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Abstract 

In ecology, the patterns usually refer to all kinds of nonrandom spatial and temporal structures of ecosystems 

driving by multiple ecological processes. Pattern recognition is an important step to reveal the complicated 

relationship between ecological patterns and processes. To review and present some advances about ecological 

modeling, patterns recognition, and computer simulation, an international workshop on Mathematical & 

Numerical Ecology with the theme “Pattern recognition and simulation in ecology” was held in in October 

2014 in Guangzhou, China, and the International Society of Computational Ecology was the co-sponsor. Eight 

peer-reviewed papers those were originally presented at this workshop covering three themes: patterns in 

phylogeny, patterns in communities and ecosystems, and spatial pattern analysis are included in this special 

issue. 
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1 Introduction 

Understanding ecological patterns and their underlying mechanisms is central to ecology. Driven by multiple 

ecological processes, an ecological system usually exhibits spatial or temporal structures that are significantly 

different from those generated of a random process (Legendre and Fortin, 1989; Grim et al., 1996; Hui et al., 

2010). These nonrandom spatial and temporal structures are defined as ecological patterns that contain 

information on the mechanisms behind their emergence(Grimm et al., 2005).The importance of ecological 

patterns has already been realized by ecologists since 1940s (Watt, 1947; Hutchinson, 1953; Southwood, 1980). 

Nowadays, the concept of nonrandom patterns are dissipating across all domains of ecology, ranging from 
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population (Watt, 1947) to community (Anderson and Kikkawa, 1984; Hubbell, 2001), from landscape (Wiens, 

1999; Roura-Pascual et al., 2010) to global scales (Roura-Pascual et al., 2011).  

Pattern recognition tries to extract information from ecological patterns and is the first step for inferring 

ecological processes from patterns (e.g., Boyero et al., 2015).Since the scope of ecological pattern is 

extensively broad, there is no universal methodology in describing these patterns. In general, depicting 

ecological patterns using a simple metric or statistical distribution is a preferred way, such as the branching 

diagram used in phylogenetic analysis, species abundance distribution in a community, spatial-correlation of 

species distributions (Hui, 2009; Gao, 2014), network architectures of complex ecosystems (Zhang et al., 2011; 

Minoarivelo et al., 2014; Nuwagaba et al., 2015), and various biodiversity indictors. Unfortunately, the 

relationship between ecological pattern and process is neither one-to-one nor linear (e.g. Hui and McGeoch, 

2014): a single ecological process can produce different context-dependent ecological patterns, and similar 

ecological patterns can also be driven by different ecological processes (Brown et al., 2011). 

To further understand how ecological mechanisms and processes work, computer simulations are 

commonly used for addressing questions that cannot be solely answered by controlled experiments or 

observations. Especially, with the rapid advance of computational power during the past few decades, it is 

possible now to simulate more complicated ecological systems with explicit details, implementing individual 

level interactions and spatial structures. With intensive simulations, the relationships between biological 

processes, the environment, and ecological patterns across different scales can be revealed. Computer based 

ecological models can further predict the future of evolution (Zhang et al., 2013; Landi et al., 2015). 

Developing, optimizing, and applying computer simulations for ecological modeling have become the central 

task for computational ecology (Zhang, 2012). To this end, pattern recognition is a key procedure for 

evaluating ecological simulations, as the congruence between the simulated and observed patterns is the main 

criterion for model performance evaluation. 

 

2 Editorial Viewpoint 

In this special issue, we present eight peer-reviewed papers that are written under the banner of the theme on 

Pattern recognition and simulation in ecology. These papers were originally presented at the International 

Workshop on Mathematical & Numerical Ecology, held in October 2014 in Guangzhou, China. As ecological 

patterns cover such a wide range, we only selected a few papers that were hotly discussed during the workshop. 

These papers can be grouped into three themes:1) patterns in phylogeny; 2) patterns in communities and 

ecosystems; and 3) on spatial pattern analysis.  

Minoarivelo et al. (2015) reviewed the recent progress made in statistical phylogenetics. The trends and 

pitfalls of the commonly used methods, such as the parsimony-based approach, maximum likelihood based 

method, and the Bayesian inference approach. They speculate that the computational and statistical advances 

in the phylogenetic analysis will continue to escalate in the future. Nuwagaba and Hui (2015) reviewed three 

metrics of ecological networks: species degree distribution, compartmentalization, and nestedness. They fitted 

the node degree distributions of 61 empirical antagonistic networks to five different parametric models and 

tested the observed levels of compartmentalization and nestedness against null model expectations. 

Ochiaga and Hui (2015) focused their attention on species abundance distribution, which describes the 

relative abundances of species in a community and is considered as one of the most important metrics in 

community ecology. Four major parametric forms (log series, negative binomial, lognormal and geometric 

distributions) and three mechanistic models (maximum entropy theory of ecology, neutral theory and the 

theory of proportionate effect) were reviewed. Lu et al. (2015) investigated species spatial distribution using 

spatial point patterns. A Gamma-Poisson model representing an inhomogeneous Poisson process was presented. 
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The probability distribution model was then used to fit the spatial distribution of both simulated and empirical 

data. An alternative method, the particle swarm algorithm, for parameter estimation was proposed. 

Han et al. (2015) used a spatially-explicit individual-based cellular automaton to investigate the effect of 

niche construction on the spatial-temporal dynamics of spatially structured populations. They found that niche 

construction can influence the dynamics, the competition and diversity of metapopulations in a profound way. 

Zhang and Gao (2015) simulated a probabilistic automaton model on regular grids to investigate the effect of 

spatial structure on evolutionary dynamics of different strategies. To elucidate the mechanisms for the 

evolution of cooperation, evolutionary game theory was used to solve the so-called social dilemmas problem. 

Both computer simulation and mathematical analyses showed that the evolution of cooperation could be 

promoted in spatially-structured populations. 

The remaining two papers reviewed the progress made in the spatial modeling of ecological and 

epidemiological dynamics. Ramanantoanina and Hui (2015) reviewed the modeling of population spread when 

dispersal is driven by habitat fragmentations, density-dependent predation and mixed propagules. Su and Wang 

(2015) reviewed the modeling of eco-epidemiological systems from both non-spatial and spatial perspectives. 

The effects of spatial structures in determining the success or failure of disease invasion in a spatially 

structured population was also discussed. 

Real ecosystems are way more complicated than what we can imagine. Quantifying observed ecological 

patterns and linking them to the underlying mechanisms are probably the first step for unveiling the mystery of 

nature. The complex relationship between ecological patterns and processes poses a real challenge for inferring 

mechanisms driving ecological systems. Advances in computation and the availability of high quality data 

have made it possible to elucidate candidate mechanisms for complicated ecological patterns in many systems 

(Beaumont, 2010; Ulrich and Gotelli, 2013). Sophisticated computer and mathematical models are destined to 

make more important contributions to the future ecology. 
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