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Abstract 

Distance sampling is a flexible and efficient inventory technique in forestry and ecology, especially in highly 

dense plant communities, and in difficult terrain. Point-to-tree distance or tree-to-tree distance was used to 

estimate characteristics of the spatial point pattern mapped from particular spatial locations of plant or tree 

individuals. For random spatial point patterns, there is an ideal probability distribution model of point-to-tree 

distance resulting in unbiased density estimators. For aggregated spatial point patterns, Gamma-Poisson 

probability model of point-to-tree distance corresponding to Gamma-Poisson point process is one candidate 

model. Although the density estimator based on Gamma-Poisson model is biased, it performs satisfactorily in 

practical applications. However, numerical method to compute the maximum likelihood estimates of Gamma-

Poisson model is very complicated. In this paper, a parameter optimization method, particle swarm 

optimization algorithm, is applied for parameter estimation in Gamma-Poisson model. The results showed that 

the new parameter estimation method was efficient and not constrained by the sample size; therefore, the 

computational complexity was significantly reduced. We suggest this parameter optimization for density 

estimation in forestry and ecology. 
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1 Introduction 

Abundance or density of a focal species is an important indicator of the species’ viability and conservation 

status; as such the ability to estimate abundance/density from point patterns or quadrat/grid samples of 

occurrence has been an area of endeavor in conservation ecology (Cassey, 1999; Schwarz and Seber, 1999; 
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Hui and McGeoch, 2007, 2014; Hui et al., 2009, 2011). Distance sampling, also known as plotless sampling, is 

more commonly applied in practice when plot (quadrat) sampling would be difficult or too costly (Sheil et al., 

2003; Picard et al., 2005). Point-to-tree distance sampling (sometimes also referred to as k-tree sampling) that 

use distance from a sample point to the k nearest objects (trees or plants) is one simple distance sampling 

approach (Pielou, 1977; Sutherland, 1998). For moderate k values, point-to-tree distance sampling often 

facilitates field work considerably (Kleinn and Vilćko, 2006). With samples of point-to-tree distance, the 

density of trees (individuals per unit area) can be derived according to a density estimator. Generally, there are 

three kinds of density estimator using point-to-tree distances: empirical, model-based, and composite (Kleinn 

and Vilćko, 2006; Magnussen et al., 2008b; Magnussen, 2012; Magnussen et al., 2012). It is found that the 

performance of density estimators often depend on the spatial pattern of trees, the choice of k, and the sample 

size of point-to-tree distance n. In this paper, we focus our attention on model-based density estimator.  

For a majority of density estimators, it is explicitly or implicitly assumed that the spatial distribution of 

trees follow a Poisson model of complete spatial randomness. Under Poisson model, an asymptotically 

unbiased maximum likelihood estimator of density was derived (Moore, 1954; Eberhardt, 1967). In natural and 

semi-natural populations the distribution of trees is often irregular with a variation in local density that 

generates an appearance of spatial clustering (Hui et al., 2010). Magnussen et al. (2008a, 2008b) proposed a 

density estimator based on a Gamma-Poisson distribution model of point-to-tree distance corresponding to 

clustered spatial point patterns. An extensive evaluation of 19 k-tree distance estimators revealed that the 

Gamma-Poisson density estimator ranked second when the sample size was greater than 10 (Magnussen et al. 

2008b). Because of its good performance, Gamma-Poisson density estimator was always included in 

composite density estimator (Magnussen, 2012; Magnussen et al., 2012). In Gamma-Poisson model of point-

to-tree distance, estimating the two model parameters is not trivial task because of the complicated form of the 

probability density function. In statistics, there are many numerical methods for estimating the parameters of 

complicated probability distribution model such as moment method, empirical method, graphical method, and 

maximum likelihood method. Maximum likelihood method was applied in (Magnussen et al. 2008b) for 

parameter estimation and the optimized estimates on the log-likelihood surface were searched by Nelder-Mead 

algorithm. However, maximum likelihood estimation was fraught with nontrivial numerical issues when the 

samples of point-to-tree distance were rare (Magnussen et al., 2008b). The aim of this paper is to apply a 

numerical optimization method, the particle swarm algorithm, to calculate the model parameters of Gamma-

Poisson distribution model of point-to-tree distance.  

