 2013b. About an approach to population periodic dynamics analysis (on an example of larch 

bud moth fluctuations). Population Dynamics: Analysis, Modelling, Forecast, 2(1): 23-37 

Nedorezov LV. 2014. Use of Moran-Ricker model for fitting of larch bud moth time series: structure of 

feasible set in space of model parameters. Population Dynamics: Analysis, Modelling, Forecast, 3(4): 

102-109 

Nedorezov LV, Lohr BL, Sadykova DL. 2008. Assessing the importance of self-regulating mechanisms in 

diamondback moth population dynamics: Application of discrete mathematical models. Journal of 

Theoretical Biology, 254: 587-593 

Nedorezov LV, Nedorezova BN. 1994. Modifications of Moran-Ricker models of isolated population 

dynamics. Journal of General Biology, 55(4-5): 514-521 

Nedorezov LV, Sadykova DL. 2010. Analysis of population time series using discrete dynamic models (on an 

example of green oak leaf roller). Lesovedenie, 2: 14-26 

Nedorezov LV, Sadykova DL. 2015. Dynamics of larch bud moth populations: application of Moran - Ricker 

models with time lag. Ecological Modelling, 297: 26-32 

Nedorezov LV, Utyupin YuV. 2011. Continuous-Discrete Models of Population Dynamics: An Analytical 

Overview. State Public Scientific-Technical Library, Novosibirsk, Russia 

400



Computational Ecology and Software, 2015, 5(4): 389-401 

 IAEES                                                                                    www.iaees.org

Ricker WE. 1954. Stock and recruitment. J. Fish. Res. Board of Canada, 11(5): 559-623 

Sadykova DL, Nedorezov LV. 2013. Larch bud moth dynamics: can we explain periodicity of population 

fluctuations by the time lag-dependence in birth rate? Population Dynamics: Analysis, Modelling, 

Forecast, 2(4): 154-181 

Shapiro SS, Wilk MB, Chen HJ. 1968. A comparative study of various tests of normality. Journal of the 

American Statistical Association, 63: 1343-1372 

Tonnang H, Nedorezov LV, Owino J, Ochanda H, Löhr B. 2009a. Evaluation of discrete host –parasitoid 

models for diamondback moth and Diadegma semiclausum field time population density series. 

Ecological Modelling, 220: 1735-1744 

Tonnang H, Nedorezov LV, Ochanda H, Owino J, Lohr B. 2009b. Assessing the impact of biological control 

of Plutella xylostella through the application of Lotka – Volterra model. Ecological Modelling, 220: 60-

70 

Tonnang H, Nedorezov LV, Owino J, Ochanda H, Löhr B. 2010. Host–parasitoid population density 

prediction using artificial neural networks: diamondback moth and its natural enemies. Agricultural and 

Forest Entomology, 12(3): 233-242 

Tonnang H, Löhr B, Nedorezov LV. 2012. Theoretical Study of the Effects of Rainfall on the Population 

Abundance of Diamondback Moth, Plutella xylostella. Population Dynamics: Analysis, Modelling, 

Forecast, 1(1): 32-46 

Turchin P. 2003. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University 

Press, Princeton, USA 

Wood SN. 2001. Partially specified ecological models. Ecological Monographs, 71: 1-25 

 

401