 

2 Materials and Methods 

2.1 Gamma-Poissson model 

Spatial point pattern, which is obtained by mapping the locations of each individual as points in space, is 

widely used for forestry statistics (Legendre and Fortin, 1989; Stoyan and Penttinen, 2000). A spatial point 

pattern is considered as a realisation of a spatial point process (Gatrell et al., 1996) that is a “stochastic 

mechanism generating countable points in the plane” (Diggle, 2003). For a spatial point process, a 

fundamental property is the intensity, λ(s), which the expected number of points per unit area at the location s. 

Homogeneous Poisson process with a constant intensity λ is the simplest spatial process that is also termed as 

complete spatial randomness (CSR). It has two important properties (Stoyan and Penttinen, 2000). Under CSR, 

the number of points in any region follows the Poisson distribution with a mean of λA, where A is the sampling 

area. Then, the probability density function (pdf) of the distance rk from a (random) sample location to the k 

nearest point is 
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However, empirical data shows that sampling with plots of fixed size (A) often gives rise to a distribution of 

points per plot (A) that is closer to a negative binomial distribution (Eberhardt, 1967; White and Bennetts, 

1996; Turechek and Madden, 1999; Brix and Cahdoeuf, 2002) than to a Poisson distribution. A negative 

binomial distribution of counts implies that the local density λ(s) of points varies from one sample location to 

another as in a gamma distribution with a mean of λ (Johnson et al., 1992). Then the probability density 

function (pdf) of the distance rk can be obtained from a convolution of the pdf of rk under a Poisson model 

(Eq.1) with a gamma distribution 
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with   . Eq.(3) can also be derived from negative binomial distribution directly (Thompson, 1956). 

Generally, parametes α and β can be estimated using either moment method (sample size ≤ 30) or maximum 

likelihood method (sample size > 30) (Magnussen et al., 2008a, 2008b; Gao, 2013).  

2.2 Particle swarm parameter optimization 

Particle swarm optimization is population based optimization tool, where the system is initialized with a 

population of random particles and optimizes a problem by iteratively trying to improve a candidate solution 

according to an objective function. Suppose that the search space is N-dimensional, the i-th particle is 

represented by an N-dimensional vector ),,,( 21 iNiii xxxX L  and its velocity is represented as 

),,,( 21 iNiii vvvV L . With a given objective function, the fitness of each particle can be evaluated. Record 

the fitness of the personal best position ),,,( 21 iNiii pppP L  which is the best previously visited position 

of the i-th particle as fpbest. Meanwhile, the position of the best individual of the whole swarm is marked as the 

global best position ),,,( 21 gNggg pppP L , and the objective function corresponding to gP  is fgbest. At 

each step, the velocity and position of the i-th particle were updated according to rules defined by the 

following equations until the stopping limit was reached: 

)(**)(*** 211 iiiiii XGrcXPrcVV                 (4) 

iii VXX                                           (5) 

where ω is the inertia weight, by which the impact of previous velocity of particle on its current one can be 

controlled, r1 and r2 are independently uniformly distributed random variables within (0,1) and c1 and c2 are 

positive constant parameters called acceleration coefficients which control the maximum step size. Fig.1 

shows the computation flowchart of particle swarm algorithm. 

For the probability density function (Eq.3), we can compute the expectation and variance of point-to-tree 

distance rk (Magnussen et al., 2008a): 
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From Eq. (6-7), we found that parameter β can be cancelled out in 22 / kr . Then the residual value ε defined 

below is used as the objective function 
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With this objective function (Eq. 8), the parameter α can be estimated using particle swarm optimization 

algorithm, and then parameter β can be further computed using Eq. (6). In this paper, we set 5.0 , 

5.021  cc , and the population size 100N . It must to be noted that the value of parameter α was larger 

than one, but this restriction on α was not important in practical applications (Magnussen et al., 2008a). 

 

Fig. 1 Computation flowchart of Particle Swarm Algorithm in this paper. 

 

2.3 Simulated and empircal point patterns 

We test the new parameter optimization method using both simulated and empirical data. We generated one 

random spatial pattern and three spatial patterns with the degree of clustering varying from low to to high 

levels of aggregation using a computational statistical toolbox under MATLAB Environment (Martinez and 

Martinez, 2002). Random point pattern was generated by a homogeneous Poisson process with intensity 

λ=0.001, and all points were distributed in a 100 ha (1000×1000 m) area. The aggregate spatial point patterns 
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were generated by Poisson Cluster process, where the parents were generated by a homogeneous Poisson and 

the children were distributed around the parents according to a bivariate normal distribution. There were three 

parameters that defined the number of parents (μ), the expected number of children in each cluster (ν), and the 

mean distance from parent to children (φ) were used. In Fig. 2, we illustrated four spatial point patterns of 

random, low, moderate, and high levels of aggregation. To eliminate edge effect, a 50m wide buffer zone was 

chosen. That is to say, randomly selected sampling points are merely located in the inner 900×900 m square, 

and the number of sampling points equals to that of points in the inner square. To further test the probability 

distribution models, we use a stand-mapping data set of tree species in a tropical rain forest in Barro Colorado 

Island (BCI), Panama. The study area is a 1000 ×500m rectangular plot (50 ha). The spatial patterns of most 

tree species are aggregate (Condit et al., 2000; Zillio and He, 2010). Analogously, we also set a buffer zone 

along the four edges, and the width is 25 m. For each species, sampling points are also randomly distributed in 

the inner rectangular region. 

 

 

 

Fig. 2 Four simulated spatial point patterns (green circles). (a) random pattern generated by a homogeneous Poisson process with 
intensity λ=0.001; (b-d) lowly, moderately and highly aggregate spatial point patterns generated by Poisson Cluster process with 
parameters with parameters ( μ, ν, φ) equals to (50,30,50), (40,20,40), and (20,15,30), respectively. The red lines show the 
boundaries of the buffer zone. 
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The performance of particle swarm parameter optimization algorithm was evaluated according to two 

criteria: Chi-square error of model fitting and relative error (RE) of density estimate. Chi-square error (CSE) of 

model fitting, is a goodness-of-fit statistic given by 
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where obsp  and fitp  are the observed and fitted probability density function, n is the number of bins of 

observed probability density function. A smaller CSE means a better fitting of model (3) to samples of point-

to-tree distance, and a smaller RE means a more accurate density estimate. The ranks of point-to-tree distance 

are chosen from 1 to 6. A larger k will be less attractive for practical application. 

 

3 Results 

The results for the simulated spatial point patterns were shown in Fig. 3 and Table 1 and 2. In Fig. 3, we 

showed the fitting of point-to-tree distance to model (3). For point patterns with random structure or low level 

of aggregation, the probability distribution models fit the point-to-tree distance well; while for point patterns 

with moderate to high level of aggregation, the fitting becomes worse (Fig. 3). Table 1 and 2 summarized the 

results of 300 independent simulations of point patterns and fitting of probability distribution functions. For 

random point patterns, the fitting for different k were almost identical. But for all aggregate spatial patterns, an 

increased CSE indicated worse fitting. When estimates of the two parameters α and β were multiplied to 

calculate the density, we got more interesting results. For random spatial point patterns, the density was 

usually over-estimated, but for aggregate spatial patterns the density was usually under-estimated. Moreover, 

the estimator became less biased as the increasing of k (Table 2), although the fitting of probability density 

function become worse (Table 1). The inconsistency between model fitting and density estimation has been 

explained in Magnussen et al. (2008a) because density was not directly optimized. In reality, density or 

abundance is unknown, that’s why we can’t use density as the target for optimization. 

 

 

 

Table 1 Chi-square error (CSE) of model fitting. Entries are averages of 300 replicated independent simulations of spatial point 
patterns and model fitting. Standard deviations of CSE are in parentheses. 

 k=1 k=2 k=3 k=4 k=5 k=6 

Random 
0.0129 

(0.0058) 

0.0123 

(0.0045) 

0.0131 

(0.0046) 

0.0146 

(0.0065) 

0.0149 

(0.0076) 

0.0145 

(0.006) 

Low level of Aggregation 
0.0149 

(0.0073) 

0.0195 

(0.0099) 

0.022 

(0.0121) 

0.0234 

(0.013) 

0.0243 

(0.0152) 

0.0244 

(0.0156) 

Moderat level of aggregation 
0.0293 

(0.0112) 

0.0422 

(0.0181) 

0.0497 

(0.0264) 

0.0553 

(0.0325) 

0.0578 

(0.0365) 

0.0598 

(0.0426) 

High level of aggregation 
0.0352 

(0.0142) 

0.0782 

(0.0367) 

0.1314 

(0.0941) 

0.1971 

(0.2241) 

0.247 

(0.3053) 

0.2956 

(0.421) 
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Table 2 Relative error (RE) of density estimate. Entries are averages of 300 replicated independent simulations of spatial point 
patterns and model fitting. Standard deviations of RE are in parentheses. 

 k=1 k=2 k=3 k=4 k=5 k=6 

Random 
0.0282 

(0.0523) 

0.0194 

(0.0314) 

0.0198 

(0.0239) 

0.0195 

(0.0213) 

0.0195 

(0.0208) 

0.0187 

(0.0191) 

Low level of Aggregation 
-0.2041 

(0.1165) 

-0.1601 

(0.0918) 

-0.1307 

(0.0783) 

-0.1093 

(0.0709) 

-0.0932 

(0.0648) 

-0.08 

(0.0606) 

Moderat level of 

aggregation 

-0.4688 

(0.1028) 

-0.3429 

(0.0939) 

-0.2647 

(0.0874) 

-0.2083 

(0.0834) 

-0.1639 

(0.0798) 

-0.1286 

(0.0771) 

High level of aggregation 
-0.742 

(0.0675) 

-0.5586 

(0.0908) 

-0.4227 

(0.1029) 

-0.3149 

(0.1115) 

-0.2258 

(0.1178) 

-0.152 

(0.1229) 
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Fig. 3 Observed (histogram) and fitted (solid lines) probability density function of four spatial point patterns shown in Fig.1. 
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Fig. 4 Estimated vs. actual density of 259 tree species on Barro Colorado Island (BCI), Panama. The two inlets showed the 

details of bottom-left corner. 

 

 

Fig.4 illustrates the results of density estimation for 259 tree species on Barro Colorado Island (BCI), 

Panama. Here, only density estimation for k = 6 was shown and the sample size was 50. We found that the 

estimated density is closer to the actual density for most tree species, especially for abundant tree species. 

However, tree density was usually under-estimated when tree species was rare. This result was consistent with 

that of simulated spatial point patterns indicating spatial clustering of rare species. Actually, previous study 

already verified that rare tree species was highly aggregate but not widely distributed within the study area 

(Condit et al., 2000).  

 

4 Conclusion 

Point-to-tree distance sampling was a popular plant inventory technique, especially in highly dense forest, and 

in difficult terrain (Picard et al., 2005; Kleinn and Vilćko, 2006). Previous study verified that Gamma-Poisson 

model performed well in fitting point-to-tree distance and density estimation (Magnussen et al., 2008ab). 

Although the density estimator based on Gamma-Poisson model suffered from the problem of bias, it was 

usually applied as option in constructing composite density estimator (Magnussen, 2012; Magnussen et al., 

2012). In this paper, we proposed a new numerical optimization method, particle swarm optimization 

algorithm, to estimate the two parameters of Gamma-Poisson model. Compared with classical parameter 

estimation method, particle swarm optimization algorithm was more efficient and not constrained by the 
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sample size. It would improve the computational efficiency of composite density estimator that was recognized 

less biased and robust in forestry and ecology. 
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